UNITED STATES DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

CONCENTRATIONS OF N_2 , O_2 , CO_2 , and He IN SOIL GASES COLLECTED OVER AND NEAR THE DIXIE VALLEY KNOWN GEOTHERMAL RESOURCE AREA

NORTHERN DIXIE VALLEY, NEVADA

By

Margaret E. Hinkle*

Open-File Report 95-80

1995

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of brand or trade names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

* U.S. Geological Survey, P.O. Box 25046, Mail Stop 973, Denver, CO, 80225

CONTENTS

	Pag	ge
	ion	
Acknowledg	gements	
	llection and Analysis	
	on of the Data Tables	
References	3	
	TABLES	
Table 1.	Operating conditions for the gas chromatograph	
Table 2.	Summary data for 189 soil and air temperatures and soil gases	
Table 3.	Percentile data for 189 soil and air temperatures and soil gases	
Table 4.	Data from six samples from the "permanent" probe	
Table 5.	Measurements of 189 soil and air temperatures and soil-gas	
	concentrations	
Table 5.	Digital format on 5 1/2" floppy disk[in pocket]]
	ILLUSTRATIONS	
	Locations of sample sites and major faults	
	Soil-gas concentrations and temperatures at the "permanent" probe	
	>90th percentile concentrations of raw-He and calculated-He	
Figure 4.	Concentrations of N_2 in soil gases	
Figure 5.	Concentrations of 0_2^2 in soil gases	
Figure 6.	Concentrations of CO2 in soil gases	
	Concentrations of He in soil gases	
Figure 8.	>90th percentile concentrations of CO ₂ and He	
Figure 9.	>90th percentile of CO ₂ and <10th percentile of O ₂	

ABSTRACT

Concentrations of N_2 , O_2 , CO_2 , and He were measured in 189 soil-gas samples collected October 16-19, 1994, from over and near the Dixie Valley Known Geothermal Resource Area (KGRA) and along the front of the Stillwater Mountains south of the KGRA in the northern Dixie Valley, Nevada. The study was funded by the U.S. Department of Energy, and was part of a geochemical and biogeochemical survey seeking surficial evidence for subsurface features, many of which were already known from drilling, of the geothermal reservoir at Dixie Valley. Sampling and analysis of the soil gases are described and measurements of gas concentrations are listed. Plots of soil-gas concentrations show that sample sites with highest concentrations of He and CO_2 are located over and near the KGRA and also over faults in Dixie Valley.

INTRODUCTION

The Dixie Valley Known Geothermal Resource Area (KGRA) is located in westcentral Nevada, about 200 km by road northeast of the town of Fallon. Road access is by U.S. highway 50 and Nevada state road 121. The KGRA is located on the east side of the Stillwater Mountains, close to the boundary between Churchill and Pershing Counties in the northern part of Dixie Valley.

The northern part of Dixie Valley is a playa. The Humboldt Salt Marsh lies south of the playa (fig. 1). The marsh is the major groundwater discharge area of the northern Dixie Valley (Waibel, 1987; Karst and others, 1988).

The northern Dixie Valley basin consists of north-to-northeast-trending grabens bordered by elongate mountain ranges--the Stillwater Range on the west and the Clan Alpine Range on the east. The basin is asymmetrical, with the deepest portions being on the west side along the Stillwater Range where basin-filling sediments are more than 2100 meters thick as measured in some of the geothermal wells. The sediments are 600-900 meters thick toward the center and eastern part of the valley.

The geology and the structural history of the KGRA and of the whole Dixie Valley is quite varied and complex. Lithologic units encountered in the geothermal field range from Triassic marine sediments to recent basin-filling sediments. Structural features affecting the location of the geothermal activity include Mesozoic thrusting, late Tertiary normal faulting, and Quaternary to recent normal faulting (Speed, 1976; Waibel, 1987). Fumaroles along the Stillwater (rangefront) fault (one fumarole is actively depositing sulfur crystals), along with numerous hot-springs along the east side of the mountains and isolated hot springs in the center of the valley are evidence of the complex structure of the area.

Geothermal production at the Dixie Valley KGRA is related to an extended, complex network of fault and fracture permeability that varies with the physical characteristics of each rock type (Waibel, 1987). The temperature of the geothermal reservoir is about 250°C. The power plant at the KGRA began operation in 1988, and currently produces about 60 megawatts of electricity from geothermal steam (Benoit, 1993). Although many studies have been done in the area of the Dixie Valley KGRA, there has been only one geochemical survey prior to the one described in this report. Broad-scale (730 \times 305-m grid) soil-sampling by Juncal and Bell (1981) showed that anomalous concentrations of As and Hg exist along the east side of the Stillwater Mountains. Anomalous As concentrations were found along faults near the playa, whereas anomalous Hg concentrations were found along faults close to the mountain front.

Studies by the USGS of soil-gases and soils have proved to be useful for distinguishing subsurface features of geothermal areas. For example, soil gases collected over faults associated with the geothermal area at the Roosevelt Hot Springs KGRA in southwestern Utah contained anomalous concentrations of He and CO_2 . Plots of elemental suites in soil-gas and soil samples collected over and near the Roosevelt Hot Springs KGRA identified faults associated with the geothermal field, sinter deposits, elements from geothermal sources adsorbed on clays along faults, and non-geothermal detrital elements weathering from the adjacent Mineral Mountains (Hinkle and Copp, in press).

In the San Luis Valley, Colorado, anomalous He and CO₂ concentrations were present in soil gases collected over the major faults of the valley (Hinkle, 1993). A multimedia survey including soil-gases, soils, and plants identified an area where an unsuspected geothermal heat source may exist, and other anomalies unrelated to geothermal activity (Erdman and others, 1993).

This report summarizes results of a soil-gas survey in the northern Dixie Valley, Nevada, concentrating on the area of the Dixie Valley KGRA. The soil-gas survey was part of an integrated soil-gas, soil, and plant survey of the area. The purpose of the study was to use elemental suites determined by the integrated survey to try to distinguish subsurface features of the Dixie Valley geothermal system. Many of the subsurface features already had been identified by drilling.

ACKNOWLEDGEMENTS

This work was funded by the U.S. Department of Energy, Geothermal Technology Division. We thank Oxbow Power Services, Inc. for permission to sample at the Dixie Valley KGRA and to publish the results of our studies. We also thank Dick Benoit and Don Wells of the Oxbow Company for arranging lodging for us in company-owned facilities at the power plant.

SAMPLE COLLECTION

A total of 189 soil-gas samples was collected from October 16-19, 1994 (fig. 1). Samples were collected by driving a hollow probe into the ground to a depth of 0.6-0.7-m; the hollow probe was described by Reimer and Bowles (1979). The probe was driven into the ground by means of a sliding hammer attached to the shaft of the probe. After the probe was driven into the ground, it was fitted with an airtight cap and septum for withdrawal of the soil-gas sample.

Samples were collected from the hollow probe by inserting the needle of a syringe through the septum in the cap and withdrawing 10 mL of the soil gas. Before

removal of the first sample, 10 mL of air were withdrawn from the probe to remove air introduced when the probe was emplaced in the ground. The soil-gas samples were transferred to four 5-mL evacuated blood-sampling vials for storage (two each for gas chromtographic and mass spectrometer analyses), by inserting the needle of the syringe containing the gas sample through the rubber cap of the evacuated vial and allowing the sample in the syringe to be drawn inside. The needle holes were covered with silicone glue. Soil-gas samples can be stored in these evacuated vials for as long as two months without leakage (Hinkle and Kilburn, 1979).

Soil and air temperatures were measured at each sample site because soil and air temperatures (and the air-soil temperature difference) can strongly affect concentrations of He and CO_2 (Hinkle, 1993). In addition, samples were collected daily from a "permanent" probe emplaced in the ground at site-189 on October 15th, and left there for the duration of the sample collection. The purpose of the daily sampling was to determine the effect of soil and air temperature variations on soil-gas concentrations at a single site. The ground at site-189 was damp to a depth of 10 cm, due to rain on the night of October 14th.

SAMPLE ANALYSIS

For He analysis, gas in the vials was removed by injecting 5 mL of air (equal to the volume of the vial) into the vial and removing the mixture of air and soil gas. The samples were analyzed for He using mass spectrometry (Reimer and Denton, 1978). Standard samples of air containing known concentrations of He were analyzed several times per day to ensure stability of the instrument. Concentrations of He were reported as parts per billion volume/volume; reproducibility of the measurement was +/- 20 ppb. The concentration of He in air is 5,220 ppb (Holland and Emerson, 1987). The tubes used for sample storage were approximately 80 percent evacuated. They contained a residual concentration of He that was the same for all the tubes in each lot produced by the manufacturer. This residual He concentration was measured and subtracted from the raw measurement of He in the soil gas.

Samples were analyzed for N_2 , O_2 , and CO_2 using gas chromatography. Operating conditions for the gas chromatograph are shown in table 1. For gas chromatography analysis, gas in the vials was removed by injecting 5 mL of pure He (equal to the volume of the vial) into the vial and removing the mixture of He and soil gas for the chromatographic analysis. Concentrations of N_2 , O_2 , and CO_2 were measured compared to standard curves and are reported as volume percents. The standard curves were prepared from gas standards containing known concentrations of N_2 , O_2 , and CO_2 , which were diluted with He and placed in the same vials used for sample storage; these prepared standards were analyzed several times per day to ensure stability of the instrument.

DESCRIPTION OF THE DATA TABLES

Data from the analyses were entered into an IBM-compatible personal computer and stored on disks, using the Quattro Pro program (Borland International, Inc.). The data were converted into the U.S. Geological Survey STATPAC format for statistical analyses (Grundy and Miesch, 1987), and into the U.S. Geological Survey GSMAP format for plotting (Selner and Taylor, 1992). Table 2 shows the minimum, maximum, mean, and standard deviation of the measurements for the data. Table 3 lists the percentile data for the data. Table 4 lists soil and air temperature measurements and soil-gas concentrations for samples collected periodically from the "permanent" probe. Table 5 lists the results of the 189 soil-gas analyses along with soil and air temperatures measured in the field. The concentrations of He listed in the tables are significant only to between two and three figures, and not to the four figures implied by the raw data. Digital STATPAC- and Quattro Probased formats of the data in table 5 can be found on floppy disk in the pocket of this report.

DISCUSSION

Soil-gas concentrations at the "permanent" probe (site 189).

The first soil-gas sample taken at the "permanent" probe had the highest concentrations of N_2 and O_2 measured at this site (table 4). These measurements probably indicate that the first sample at the site contained a higher proportion of atmospheric air than succeeding samples which had been in equilibrium with subsurface gases for at least 24 hours. For the sake of consistency, the first-sample concentrations at site 189 were considered to be the "true" concentrations and were listed in table 5 along with the gas concentrations measured at the other sites, because all of the soil-gas samples were essentially "first" samples.

Plots showed that air temperatures and air-soil temperature differences had an inverse effect on concentrations of N_2 and O_2 measured at the "permanent" probe (figs. 2a-2b). Concentrations of CO_2 appeared to be unrelated to air and soil temperatures---CO₂ concentrations are both directly and inversely correlated with temperatures (fig. 2c), probably because the soil temperatures were less than 10° C, the temperature at which bacterial production of CO_2 in the soil appears to increase (Hinkle, 1994).

Increasing air temperatures and air-soil temperature differences were related to increased concentrations of He (fig. 2d), a response opposite to that usually seen, where increasing air and air-soil temperature differences are related to decreasing He concentrations (Hinkle, 1994). The relationship of increased air-soil temperature differences to decreased He concentrations generally is attributed to the effect of warm air drying and heating the upper portion of the soil, creating a local pumping effect with increased dispersal of He into the air (Reimer and Roberts (1985). However, this pumping effect is related to the permeability of the soil. The damp soil at the "permanent" probe site may have created an impermeable layer that concentrated any He rising from depth beneath a layer of moist soil.

A linear regression equation for He concentrations versus air-soil temperature differences was calculated for the six samples at the "permanent" probe:

He(calculated) = 5223 + 12 (air temperature - soil temperature)

The equation was then applied to the other soil-gas samples and the calculated-He concentrations were listed in table 5. However, the He values resulting from this equation may not be valid for the entire set of soil-gas samples

because the amounts of soil-moisture (which could impede soil-gas movement) at the other sites is unknown. Helium concentrations calculated from the regression equation and the raw-He concentrations measured in soil-gas samples were different at many sites in Dixie Valley (fig. 3). Although many of the sites around the producing geothermal field and near the Stillwater fault were anomalous in both types of He, sites along the fault south of Dixie Hot Springs were anomalous only in raw-measurement He, indicating that the raw-measurement values were more useful for fault detection.

Soil-gas concentrations

The soil and air temperatures varied during the day, from 1° C to 18° C (soils) and from -4° C to 19.0° C (air). These variation did not appear to have an appreciable effect on soil-gas concentrations, probably because the soil and air temperatures generally were similar at the individual sites. Correlation coefficients for the 189 N₂, O₂, CO₂, and He concentrations with soil and air temperatures were low (table 2).

Plots of the measurements of N_2 , O_2 , CO_2 , and He in the soil-gas samples are shown in figures. 4-7. The plots show concentration values of less than 25th percentile, 25th through approximately 90th percentile, and greater than about the 90th percentile. Highest concentrations of He in soil gases were located over and near the producing geothermal field and over faults near the range front. Highest concentrations of CO_2 (>1.2 percent) were in soil gases collected near the geothermal wells and near the fumaroles located on the Stillwater fault, indicating a component of geothermal steam in the soil gases and a probable channelway for geothermal steam along the fault. Anomalously high concentrations of O_2 and N_2 can indicate a large component of atmospheric air in the samples. Anomalously high N_2 concentrations also may indicate thermal breakdown of organic components or ammonium-containing minerals in sediments (Krohn and others, 1993).

High concentrations (>90th percentile) of both He and CO₂ were found primarily in the vicinity of the producing geothermal wells and over faults associated with the KGRA (fig. 8). Concentrations of O₂ were anomalously low (<10th percentile) at many of the sites over the geothermal field where CO₂ was anomalously high (fig. 9). The combination of high He and CO₂ with low O₂ in soil gases observed here also was observed at the Roosevelt Hot Springs KGRA, Utah, (Hinkle and Copp, in press) and probably results from similar processes. The combination of anomalously high He and CO₂ in soil gases probably indicates transport and degassing of geothermal brine within the faults. High CO₂ and low O₂ may indicate oxidation at depth of geothermal gases such as CH₄ to CO₂ (D'Amore and Panichi, 1980). Also, geothermal H₂S oxidized to H₂SO₄ could react with calcite deposited within the faults to form CO₂ and produce the same combination of anomalies.

