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QUATERNARY 

                              Eolian deposits  Dunes and sand sheets, sometimes inactive/vegetation stabilized

                              
                              Tufa

                              Lacustrine beach ridge/bar deposits, deltas, and terraced alluvium

                              Fine-grained lakebed/playa deposits

                              Landslide deposits

                              Recent alluvial deposits

TERTIARY 

                              Unlithified lacustrine and alluvial deposits (tilted)

                              Pebble to boulder conglomerate, metamorphic clasts from extinct watersheds

                              Basaltic to rhyolitic lavas, tuff, and volcaniclastic sediment

                      Diabase dikes  
      

                      Rhyolite dikes

                      Andesite dikes

                      Plagioclase-phyric basalt dikes

                      Pyroxene ± olivine phyric basalt dikes

                      Fine-grained diabase dikes

                      Aphyric basalt dikes    

CRETACEOUS SAHWAVE INTRUSIVE SUITE 

                      Aplite, pegmatite, and leucogranite dikes

                      Sahwave Granodiorite  Medium-grained biotite granodiorite containing 1–5%   
                      K-feldspar megacrysts (2–4 cm).  88.5 ± 2.0 Ma (Van Buer and Miller, 2010).     

                      More homogeneous leucogranite intrusions

                      School Bus Granodiorite  A relatively leucocratic granodiorite, distinguished by   
                      scattered 1–2 cm K-feldspar phenocrysts and 3–6 mm biotite flakes.  91.2 ± 1.2 
      Ma (Van Buer and Miller, 2010).

                      Granodiorite of Bob Spring  Medium-grained biotite granodiorite/granite with 
                      equant quartz grains and seriate, poikilitic K-feldspar phenocrysts to 2 cm.
      Biotites are generally <1 mm in size.   92.8 ± 1.7 Ma (Van Buer and Miller, 2010).

                      Granodiorite of Juniper Pass  Medium-coarse grained equigranular biotite  
                      hornblende granodiorite, discernible by its conspicuous 4–8 mm biotite crystals.      
      Large hornblende phenocrysts are common around the periphery of this intrusion, giving 
      the rock a characteristic “dalmatian” appearance.  A magmatic foliation is frequently 
      discernible.  92.7 ± 1.4 Ma (Van Buer and Miller, 2010).

                      Diorite intrusions, often showing magma mingling with Kjp

                      Fine-grained biotite granodiorite, age unknown; appears to be related to the 
                      Sahwave Intrusive Suite

OLDER MESOZOIC 

                      Selenite Granodiorite  Medium-grained hornblende biotite granodiorite marked
                      by plagioclase phenocrysts (polysynthetic twinning is frequently visible to the
      unaided eye) which are preferentially aligned along a conspicuous, roughly north-south 
      magmatic foliation.   96.3 ± 0.8 Ma (Van Buer and Miller, 2010).

                      Power Line Intrusive Complex  Predominantly a medium-grained biotite 
                      hornblende granodiorite with 5–10 mm K-feldspar phenocrysts.  Also contains
      unmapped pods and dikes of more mafic and finer-grained material, but these internal 
      relations are obscured by a pervasive solid-state foliation defined by strung-out 
      recrystallized biotite.  104.9 ± 0.8 Ma (Van Buer and Miller, 2010)

                      Auld Lang Syne Group  Metamorphosed mudstone/shale with interbedded 
                      sandstone lenses and rare marble layers (cf. Burke and Silberling, 1973; 
      Johnson, 1977).  The metamorphic blocks or pendants within the map area 
      demonstrate contact metamorphism to phyllite or siliceous hornfels.  
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28.  The School Bus Granodiorite is assumed to underlie the east side of the Winnemucca basin 
along cross section D–D', but it is not clear how far it extends or what basement rocks underlie the 
area to the west.

29.  The unconformity here is projected assuming minimal slip across the antithetic normal fault to 
the east.

30.  The School Bus Granodiorite is expected to underlie the southern part of the Power Line 
Complex based on extensive aplite diking in the area. The contact geometry shown (including 
metamorphic blocks) is drawn in analogy to map patterns where this contact surfaces to the south.

31.  Listric fault geometry is assumed from the presence of an antithetic normal fault, and is drawn to 
be restorable. Slip on the antithetic fault is poorly constrained, but assumed to be minimal.

