BATTLE MOUNTAIN GOLD COMPANY
FORTITUDE GOLD DEPOSIT

INTRODUCTION

Lac geologists visited Battle Mountain Gold Company's Fortitude ore deposit on February 14, 1986. The deposit is located in the Battle Mountain Range, in northeast Lander County, Nevada, 32 miles southwest of the city of Battle Mountain (Figure 1). Rob Benson, mine geologist, conducted the tour.

GENERAL GEOLOGY

The reader is referred to U.S.G.S. Professional Paper 459-A & B for detailed discussions of the geology of the Battle Mountain Range and its ore deposits.

Stratigraphy.

Paleozoic sedimentary rocks underlie the majority of the range. Eugeoclinal cherts and shales of the Cambrian Scott Canyon Formation and quartzites, shales, and calcareous sandstone of the Cambrian Harmony Formation are the oldest rocks in the area. These rocks are part of the Roberts Mountain thrust plate. Autochthonous, overlap sequence limestones and coarse clastics of the Pennsylvanian to Permian Antler Sequence unconformably overlie the Cambrian strata within the same range. The Antler Sequence in the Battle Mountain Range includes three units; middle Pennsylvanian, interbedded conglomerate and sandstone of the Battle Formation; Pennsylvanian-Permian Antler Peak Limestone, and; the Permian, calcareous, conglomeratic Edna Mountain Formation. Cherts and argillites of the Pennsylvanian Pumpernickel Formation are thrust over the Antler Sequence along the Golconda thrust fault. An Eocene (38.5 m.a.), weakly altered, porphyritic granodiorite pluton intrudes the Paleozoic sedimentary rocks.
Figure 1: Location of Fortitude Gold Ore Deposit.
Structure.

Structure in the mine area is complex and records evidence of recurring orogeny that began in the Paleozoic. Folding and large-scale, eastward-directed thrusting accompanied the Devonian-Pennslyvania Antler orogeny and the Permian, Sonoman orogeny. These orogenies are responsible for the Roberts Mountains thrust & the Golconda thrust, respectively. Minor westward-directed, thrusting and folding accompanied Juro-Cretaceous orogeny. