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DEPOSITS OF THE TRUCKEE RIVER

Historically active channel and floodplain deposits now
standing up to 2 m above modern river level; contains

meander scrolls and bar deposits related to modern river level
prior to 1906, after which time the elevation of Pyramid Lake
declined and the river incised. Locally inundated by the 1997 flood
and likely by similar floods in 1986 and 1963.

The course of the Truckee River as shown on the map (uncolored) is
based on digital orthophotoquad (DOQ) imagery taken in 1994; the
topographic base map shows the course of the river in 1985. Changes
in the course of the river due to the 1997 flood are not reflected in the
mapping.

Young terrace deposits of the Truckee River Late Holocene
constructional and strath deposits; dominantly floodplain deposits:
brown to gray mud, muddy sand, and silt containing organic-rich
horizons (black mats), molluscs, gastropods, and vertebrate bones;
intercalated layers of axial stream deposits: well-rounded, well-sorted,
gray sandy, pebble to cobble gravel. From youngest to oldest in
ascending order above the modern river:

Qtn Deposits of the Nixon terrace Early to mid-Holocene
constructional and strath deposits standing ~10 m above

modern river level. Dominantly gray silty, sandy, small pebble to
cobble, well-rounded gravel erosionally inset into Pleistocene
lacustrine deposits. Forms prominent surface east of the river at
Wadsworth and is the principal source of quarry material for Paiute
Aggregates, Inc.; gravel pits expose 5–10 m of terrace sand and gravel
unconformably overlying lacustrine silt and clay deposits of the Eetza
Fm (Qe). Contains the 6.85 ka Mazama ash (Tsoyawata bed; Davis,
1978) at the southern edge of the Wadsworth Amphitheater. Soil: 8- to
10-cm-thick Av, 15–30-cm-thick,  platy Bw, and 50-cm-thick stage I Bk
horizon. Unit underlies the town of Nixon on the quadrangle to the
north.

Qty2
Recently abandoned channels and floodplain deposits
standing up to 3 m above modern river level; fresh,

remnant channel meander-scroll morphology visible on the terrace
surface, often enhanced by riparian vegetation patterns.
Radiocarbon dated at 340–410 yr BP1 (table 1; samples 1, 2) and
880 yr BP (Briggs and Wesnousky, 2004).

Qty3
Abandoned channel and floodplain deposits standing up
to 5 m above modern river level; subdued, remnant

channel meander scroll morphology. Radiocarbon dated at
1300–2120 yr BP (samples 3, 4) and 1790–2230 yr BP (Briggs
and Wesnousky, 2004).

Qtw Deposits of the Wadsworth terrace Early Holocene
constructional and strath deposits standing ~15–20 m above

modern river level. Dominantly brown to gray sandy, small pebble to
cobble, well-rounded gravel unconformably overlying lacustrine
deposits. Forms the first areally extensive terrace sequence of post-
Lake Lahontan age along the lower Truckee River canyon; it underlies
the town of Wadsworth. Inset below and younger than colluvial slope
deposits in the Truckee River canyon radiocarbon dated at 9,620 yr BP
(sample 6). Soil contains 50-cm-thick Bw horizon.

Qtr Early terrace deposits of the Truckee River Late
Pleistocene to Holocene strath deposits related to initial

development of the present-day lower Truckee River canyon following
recession of the middle Sehoo lake. Highest terrace remnants occur at
the elevation of the 11–12 ka Qsm deposits of Dodge Flat (~1260 m);
south of the Wadsworth Amphitheater, multiple strath terraces are
present cutting across Sehoo Fm and older deposits. Terraces are
older than colluvial slope deposits within the Truckee Canyon
radiocarbon dated at 9,620 yr BP (sample 6), indicating that most of
the present-day canyon at Wadsworth was cut between ~9.6 and 12
ka.

ALLUVIAL-FAN, EOLIAN, PLAYA, AND LANDSLIDE
DEPOSITS

Qa Recent alluvial deposits in intermittent washes and
ephemeral stream channels; variable sedimentology

depending on provenance: silty, sandy, subangular to rounded pebble-
cobble gravel where originating from alluvial fan sources; dominantly
silt, sand to mud, and rounded beach gravel where originating from
lake sediment sources.

Qpl Ephemeral playa deposits; silt and mud in small closed
depressions on Dodge Flat.

Qfy Young alluvial-fan deposits of post-Sehoo (mid- to late-
Holocene) age (undifferentiated). Locally subdivided

into:

Qfy1
Young alluvial-fan deposits originating predominantly
within the drainages eroded into the margins of the

Truckee River canyon; silt and sand with local gravel derived
primarily from reworking of lacustrine deposits. Similar in age
to Qty2 and Qty3 deposits; locally slightly older. Radiocarbon
dated at 2800 yr BP (sample 5).

Young alluvial-fan deposits of the Truckee River canyon

Qfy2
Young alluvial-fan deposits originating in the upper
drainages of the post-Sehoo alluvial piedmont of the

Pah Rah Range; silty to sandy, subangular pebble to cobble
gravel inset into older pre-Sehoo age alluvial fans and
deposited as an alluvial veneer on middle Sehoo lacustrine
deposits following recession of the lake. Contains the 6.85-
ka Mazama ash in deposits at the mouth of Windmill Canyon
as well as immediately west of the quadrangle (Briggs and
Wesnousky, 2005).

Qfe (Morrison, 1964; Morrison and others, 1965). Brown,
medium, well-sorted eolian sand derived from underlying lake sand;
sand sheets and dunes ranging in thickness from a thin (<1 m) veneer
to >10 m; typically occurs as northeast-trending linear dunes capping
the middle Sehoo-age lake deposits, best developed in the Fortymile
Desert area east of Wadsworth; prominent linear dunes occur along
and parallel to the eastern canyon rim.

Wyemaha Alloformation (Morrison, 1964; Morrison and others,
1965; Morrison and Frye, 1965; and Morrison, 1991).

Qw Interlacustral, subaerial deposits separating the Eetza
and Sehoo Alloformations in buried stratigraphic section;

termed the medial gravel by Russell (1885). Middle to late
Pleistocene; ranges in age from <155-200,000 yr (based on the
age of Wadsworth tephra bed in the upper Eetza Alloformation) to
~40,000 yr BP (based on radiocarbon dates on snails from
Wyemaha sand deposits exposed in the canyon just north of the
quadrangle boundary). Brown, reddish-brown and gray alluvial
silty coarse pebble sand, eolian sand, and muddy to sandy, cobble
to boulder fan gravel. Stratigraphically defined in this quadrangle
by Morrison and others (1965) based on sedimentary sections
exposed in the Wadsworth Amphitheater and the Railroad Cut;
ranges in thickness from 1–10 m; crops out discontinuously in the
bluffs  and tributary drainages flanking both sides of the Truckee
River canyon; locally missing where eroded prior to deposition of
the Sehoo Alloformation. Contains the Churchill Geosol (Morrison,
1991), which ranges in morphology from multiple, compound
stacks of reddened, oxidized cambic B horizons to single, 30–50-
cm-thick, red-brown (7.5 YR), prismatic argillic B horizons and
stage II Bk horizons. Where the Wyemaha Alloformation is <3 m
thick, the deposit is typically oxidized and reddened throughout
owing to the presence of cumulic weathering profiles. Cobble to
boulder alluvial fan gravels are common along the eastern river
bluffs in the Wadsworth Amphitheater and Windmill Canyon area
where the deposits are predominantly composed of locally derived
volcanic clasts. The relatively high topographic position of the
Wyemaha Alloformation in the bluffs on both sides of the present
Truckee River canyon (lowest elevation ~1240 m) indicates that
no comparably deep canyon was present during Wyemaha time.

Qfw Alluvial-fan deposits of the Wyemaha interlacustral
interval; surface equivalent of the Wyemaha

Alloformation found elsewhere in buried stratigraphic context.
Relict and buried relations are best exposed in the area of
Defiance Creek. Soil developed on alluvial fan surfaces typically
contain 30- to 40-cm-thick, well-developed argillic (Bt) horizons.
Relict soil on a Qfw alluvial fan just above the high Sehoo
shoreline 3 km west of Dodge Flat contain 60-cm Bt and 10-cm
Bqkm (duripan) horizons (Hawley, 1969).