REFERENCES

- Benoit, Dick, 1993, Review of geothermal power generation projects in the Basin and Range Province, 1993, Geothermal Resources Council Bulletin, v. 23, no. 5, p. 173-178.
- D'Amore, Franco, and Panichi, Costanzo, 1980, Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer: Geochimica et Cosmochimica Acta, v. 44, no. 3, p. 549-556.
- Erdman, J.A., Hinkle, M.E., Watson, Ken, Gallagher, A.J., Ager, C.M., and Smith, K.S., 1993, A new approach to geothermal exploration--integrating geochemistry with remote sensing [Abs.]: The 16th International Geochemical Exploration Symposium, Beijing, China, p. 40-41.
- Grundy, W.D., and Miesch, A.T., 1987, Brief descriptions of STATPAC and related statistical programs for the IBM Personal Computer: U.S. Geological Survey Open-File Report 87-411-A, 34 p.
- Hinkle, M.E., 1993, Concentrations of N₂, O₂, CO₂, and He in soil gases collected in the northern San Luis Valley, Colorado: U.S. Geological Survey Open-File Report 93-584, 16 p.
- Hinkle, M.E., 1994, Environmental conditions affecting concentrations of He, CO_2 , O_2 , and N_2 in soil gases: Applied Geochemistry, v. 9, no. 1, p. 53-63.
- Hinkle, M.E., and Copp, J.F., in press, Soil and soil-gas geochemistry over and near the Roosevelt Hot Springs KGRA, Utah: Journal of Applied Geochemistry.
- Hinkle, M.E., and Kilburn, J.E., 1979, The use of vacutainer tubes for collection of soil samples for helium analysis: U.S. Geological Survey Open-File Report 79-1441, 23 p.
- Holland, P.W., and Emerson, D.E., 1987, A determination of the helium 4 content of near-surface atmospheric air within the continental United States: Journal of Geophysical Research, vol. 92B, p. 12,557-12,566.
- Juncal, R.W., and Bell, E.J., 1981, Solid-sample geochemistry study of western Dixie Valley, Churchill County, Nevada--Part II, soil geochemistry: Geothermal Resources Council, v. 5, p. 51-54.
- Karst, G.B., Campana, M.E., and Jacobson, R.L., 1988, A mixing-cell model of the hydrothermal flow system, northern Dixie Valley, Nevada: Geothermal Resources Council Transactions, v. 12, p. 167-174.
- Krohn, M.D., Kendall, Carol, Evans, J.R., and Fries, T.L., 1993, Relations of ammonium minerals at several hydrothermal systems in the western U.S.: Journal of Volcanology and Geothermal Research, v. 56, no. 4, p. 401-413.

- Reimer, G.M., and Bowles, C.G., 1979, Soil-gas helium concentrations in the vicinity of a uranium deposit, Red Desert, Wyoming: U.S. Geological Survey Open-File Report 79-975, 9 p.
- Reimer, G.M., and Denton, E.H., 1978, Improved inlet system for the U.S. Geological Survey helium sniffer: U.S. Geological Survey Open-File Report 78-588, 4 p.
- Reimer, G.M., and Roberts, A.A., 1985, Correcting soil-gas helium concentrations for diurnal variations: Bulleting of the Association of Petroleum Geology Exploration, v. 1, p. 1-17.
- Selner, G.I., and Taylor, R.B., 1992, System 8. Programs to assist workers in the earth sciences in using geodetic or cartesian xyz data from row column (GSPV85) files: GSPDC, contours and grids interpolated from triangulated network; GSPCS, graphic sections; GSPUV, univariant statistics and histograms; GSPPROB, probability diagrams; GSPXY, regression statistics and XY plots; GSPTD, ternary diagrams, and GSPV85, postplots, for IBM PC and compatible computers: U.S. Geological Survey Open-File Report 92-372, 83 p.
- Speed, R.C., 1976, Geologic map of the Humboldt lopolith and surrounding terrane, Nevada: Geological Society of America MC-14.
- Waibel, A.F., 1987, An overview of the geology and secondary mineralogy of the high temperature geothermal system in Dixie Valley, Nevada: Geothermal Resources Council, Transactions, V. 11, p. 479-486.