32.  The dip of the Tertiary unconformity is estimated from map geometry just south of the section line.

33.  As in cross section C–C', faults within this syncline are assumed to be curved (see also notes 25, 
34, and 35).

34.  Apatite helium thermochronology data from this horst about 3.5 km south of the section line 
suggest an 800 m depth below the Tertiary unconformity (Whitehill, 2009). In detail, the amount of 
displacement caused by the faults bounding this small horst and the geometry of synclinal folding in 
this area are poorly constrained, but have been drawn to meet thermochronological and map 
constraints while minimizing fault offsets and maximizing radius of curvature.

35.  The geometry of this part of the unconformity is constrained by low temperature thermochronol-
ogy south of the section line (Whitehill, 2009). It  appears that the uplift of the unconformity is 
approximately the same as the depth of the adjacent basin and that the oldest range-bounding normal 
fault is oriented at close to 60° from the Tertiary unconformity.

36.   Off section, the dip of a correlative fault has been measured at 32° (Whitehill, 2009).
  
37.  The dip of the Tertiary unconformity here is drawn to be the same as in the stratigraphically 
lowest hanging-wall strata (Whitehill, 2009).

38.  Steep dips have been measured on the active range-bounding fault to the south (Whitehill, 2009), 
and the dip is assumed to be steep here as well.

39.  Because Kbs is exposed outboard of the main low-angle normal fault, there must be a third, 
unexposed fault, if slip on the active, high angle fault is less than about half of the total slip, which 
seems likely if the degree of fault backtilting is correlated with cumulative slip. I draw all three faults 
soling into a master fault at depth.

40.  Gravity data indicate ~2.5 km basement depth in the southern Granite Springs Valley (Saltus and 
Jachens, 1995). 

Cross Section Notes

1.  These normal faults are not low-angle, but are merely oblique to the line of section, resulting also 
in varying apparent separation of planar features.

2.  The extent of Kd and Klg and even their cross-cutting relations with Kjp at this location are 
unknown, but intrusions elsewhere with similar lithology appear to be roughly coeval with Kjp.

3.  The relief on this portion of the Tertiary unconformity may be related to paleotopography as well as 
later tilting (cf. Faulds et al., 2005).

4.  The range-bounding normal fault here is projected assuming a 32° dip. Corrugations reflect 
changes in the distance between the trace of the fault and the line of section.

5.  This  fault is expressed as a clear lineament across the Sahwave Range that coincides with a 30° 
bend in the range-bounding normal fault and a change in the location of the most abrupt topography 
from the west side of the range north of the fault to the east side of the range south of it. It is 
presumed to accommodate greater uplift and tilting to the south.

6.  The projection of the range bounding fault north of the accommodation fault is assumed to be 
continuous, but more steeply dipping (though oblique to section). It rises to the north beacuse it 
retreats from the line of section.

7.  The height of the Tertiary unconformity is extrapolated between its positions on cross sections 
B–B'  and C–C'.

8.  Dikes not exposed along the line of section are projcted from off section.

9.  The range-bounding normal faults here are projected given their distance from the range front and 
assuming 60° dip.

10.  The downward continuation of Kgd, and even its cross-cutting relations with Kjp, are uncertain. 

11.  Selenite Granodiorite outcrops extensively just west of the map boundary, and is expected to 
underlie part of the west end of the section. The contact shown is not precisely located.

12.  The position of the Tertiary unconformity at the west end of the cross section was projected 
assuming least folding (along a circular arc) between the dips measured/estimated at either end in 
outcrop.

13.  As the Tertiary strata in this area are still nearly horizontal, the normal faults in this cross section 
are assumed to dip at approximately 60°.

14.  The depth to basement in this graben is estimated to be ~1 km from gravity data (Saltus and 
Jachens, 1995).

15.  Depth to basement here is estimated by projecting topography down from the basement outcrop 
to the south. 

 16.  This fault is inferred from the alignment of Tertiary outcrops. Its offset is unknown, but presumed 
to be small given the shallow projected basement depth to the west.

17.  The distribution of slip between these two faults is poorly constrained.

18.  The Tertiary unconformity is assumed to have been uplifted in the northern Sahwave horst by 
about the same amount as it has been downdropped in the adjoining Granite Springs Valley.

19.  The northern Granite Springs Valley is estimated to be ~1.5 km deep from gravity data (Saltus 
and Jachens, 1995).

20.  Most of Winnemucca basin appears to be <0.5 km deep from gravity data (Saltus and Jachens, 
1995).  Offset across the range-front faults is poorly constrained, but is arbitrarily drawn with 
equal-offset faults conserving maximum exposed thickness of the Tertiary unit.  This satisfies the 
gravity constraint.