Paiute Alloformation (Morrison, 1964; Morrison and others, 1965;
Morrison and Frye, 1965; and Morrison, 1991).

Qp Interlacustral subaerial deposits separating the Eetza
Alloformation from earlier lacustrine sediments in buried

stratigraphic section. Dominantly dark-brown to red-brown, sandy
to clayey, cobble to boulder volcaniclastic gravel; 3–10 m thick in
exposed sections. Middle Pleistocene in age, based on correlation
to similar deposits along the Humboldt River Valley which contain
the 400-ka Rockland and the ~610-ka Dibekulewe tephra beds
(Morrison, 1991). Best exposed in sections near the mouth of
Dead Ox Wash, e.g., the Railroad Cut. May contain multiple buried
paleosols.

Qfp Alluvial-fan deposits of the Paiute interlacustral interval;
surface equivalent of the Paiute Alloformation found

elsewhere in buried stratigraphic context; represents major period
of subaerial fan building between lake cycles. Principal fan
remnants occur along Dead Ox Wash where they are preserved
as high, moderately dissected surfaces containing a thick (1–2 m),
strongly developed argillic soil with a duripan, the Cocoon Geosol
(Morrison, 1991)

Qls Landslide deposits Unsorted chaotic mixture of blocks and
finer material of Twh, resulting from a landslide on the east

flank of White Hill, just west of the quadrangle.

QTf Pleistocene and Pliocene alluvial fan-deposits Dark-
brown to red-brown clayey volcaniclastic gravel; similar to

Qfp but occurs topographically higher and is more deeply dissected.
May contain multiple paleosols; surface underlain by a strongly
developed argillic soil 2 m or more in thickness with a duripan.  Age
uncertain, but unit is oldest alluvium overlying the Miocene volcanic
rocks. May be in part correlative with the 635 to >775 ka Lovelock
Alloformation in the Humboldt River Valley (Morrison, 1991).

DEPOSITS OF LAKE LAHONTAN
Sehoo Alloformation (Morrison, 1964; Morrison and others, 1965;
Morrison and Frye, 1965; and Morrison, 1991)2. Deposits associated
with last major lacustral cycle of Lake Lahontan during late
Wisconsinan time; called the upper lacustral clays by Russell (1885).
Divided into lower, middle, and upper members; only the lower and
middle members found in this quadrangle. Numerous radiocarbon
ages from throughout the Lake Lahontan basin in western Nevada are
between 11 and 35 ka (Broecker and Orr, 1958; Broecker and
Kaufman, 1965; Benson and Thompson, 1987; Benson and others,
1991); as much as 39.9 ka based on radiocarbon ages in the Truckee
River canyon just north of the quadrangle.

Qslm Lower and middle member of the Sehoo Alloformation,
undifferentiated; offshore deposits of brown to gray silt,

sand, and mud; not differentiated in this quadrangle because of
lack of distinguishable boundaries. Radiocarbon dated at between
26.5 and 39.9-ka, and in the canyon to the north contains the 23-
ka Trego Hot Springs tephra, the 27-ka Wono tephra (Benson and
others, 1997), the 33.6-ka Marble Bluff tephra (Davis, 1978), and
the 46-ka Mt Saint Helens Cy tephra (Berger and Busacca, 1995)
in canyon exposures north of this quadrangle. Locally capped by
30–40 cm Bw soil horizon formed during a post-early Sehoo lake
recession.

Qsm Middle member of the Sehoo Alloformation; called the
dendritic allomember by Morrison (1964; 1991). Offshore

deposits of brown to gray silt, sand, mud, and local clay are
associated with the maximum lake levels of the Sehoo lacustral
period. Lake levels rose to the elevation of Dodge Flat (~1260 m)
at 14.7–14.9 ka (samples 11, 12, 13), reached a maximum height
of 1332–1337 m in this area at ~13 ka (Morrison, 1991; Adams
and others, 1999) and receded to the Dodge Flat elevation at
11.1–12.5 ka (samples 7, 8, 9). Based on the radiocarbon age on
post-Sehoo colluvium in the canyon (sample 6), the mid-Sehoo
lake receded below an elevation of 1230 m by 9.6 ka. Locally
subdivided into:

Qsmb Near- and onshore gravelly beach deposits of the
middle member of the Sehoo Alloformation. Gray

sandy, pebble to cobble gravel and coarse sand typically 1–3
m thick; generally well-sorted; subangular to well-rounded
clasts reworked from underlying bedrock and alluvial fan
deposits; occurs as linear shoreline berms and sheets;
locally well-developed desert pavement and rock varnish.