Table 1. Operating conditions for the gas chromatograph

Type of gas chromatograph Carle AGC-100 thermistor detector Detector Lower limit of detection 1% N₂ or 0₂, 0.03% CO₂ +/- 10 % Reproducibility Column concentric stainless steel, outer column 72 in. x 1/4 in. molecular sieve inner column 72 in. x 1/8 in. porapak mixture (Alltech Associates, Deerfield, IL) helium at 60 mL/minute Carrier gas column: 60°C Temperature detector: "low" mode

Table 2.	Summary	data	for	soil	and	air	temperatures	and	soil	gases	(189	samples)

VARIABLE	MINIMUM	MAXIMUM	MEAN	STANDARD DEVIATION
Soil Temperature (C)	1.0	18.0	10.7	3.2
Air Temperature (C)	-4.0	19.0	11.5	4.5
N ₂ (%)	60.5	87.3	75.6	4.4
0 ₂ (%)	16.1	23.4	20.0	1.2
co ₂ (%)	0.05	9.2	0.18	0.73
He (measured) (ppb)	5070	5440	5220	60
He (calculated) (ppb) (from air-soil) (temperature) (differences)	5140	5390	5230	30

Correlation Coefficients

<u>AirT</u>	SoilT	AirT	N ₂	02	<u>,00</u>	N2+02+CO2	He	
		-Soil		£	6	6 6 6	(meas)	
1.00	0.80	0 70		-0.18	0.0	0 0 10	0.01	Air Topporaturo
1.00		0.70					-0.01	Air Temperature
	1.00	0.13	~0.08	-0.09	0.1	1 -0.07	0.05	Soil Temperature
		1.00	-0.24	-0.20	0.0	2 -0.24	-0.08	AirT minus SoilT
			1.00	0.86	-0.1	6 0.99	0.03	No
				1.00	-0.2	2 0.89	0.03	02
					1.0	0 -0.05	0.14	CÔ ₂
						1.00	0.05	N3+03+C03
							1.00	Hè (measured)

Variable	<u>25th</u>	<u>50th</u>	75th	<u>90th</u>	<u>95th</u>	<u>97.5th</u>	<u>99th</u>
Soil Temp.(C) 10	11	12	14	16	17.5	18
Air Temp.(C) 10	12	14	17	17	19	19
N ₂ (%)	72.9	75.5	78.6	81.3	83.0	83.6	84.2
02(%)	19.3	20.0	20.8	21.6	22.0	22.2	22.4
CO ₂ (%)	0.02	0.04	0.10	0.27	0.62	1.21	2.40
He (ppb)	5200	5200	5240	5280	5320	5355	5385

•

Table 3. Percentile data for soil and air temperatures and soil gases (189 samples)

No.	Date	<u>Time o</u>	f Air	Soil	N ₂	0,	<u>CO, N</u>	2+02+CO2	He
		Day	Temp.(C)	Temp.(C)	(%)	(*)	<u>(x)</u>	<u>``(%)</u> `	(ppb)
1	15 Oct.	1630	5	8	77.9	21.9	0.26	100.1	5230
2	16 Oct.	1640	5	10	73.3	20.8	0.22	94.3	5200
3	17 Oct.	1710	14	5	70.2	19.7	0.25	90.1	5400
4	18 Oct.	1500	20	5	74.2	19.1	0.21	93.5	5240
5	19 Oct.	630	3	5	74.4	20.0	0.28	94.7	5150
6	19 Oct.	1200	19	5	71.1	19.6	0.21	90.9	5480