21.  The Kjp intrusive contact is drawn to emulate its interfingering style in map relations.

22.  The faults in these cross sections are generally drawn assuming they formed at 60° to the 
Tertiary unconformity and have been tilted back by the same angle as the unconformity.  Unless 
otherwise noted, lower angles to the unconformity are apparent only.

23.  This local upwarp is related to a lateral ramp between the adjacent normal fault and a western 
splay that appears to end just north of the section line.

24.  Listric fault geometry is inferred from the presence of an antithetic normal fault.

25.  A gentle syncline in the Tertiary unconformity is projected from dips and thermochronology data 
from south of the map area (Whitehill, 2009). Niether the total slip nor the relative amount of slip on 
these two faults are well constrained. Emplaced through a (coeval?) syncline, both faults are 
assumed to have some upward concavity, which would also account for a small amount of the 
rotation (tilting) in the hanging wall.

26.  A moderate fault dip is assumed so that the main range-bounding normal fault is continuous 
across the accommodation fault just south of the section line, south of which the fault is believed to 
dip more shallowly (cf. cross sections B–B' and D–D'). The dip of the Tertiary unconformity is 
constructed at 60° from the fault dip.  Uplift of the unconformity is assumed to match the depth of the 
adjacent basin.

27.  Although Winnemucca basin does not appear to be very deep from gravity data (Saltus and 
Jachens, 1995), from Bonham (1969) and my own unpublished reconnaissance mapping in the Lake 
Range I estimate about two kilometers of Tertiary section exposed just west of cross section D–D'. I 
have drawn an entirely speculative geometry with equal-sized tilt blocks and equal-offset faults (with 
similar block size and fault offset to the tilt blocks exposed in the western Nightingale Range) that 
attempts to reconcile these two opposing constraints as well as possible. 

41.  From Bonham (1969) and my own unpublished reconnaissance mapping in the Lake Range I 
estimate about two kilometers of Tertiary section exposed just west of cross section E–E'. 

42.  Metamorphic rock is assumed to underlie the east edge of Winnemucca basin along this cross 
section, but it is unknown what basement rocks lie further west or where they might begin.

43.  Gravity data suggests this part of Winnemucca basin may be ~1.5 km deep.  This seems to be 
the deepest part of the basin, so it may be no coincidence that the adjacent segment of the range-
bounding normal fault shows the best geomorphic indicators of active normal faulting, such as 
pronounced triangular faceting.

44.  The Tertiary unconformity is projected at constant dip from outcrops to the east.  Its apparent 
uplift happens to match the depth of the adjacent basin. The normal faults are drawn at 60° to the 
Tertiary unconformity.

45.  This syncline is drawn with the maximum radius of curvature that can match measured dips and 
outcrop locations.

46.  The geometry of the Tertiary outcrops on either side of Sage Hen Wash requires a fault (or faults) 
somewhere in between. I have drawn this fault along a prominent lineament in the valley (at a dip 
angle of 60° to the Tertiary unconformity), but there could just as easily be a concealed fault to the 
west, along the eastern edge of the hills amid Sage Hen Valley.

47.  Map patterns indicate that there may be stoped metamorphic blocks in this area.

48.  The dip of the Tertiary unconformity here is assumed to match the strata in the hanging wall.  Its 
location is projected from an outcrop on the Sage Hen Spring quadrangle assuming folding at the 
maximun possible radius of curvature.

49.  The depth of this sub-basin is drawn to match the uplift of the unconformity.

50.  Faults outboard of the exposed Tertiary basin deposits are expressed by recent scarps, and 
together must have significant slip in order to have raised the strata to their west. Presumably they 
sole into the low-angle master fault at depth. Gravity data indicate a basin depth of ~2.5 km just east 
of the map area (Saltus and Jachens, 1995).

51.  This fault is not exposed along the line of section, but it or another like it must exist to have 
uplifted the Tertiary strata exposed outboard of the next fault to the west. The active normal faults in 
this area appear to form a left-stepping en-echelon array.

The views and conclusions contained in this document are those of the author and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. 
Government.
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Symbology (per FGDC-STD-013-2006)

Contact Solid were location is accurate; dashed where location is inferred.

Normal fault Solid were location is accurate; dashed where location is inferred; dotted
where location is concealed; ball on downthrown side. Arrows (in cross sections only) 
show relative motion.

Gradational contact Solid were location is accurate; dashed where location is inferred.
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