Qsmd Tufa-bearing deposits of the middle member of the
Sehoo Alloformation. Dendritic, lithoid, and thinolitic

tufa in dense colonies, typically forming erosionally resistant
layers. Dendritic variety is most common, with tufa heads in
this area as large as 1 m in diameter. Believed to form in
carbonate-rich water as lake levels remained stable. In this
quadrangle the tufa-bearing member is primarily associated
with the Dodge Flat lake stand (dendritic terrace) at
1250–1260 m elevation, controlled by the 1265 m Darwin
Pass sill at Fernley, and forming a prominent platform on
both sides of the Truckee River canyon.

Eetza Alloformation (Morrison, 1964; Morrison and others, 1965;
Morrison and Frye, 1965; and Morrison, 1991) Deposits associated
with one or more penultimate lacustral cycles of Lake Lahontan during
pre-Wisconsinan time (oxygen isotope stages 6, 8, and 10); called the
lower lacustral clays by Russell (1885). Unit is composed of beds from
multiple lake cycles with interfingering subaerial and deltaic deposits; it
is the thickest exposed section of Lake Lahontan deposits in the
quadrangle, comprising the major part of Truckee River canyon
exposures. Middle Pleistocene; ranges in age from ~130 to 350 ka
(Morrison, 1991). Upper part of the formation contains the Wadsworth
tephra bed dated at 155–200 ka (Berger, 1991; Sarna-Wojcicki and
others, 1991). Uranium-series ages from elsewhere in the Lake
Lahontan basin range between 110 and 288 ka (Morrison, 1991).

Qe Offshore, light- to dark-brown, red-brown, light- to
medium-gray silt, light-gray to greenish-gray clay, and

light-brown silty sand; generally well-stratified, ranging from thin
(1–2 cm) to thick (1–3 m) bedded; clay beds exhibit flat, deep-
water laminations; exposed sections are more than 50 m thick in
this quadrangle. Unit contains interbeds of Gilbert-type deltaic
deposits formed as the ancestral Truckee River flowed into
shallow, fluctuating lake levels; extensively exposed in and to the
north of the Wadsworth Amphitheater (Smoot, 1993). Deltaic
facies include tabular, inclined foreset beds of silt and fine sand;
and flat bottomset and topset beds of laminated silt and fine sand
exhibiting sedimentologic morphologies related to interaction of
fluvial deposition and shallow water: tabular and trough fluvial
cross-bedding, oscillatory and climbing wave ripples, and
interbeds of fluvial sand and gravel.

Qess Fluvial and subaerial deposits of the intralacustral S-Bar-
S Allomember (Morrison and Frye, 1965). Prominent

layers of gray, coarse fluvial sand and rounded pebble to cobble
gravel grading into and interbedded with brown to red-brown
alluvial fan deposits; ranges in thickness from 1 to 3 m and forms
a resistant, darkly varnished terrace-like platform at an elevation of
~1230 m along the canyon bluffs. Presence of well-rounded
granodiorite clasts derived from the Sierra Nevada indicate that
these are Truckee River gravels. Alluvial fan facies consist of
muddy cobble to boulder gravel composed of locally derived
volcanic lithologies. In the Wadsworth Amphitheater, subaerial
deposits containing a well-developed red-brown argillic soil
separate lacustrine deposits of Eetza age indicating a long
intralacustral period.

QTpe Lacustrine deposits of pre-Eetza age, undifferentiated
May be in part correlative with the Rye Patch Alloformation

(Morrison and Frye, 1965; Morrison, 1991) which contains the 640 ka
Lava Creek B tephra bed. Tilted beds of offshore gray, red-brown to
bluish-brown silt and clay; best exposed in the western river bluff and
tributary drainages at and south of the pipeline road where they are
overlain with an angular unconformity by Qe and Qess deposits. At the
pipeline road, the clay beds contain a 0.5- to 1-cm-thick Glass
Mountain tephra bed estimated to be between 0.79 and 1.95 Ma
(Andrei Sarna-Wojcicki, written commun., 2003).