Table 4. Data from the "permanent" probe

No.	Latitude	Longitude	Air-T(C)	Soil-T(C)	AirT-SoilT	N2(%)	02(%)	CO2(%)	N2+02+C02(%)	He(ppb)	He(calculated)
1	39.963	117.853	5	10	-5	80.6	21.4	0.16	102.2	5200	5239
2	39.963	117.855	5	11	-6	74.9	20.1	0.06	95.1	5240	5230
3	39.963	117.857	5	10	-5	82.9	22.3	0.04	105.2	5150	5239
4	39.964	117.858	5	10	-5	80.4	21.6	0.02	102.0	5240	5239
5	39.964	117,861	5	10	-5	78.9	21.2	0.02	100.1	5200	5239
6	39.965	117.862	5	8	-3	78.1	20.9	0.08	99.1	5280	5256
7	39.966	117.863	5	8	-3	80.3	20.9	0.01	101.2	5150	5256
8	39.966	117.865	5	9	-4	87.3	23.4	0.02	110.7	5240	5247
9	39.965	117.867	5	9	-4	83.6	22.3	0.08	106.0	5150	5247
10	39.966	117.868		9	-4	83.8	19.9	0.05	103.8	5240	5247
11	39.967	117.870		10	-5	82.3	22.1	0.02	104.4	5200	5239
12	39.968	117.872		10	-5	77.2	20.7	0.02	97.9	5240	5239
13	39.969	117.874	5	9		77.2	20.7	0.02	97.9	5200	5247
14	39.970	117.875				77.0	20.6	0.01	97.6	5200	5283
15	39.971	117.876				75.7	20.3	0.01	96.0	5110	5274
16	39.972	117.878				80.4	21.5	0.03		5150	5274
17	39.973	117.879				82.1	22.0	0.03		5240	5274
18	39.968	117.874	12			80.8	21.6	0.05		5200	5301
19	39.966	117.873				76.3	20.5	0.02		5280	5301
20	39.965	117.873				75.1	20.1	0.01	95.2	5240	5301
21	39.964	117.873				71.3	19.0	0.04	90.3	5200	5301
22	39.963	117.872				72.5	19.4	0.02		5200	5301
23	39.962	117.870				73.5	19.6	0.08		5200	5328
24	39.961	117.868				77.1	20.6	0.01		5200	5301
25	39.961	117.867				70.4	18.7	0.02		5280	5283
26	39.960	117.866				71.7	20.8	0.02		5240	5301
27	39.959	117.864				68.7	18.3	0.04	87.0	5200	5283
28	39.959	117.862				75.2	20.0	0.02		5150	5301
29	39.958	117.861				71.0	18.8	0.08		5240	5301
30		117.859				73.7	19.6	0.10		5240	5301
31	39.957	117.858				72.1	19.2	0.08		5200	5328
32		117.857				69.4	18.3	0.06		5200	
33		117.854				73.6	19.6	0.12		5200	
34		117.852				72.8	19.4	0.17		5240	
35		117.851				79.1	21.0	0.27		5240	
36		117.849				76.7	20.4	0.09		5200 5240	
37		117.847				72.9 73.4	19.4	0.09 0.17		5240	
38 39		117.846				75.2	19.5 19.7	0.17		5200	
40		117.844 117.842				78.5	19.7	2.40		5280	
		117.840				78.1	19.3	0.60		5240	
41 42		117.838				68.0	17.4	0.00		5280	
42		117.836				75.5	17.4	0.64		5240	
44		117.834				79.4	21.1	0.01		5200	
45		117.832				75.9	20.3	0.09		5240	
46		117.832				72.6	19.3	0.08		5200	
40		117.829				72.0	20.9	0.08		5280	
48		117.827				75.3	20.0	0.12		5200	
49		117.825				72.7	19.3	0.11		5070	
50		117.823				70.5	18.8	0.07		5070	
51		117.822				76.9	20.5	0.05		5150	
91	57.704			**	•						

No.	Latitude	Longitude	Air-T(C)	Soil-T(C)	AirT-SoilT	N2(%)	02(%)	CO2(%)	N2+02+C02(%)	He(ppb)	He(calculated)
52	39.954	117.820	13	12	1	73.4	19.6	0.05	93.1	5200	5292
53	39.954	117.817	13	12	1	72.6	19.4	0.03	92.0	5240	5292
54	39.954	117.816	13	12	1	81.6	21.8	0.03	103.4	5110	5292
55	39. 95 5	117.814	13	12	1	75.8	20.2	0.07	96.1	5150	5292
56	39.955	117.812	13	12	1	79.0	19.8	0.02	98.8	5150	5292
57	39.955	117.810	13	12	1	73.8	19.8	0.02	93.6	5150	5292
58	39.955	117.808	13	12	1	83.6	18.5	0.02	102.1	5150	5292
59	39.955	117.806	12	12	0	70.9	18.9	0.01	89.8	5150	5283
60	39.955	117.804	12	12	0	83.7	19.9	0.05	103.7	5200	5283
61	39.955	117.803	-4	1	-5	70.9	19.0	0.02	89.9	5280	5239
62	39.955	117.801	-4	1	-5	74.7	20.0	0.01	94.7	5200	5239
63	39.955	117.799	-4	3	-7	73.8	19.7	0.01	93.5	5200	5221
64	39.955	117.796	-4	3	-7	80,9	21.7	0.01	102.6	5200	5221
65	39.955	117.794	-2	3	-5	75.9	20.1	(0.01	96.0	5200	5239
66	39.955	117.792	-1	3	-4	73.1	19.5	(0.01	92.6	5150	5247
67	39.955	117.791	2		-1	80.0	21.3	0.02	101.3	5240	5274
68	39.955	117.789	2		-1	77.8	20.8	0.01	98.6	5240	5274
69	39.955	117.787	4	3	1	75.9	20.3	0.01	96.2	5200	5292
70	39.955	117.784	4	3	1	73.4	19.6	0.03	93.0	5200	5292
71	39.953	117.820	6	8	-2	77.2	20.6	0.04	97.8	5200	5265
72	39.952	117.820	6	8	-2	83.9	20.0	0.02		5240	5265
73	39.951	117.820	8	8	0	73.6	19.6	0.01	93.2	5150	5283
74	39.950	117.821	8	8	0	75.0	20.0	0.04	95.0	5200	5283
75	39.948	117.822	8	8	0	79.7	21.3	0.10	101.1	5240	5283
76	39.947	117.822	10	10	0	80.3	21.4	0.05		5240	5283
77	39.946	117.823	10	10	0	72.9	19.4	0.03	92.3	5240	5283
78	39.945	117.823	10		0	67.1	17.9	0.03	85.0	5200	5283
79	39.943	117.823	10	10	0	73.8	19.6	(0.01	93.4	5200	5283
80	39.942	117.823			0	80.2	21.3	0.07		5150	5283
81	39 .94 1	117.823	9	9	0	65.8	17.5	0.03	83.3	5200	5283
82	39.995	117.851	14	13	1	68.3	18.1	9.20		5320	5292
83	39.994	117.850		13	1	72.8	19.3	0.53		5150	5292
84	39.993	117.848		13		73.0	19.0	0.16	92.2	5150	5292
85	39.991	117.847		13	1	74.0	19.7	0.13		5110	5292
86	39.990	117.846	13		0	78.3	20.9	0.18		5110	5283
87		117.845				70.5	18.9	0.61	90.0	5200	5283
88	39.988	117.844				69.1	18.4	1.60		5200	5283
89		117.843				69.6	18.6	0.20		5200	
90		117.842				72.5	19.3	0.20		5280	
91	39.985	117.841				75.4	20.0	0.18		5320	
92		117.838				82.7	20.7	0.75		5280	
93		117.837				72.6	18.2	0.46		5110	
94		117.835				76.1	18.7	0.31		5200	
95		117.832				73.0	17.9	0.65		5200	
96		117.829				78.1	20.1	0.24		5200	
97		117.823				82.6	19.4	0.11		5240	
98		117.827				71.2	17.8	1.50		5240	
99		117.890				79.9	21.5	0.04		5200	
100		117.889				62.6	16.6	0.05		5280	
101		117.902				76.8	20.5	0.03		5150	
102	39.946	117.941	14	13	1	67.5	18.1	0.02	85.6	5150	5292