PRINCIPAL QUATERNARY STRUCTURAL-
STRATIGRAPHIC RELATIONS OF THE PYRAMID
LAKE FAULT ZONE

The Pyramid Lake fault is part of the Walker Lane belt, a transcurrent
right-lateral strike-slip system extending for more than 600 km across
western Nevada (Stewart, 1988). In the Wadsworth Quadrangle,
structural deformation associated with the Pyramid Lake fault occurs in
Lake Lahontan and younger deposits along a N20–30ºW-striking
series of faults lying along the west margin of the Truckee River
canyon. The principal zone of faulting is marked by a singular trace
that extends across the quadrangle from Dead Ox Wash on the north
to Fortymile Desert on the south. The oldest structurally deformed
sediments are found near the pipeline road in the western river bluff
where 0.79–1.95-Ma Qpe deposits are tilted 35º to the west; in nearby
tributary washes south of the road, Qe deposits are west-tilted and
folded. About 300 m north of the pipeline road, units Qsmd and Qw are
offset 10–16 m respectively by an east-dipping normal fault. This
feature was interpreted as a slump block by Smoot (1993). The trace
of this fault can be followed to the north near the Rail Cut where
exposures show 40–50 m of normal displacement of Qw and Qe
deposits.

To the west of this principal trace, faulting is characterized by graben
and nested graben with 1–2 m scarps in Qsm parallel and subparallel
to the main trace. To the south of Gardella Canyon, the fault is
generally concealed beneath Dodge Flat and the floodplain, but
trenching revealed 0.5–1 m offsets in Qsm and Qfy deposits (Briggs
and Wesnousky, 2004).

Most slip indicators found along the main fault show that it is
dominantly a normal, dip-slip structure. Vertical slickenlines are found
at several fault exposures, and the tilted and folded Qe and Qpe
sediments are suggestive of roll-over structure produced by large-
scale normal faulting. The graben that cut Qsm deposits are further
indicators of extension-dominated motion along this segment of the
Pyramid Lake fault. Some geomorphic evidence, however, is
suggestive of strike-slip motion; reversal of fault dip (scissoring) along
the southeastern portion of the fault is commonly associated with
strike-slip behavior. Briggs and Wesnousky (2004) described several
tributary washes that are laterally offset 34–43 m, but this study could
not confirm this amount of lateral offset. Based on our mapping,
movement along the Pyramid Lake fault segment in the Wadsworth
Quadrangle is believed to be dominated by extensional faulting with a
minor component of right-lateral slip.

1 Ages reported for radiocarbon samples are in radiocarbon yr BP; corresponding calendar-corrected (calibrated) ages for each sample are listed in table 1.
2 A note regarding stratigraphic nomenclature: Lake Lahontan and related subaerial deposits were considered lithostratigraphic units in the early studies of Morrison
and were designated as formations. With the revision of the North American Stratigraphic Code in 1983, new allostratigraphic and pedostratigraphic unit definitions
were added which allowed the definition of time-transgressive, lithology-independent rock units and soils. Morrison (1991) redefined the Lake Lahontan sequence
according to these new code definitions, a convention which we follow here.
3 40Ar/39Ar ages reported in Garside and others (2000, 2003) used an age of 27.84 Ma for the neutron flux monitor, sanidine from Fish Canyon Tuff. Recent work
suggests an age of 28.02 Ma is more appropriate for Fish Canyon Tuff (Renne and others, 1998). Therefore, ages reported here were recalculated by multiplying the
previously reported ages by 28.02/27.84.  Although not precisely correct, this method gives ages that differ from the correct ages only in the third decimal place, which
we do not report.
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BEDROCK UNITS

Tdp Dacite of Pond Peak Predominantly dark-reddish-brown-
weathering, light-gray and pinkish-gray flows, domes, and

lahars of dacite; locally lithophysal. The unit, which crops out near the
southwest edge of the quadrangle, is named for an extensive area of
outcrop on Pond Peak 8 km to the west in the Olinghouse Quadrangle.
Based on thin sections from the adjacent Olinghouse Quadrangle, the
unit contains phenocrysts (10–15%) of clear to spongy plagioclase
(10–12%, typically ≤1 mm, rarely to 2.5 mm), black, elongate
hornblende (~1%, ~1 mm diameter; rarely thinly rimmed by fine
pyroxene and Fe-Ti oxides), green orthopyroxene (0–1%, ≤0.4 mm),
and trace magnetite (≤0.2 mm) in a locally flow-banded, pilotaxitic to
felted groundmass of plagioclase microphenocrysts and glass.
Chemical analyses of samples from the Olinghouse Quadrangle
indicate that the unit is mostly dacite according to the IUGS
classification (Le Maitre, 1989); some samples are rhyolite. Dated by
K-Ar methods at 8.3±0.6 Ma in the Olinghouse Quadrangle (Garside
and Bonham, 2001; Garside and others, 2000, table 2 and Appendix
1).

Tbm Basalt of Black Mountain Tbm, dark-gray,
vesicular olivine basalt flows which are part of

a probable shield volcano centered on Juniper Peak about 10 km north
of the quadrangle. Tbmi, black-and reddish-gray-weathering, dark-
gray, fine-grained, narrow dikes of olivine basalt which cut reddish and
dark-gray bedded scoria (Tbms). A dike (Tbmi) was dated by K-Ar
methods at 9.5±0.3 Ma (Garside and others, 2000, Table 2 and
Appendix 1). Probably hundreds of meters thick.

Tbms Tbmi

Tbi                                A narrow dike (commonly 1–3 m) of
basalt or basaltic andesite cuts Thas south of White Horse

Canyon. Also, a plug cuts ash-flow tuffs nearby. Similar dikes cut flows
of Tps in the Olinghouse Quadrangle to the west. Fine-grained,
vesicular, dark-gray, sparsely porphyritic rock, with trachytic to felted
texture. A sample from a canyon between Olinghouse Canyon and
Green Hill (Olinghouse Quadrangle) contained phenocrysts (~3%) of
elongate plagioclase (2–3%, 0.4 to 3 mm long) and minor pyroxene
(<0.4 mm) in a groundmass of plagioclase laths (<0.2 mm long), fine
pyroxene(?) and glass(?). Age equivalent to Tps or possibly somewhat
younger.

Tps                                     , undivided basaltic flows,
fewer poorly exposed basaltic pyroclastic rocks, and

locally, thin, discontinuous epiclastic and silicic pyroclastic beds (where
not mapped separately). Flows (~2–10 m) are vesicular, massive to
locally brecciated, very dark gray basalt and basaltic andesite,
consisting of sparse to common phenocrysts of plagioclase (<5–40%,
0.25–2 mm), olivine (1–3%; 0.4–3 mm, rarely 5 mm), and commonly
sparse pyroxene (0–5%, 2 mm) in a trachytic to pilotaxitic (rarely
intergranular to ophitic) groundmass of magnetite, plagioclase and
pyroxene microphenocrysts, and sparse brown glass. Olivine is
commonly partly to completely replaced by iddingsite, and rare,
rounded quartz xenocrysts(?) (≤1 mm) and rectilinear clots of fine
magnetite (possibly ghosts of basaltic hornblende) are observed
locally. Basaltic pyroclastic rocks include bedded reddish-brown scoria
(commonly with steep initial dips) and propylitized breccias which have
rounded to angular light grayish-green scoraceous clasts (<1 to
several centimeters) in a fine-grained, yellowish-gray tuffaceous(?)
matrix. Thin (1–2 m), discontinuous, lacustrine, thinly laminated, dark
shale (with leaf fossils and rare fish bones and scales) and
volcaniclastic sandstone crop out locally, particularly in Pierson
Canyon (Axelrod, 1995) of the Olinghouse Quadrangle to the west.
The Pyramid sequence has been mapped as Chloropagus Formation
in Pierson Canyon (Axelrod, 1995) and to the south of the quadrangle
(Rose, 1969). The Pyramid sequence is apparently 11–13 Ma in the
southern Pah Rah Range (see Garside and others, 2000; Stewart and
others, 1994); however, elsewhere in the region it may be 13–15 Ma or
even somewhat older (Henry and others, 2004). Thickness 1 km or
more in the Olinghouse Quadrangle.          , light-gray, steeply dipping,
thinly laminated to nonlaminated tuffaceous siltstone and shale of
uncertain affinity which crop out in two small areas just south of the
road to Olinghouse about 1 km west of State Route 447.