No	Latitude	Longitude	Air-T(C)	Soil-I(C)	AirT-SoilT	N2(%)	02(%)	(02(*)	N2+02+002(%)	He(onh)	He(calculated)
103	39.944	117.940	14	13	1	73.8	19.6	0.02	93.4	5280	5292
103	39.943	117.939	14	13	1	69.5	21.0	0.02	90.5	5200	5292
105	39.941	117.937	17	13	4	69.7	18.7	(0.01	88.4	5200	5319
105	39.940	117.936	17	13	4	60.5	16.1	(0.01	76.6	5200	5319
100	39.940	117.934	17	13	4 3	70.9	18.1	(0.01	78.8 89.8	5150	5310
107	39.940		17	14	3	68.3					5310
100	39.938	117.934	17	14	3		18.3	(0.01	86.6 105.3	5200	
		117.933				83.1	22.2	0.02		5200	5310
110	39.937	117.932	17	14	3	73.6	19.7	0.02	93.3	5200	5310
111	39.936	117.931	17	14	3	79.2	21.2	0.03	100.4	5200	5310
112	39,935	117.931	16	13	3	76.8	20.5	0.06	97.4	5200	5310
113	39.933	117.933	16		3	78.2	20.8	0.07	99.1	5150	5310
114	39.932	117.933	16	13	3	70.2	18.7	0.05	89.0	5200	5310
115	39.931	117.932		14	2	71.9	19.0	0.14	91.0	5280	5301
116	39.930	117.930	16	14	2	76.1	20.4	0.03	96.5	5200	5301
117	39.953	117.916	17	14	3	69.7	18.5	2.40	90.6	5200	5310
118	39.796	118.069	12	17	-5	80.6	21.5	0.07	102.2	5360	5239
119	39.794	118.070	11	10	1	75.9	20.1	0.24	96.2	5200	5292
120	39.793	118.070	11	10	1	70.7	18.1	0.92	89.7	5240	5292
121	39.791	118.070	11	10	1	81.1	21.6	0.04	102.7	5240	5292
122	39.790	118.070	11	11	0	76.5	20.4	0.04	96.9	5320	5283
123	39.789	118.070	11	11	0	80.8	21.6	0.06	102.5	5360	5283
124	39.787	118.071	11	11	0	75.3	20.1	(0.01	95.4	5410	5283
125	39.786	118.071	11	11	0	74.1	19.7	0.06	93.9	5240	
126	39.785	118.071	11		0	82.2	22.0	0.04	104.2	5280	5283
127	39.783	118.071	10		-1	70.3	18.7	0.05	89.1	5280	5274
128	39.782	118.071	10		-1	84.5	22.6	0.11	107.2	5360	5274
129	39.780	118.072	10		-1	76.1	20.2	0.05	96.4	5320	
130	39.779	118.073	10		-1	77.9	20.7	0.13	98.7	5320	
131	39.778	118.073	10		-1	73.6	19.7	0.13	93.4	5320	
132	39.777	118.074	11		0	83.6	21.9	0.11	105.6	5280	5283
133	39.775	118.075	11			80.8	21.4	0.17	102.4	5200	
134	39.774	118.076	11		0	75.9	20.1	0.12	96.1	5240	
135	39.773	118.077	11			69.8	18.5	0.07	88.4	5240	
136	39.772	118.078	11		0	74.7	19.9	0.02	94.6	5150	
137	39.771	118.080	11			79.3	21.1	0.11	100.5	5280	
138		118.082				73.8	19.7	0.07	93.6	5280	
139		118.084				69.2	18.4	0.13		5280	
140		118.084				76.3	20.3	0.04		5240	
141		118.086				68.4	18.2	0.06		5200	
142		118.087				73.1	22.0	0.06		5150	
143		118.089				72.6	19.2	0.05		5200	
144	39.766	118.090				77.0	20.5	0.05		5150	
145		118.091				77.5	20.7	0.01		5110	
146		118.092				75.2	22.0	0.01		5200	
147		118.017				79.1	21.1	(0.01		5150	
148		118.013				77.5	20.7	0.03		5240	
149		118.011				78.5	20.9	0.01		5240	
150		118.012				79.5	21.2	0.08		5440	
151		118.011				77.2	20.5	0.06		5240	
152		118.010				73.4	19.6	0.01		5240 5200	
153	39.952	117.917	19	17	2	75.8	20.5	0.01	96.3	5200	5301