Tpss

Twh Rhyolite of White Hill Very light-gray and pinkish-gray
rhyolite intrusive rock (76% SiO2), locally flow banded and

spherulitic. Probable flow dome; short flows are mapped in the
adjacent Olinghouse Quadrangle. Consists of phenocrysts (10–20%)
of rounded to equant and embayed to vermicular smoky quartz
(5–10%, 1–2 mm), plagioclase (~4%, 1–4 mm long), alkali feldspar
(~4%; 1–3 mm), and books of biotite (1%, 0.4–0.8 mm) in a fine-
grained, originally devitrified groundmass of alkali feldspar and quartz.
Biotite is chloritized and light-colored minerals are altered to sericite
and calcite. Alkali feldspar is found mainly as skeletal remnants.
Geologic relationships in the Olinghouse Quadrangle suggest an
approximate age equivalence to the Pyramid sequence because
rhyolite flows appear to interfinger with basalt flows.

Tmb                     Poorly exposed unit apparently consisting
almost entirely of small to large (<1 cm to 5 m) angular to

subrounded clasts of ash-flow tuffs (units Tdm, Tnh, Tcs, and the tuff of
Painted Hills which lies above Tcs in the Olinghouse Quadrangle) as
well as sparse clasts of amygdaloidal basalt and hornblende andesite.
The unit overlies and cuts(?) across ash-flow tuff units of which it
contains clasts. Matrix of megabreccia is apparently pyroclastic,
containing phenocrysts similar to those of Twh (Geasan, 1980). The
megabreccia appears to be overlain by some Tps flows and yet
contains basalt clasts that are probably from Tps. It is thus considered
equivalent in age to at least part of Tps. Spatially associated with, and
intruded by, Twh; the megabreccia may be a vent breccia related to
Twh volcanism. Thickness unknown.

Thas                                                                             Intrusive
bodies of light-gray to medium-dark-gray andesite or

dacite(?), consisting of phenocrysts (30%) of equant to elongate
plagioclase (15–25%, 0.04–2.5 mm, rarely 2 x 5 mm), elongate
hornblende (~8%, <0.5 x 2.4 mm), trace small (~0.2 mm) quartz,
locally small biotite (trace to 2%), and orthopyroxene (<3%, ≤1.2 mm)
in a fine-grained holocrystalline anhedral-granular or pilotaxitic
groundmass of predominantly plagioclase and magnetite
microphenocrysts. An age of 20.3±0.7 Ma (K-Ar on hornblende;
Garside and others, 2000, table 2) may be slightly too young, as the
unit is suspected to be related to 22.39 Ma rocks (dated by

Tcs                                        Moderate reddish-brown
weathering, ledge-forming, slightly to moderately welded

rhyolitic ash-flow tuff. Contains pheocrysts (~25%) of commonly smoky
or reddish, corroded, embayed, and vermiculated quartz (<10%, 1–2
mm), equant, adularescent sanidine (~10%, 1–2 mm), a few percent
plagioclase, rare altered biotite (<1%, ≤1 mm in diameter), and
accessory Fe-Ti oxides. Contains sparse, indistinct pumice (most 3 x
12 mm, but locally in the Olinghouse Quadrangle to the west, up to 3 x
12 cm) and sparse lithic fragments of flow-banded rhyolite and
intermediate volcanic rock (commonly ≤1 cm, but rarely ≤4 x 6 cm).
Parts weather to rounded, reddish boulders of decomposition. A ~1 m
plane-bedded tuff (ground surge?) is found locally at the base in the
Olinghouse Quadrangle; it grades upward into basal, nonwelded Tcs.
Thickness about 150 m in the adjacent Olinghouse Quadrangle; only
small areas of exposure in the Wadsworth Quadrangle. Age,
25.06±0.07 Ma north of Reno (Garside and others, 2003).

Tws                                               Sequence of several commonly
moderately welded rhyolitic ash-flow tuffs. Usually light-

brown- or pale-reddish-brown-weathering-, pale-orange to light-brown
and light-pinkish-gray rocks containing phenocrysts of platy-fractured
sanidine, plagioclase, biotite, and sparse to trace quartz. Moderately
welded ash-flow tuffs commonly contain 1–2 mm phenocrysts
(~10–15%) of sanidine (~0–10 %), plagioclase (5–15%), biotite
(commonly <1%), and rarely, hornblende. A distinctive feature of the
tuffs is the shard-rich nature of the matrix, visible in thin section and
hand lens. Locally, a “nubbly” weathering surface is observed on rock
outcrops; this probably represents closely spaced joints developed
during hydration of originally glassy rock. Contains compressed
pumice (commonly >5%, ≤1 to several centimeters in diameter) and
common lithic fragments (0.5 to several centimeters) of siltstone, and
silicic and intermediate volcanic rocks. Crops out as several ledges,
which are probable cooling units; some of these are separated in a few
places by 1–5 m of tuffaceous and volcaniclastic siltstone, sandstone,
and pebbly sandstone (with poorly preserved fossil twigs(?) and
leaves at one locality). Commonly contains variable amounts of
hydrothermal alteration minerals (sericite, chlorite, epidote, and clays).
Thickness 300+ m in the quadrangle. The unit was originally named
for ash-flow tuffs exposed near Whisky Spring in the southern Pah
Rah Range; these tuffs have been subdivided elsewhere into several
significant ash-flow tuffs ranging in age from 29–31 Ma (e.g., Henry
and others, 2004). Probably correlative with a much thicker and more
complex group of ash-flow tuffs exposed in Secret and Jones Canyons
of the adjacent Olinghouse Quadrangle.

Tdm                                                    Light- to dark-gray, slightly to
moderately welded, dacite ash-flow tuff with a distinctive

phenocryst assemblage (~15–20%) of elongate to equant plagioclase
(15%, <2 mm) and biotite (~3%, 0.6–2 mm) in a shard-rich matrix.
Biotite and elongate plagioclase are aligned parallel to compaction
foliation. Contains a few percent moderately compressed pumice lapilli
and commonly sparse pinkish-lithic fragments (1–2 cm, rarely 10 cm)
of biotite-plagioclase volcanic rock. Locally very lithic rich, containing
up to 25% rounded pale-purple rhyolitic lithic fragments (0.5–10 cm).
Correlates with and replaces in stratigraphic usage the tuff of Coyote
Spring (e.g., Garside and Nials, 1998). Thickness <150 m. Ages:
29.32±0.17 Ma (Garside and Nials, 1998) and 29.21±0.10 Ma (Garside
and others, 2003) from the area north of Reno.

Tnh                                        Brownish-weathering, pinkish-gray
or grayish, strongly welded rhyolite ash-flow tuff. Contains
phenocrysts (~3–15%, ~1 mm) of mostly alkali feldspar
(sanidine and anorthoclase), with considerably less

plagioclase, trace small biotite, and accessory Fe-Ti oxides. Locally
contains flow-banded(?) rhyolite lithic fragments (<1 cm to 10 x 15 cm)
that are similar to Tnh. Commonly moderate to strong vapor-phase
alteration, with formation of tridymite and alkali feldspar in cavities
(former pumice sites); elsewhere devitrified. Distinctive compressed
pumice (1:3 to 1:7 aspect ratio) from less than 1 mm x 5 mm to 5 x 25
cm. Thickness < 200 m; variable. Deposited on surface which had
local topographic relief. Age 25.23±0.07 Ma (Garside and others,
2003). Tnhg, sandstone and conglomerate deposited in a probable
paleovalley below Tnh at one locality near the west edge of the
Quadrangle. The unit consists of 0–20 m of plane- and cross-bedded
tuffaceous sandstone, epiclastic clast-supported conglomerate, and
lithic-fragment-rich reworked(?) Tdm. Conglomerate clasts resemble
the underlying Tdm, and sparse quartz grains are found in the
sandstone.
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Table 1. Radiocarbon dates from Wadsworth Quadrangle
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