Table 5. Concentrations of soil-gas components

No.	Latitude	Longitude	Air-T(C)	Soil-T(C)	AirT-SoilT	N2(%)	02(%)	CO2(%)	N2+02+C02(%)	He(ppb)	He(calculated)
154	39.950	117.917	19	18	1	83.4	22.3	0.03	105.7	5200	5292
155	39.949	117.917	19	18	1	76.9	20.4	0.04	97.3	5240	5292
156	39.947	117.916	19	18	1	72.0	19.2	0.01	91.2	5350	5292
157	39.946	117.916	19	18	1	81.1	21.7	0.05	102.9	5240	5292
158	39.945	117,916	19	18	1	77.8	20.7	0.05	98.6	5280	5292
159	39.974	117.878	10	5	5	80.7	21.5	0.01	102.2	5240	5328
160	39.975	117.875	10	5	5	76.2	20.3	0.01	96.5	5240	5328
161	39.975	117.873	10	5	5	74.4	19.8	0.03	94.2	5240	5328
162	39.976	117.871	10	5	5	81.3	21.7	0.04	103.0	5200	5328
163	39.976	117.870	10	5	5	75.2	20.0	0.01	95.2	5320	5328
164	39.976	117.868	9	5	4	78.6	21.0	0.05	99.7	5240	5319
165	39.977	117.867	9	5	4	82.2	21.9	(0.01	104.1	5280	5319
166	39.977	117.866	9	5	4	74.9	20.0	0.03	94.9	5280	5319
167	39.977	117.863	9	5	4	73.9	19.7	(0.01	93.6	5320	5319
168	39.978	117.861	9	5	4	76.1	19.0	0.01	95.1	5150	5319
169	39.978	117.860	9	5	4	75.7	19.9	0.02	95.6	5200	5319
170	39.978	117.858	9	7	2	71.7	19.2	0.01	90.9	5280	5301
171	39.978	117.857	9	7	2	72.9	19.5	0.02	92.4	5200	5301
172	39.978	117.855	10	9	1	75.0	20.0	0.01	95.0	5200	5292
173	39.977	117.853	10	9	1	77.2	20.5	0.03	97.7	5200	5292
174	39.977	117.851	10	9	1	80.4	21.5	0.04	101.9	5200	5292
175	39.977	117.849	10	9	1	81.4	21.7	0.01	103.1	5240	5292
176	39.977	117.847	10	9	1	73.7	19.6	0.05	93.4	5280	5292
177	39.977	117.846	10	9	1	68.1	18.1	0.04	86.2	5310	5292
178	39.978	117.844	10	9	1	79.2	20.8	0.16	100.2	5200	5292
179	39.979	117.842	10	10	0	76.2	20.0	0.27	96.5	5200	5283
180	39.980	117.841	5	10	-5	73.7	18.8	0.32	92.8	5280	5239
181	39.981	117.840	16	12	4	76.4	20.0	0.20	96.6	5200	5319
182	39.983	117.838	16	12	4	74.4	19.4	0.47	94.3	5320	
183	39.975	117.846	16	12	4	71.8	19.2	0.03	91.0	5240	5319
184	39.975	117.848	16	12	4	68.6	18.3	0.02	86.9	5240	5319
185	39.973	117.849	15	15	0	77.7	20.7	0.01	98.4	5230	5283
186	39.972	117.850	15	15	0	74.8	20.0	0.02	94.8	5240	
187	39.971	117.851	15	15		74.7	20.0	0.02		5200	
188	39.970	117.853	15	15		74.8	20.0	0.04	94.8	5280	5283
189	39.966	117.857	5	8	-3	77.9	21.9	0.26	100.1	5230	5408

20

.

ted He

-4 C Φ U 1 Ø D. L ÷ 5 . ~ 5 90th-97.5th、米 5th-90th, 2 + 5th. 3 V Ц 2 0 0 9 . D

€.

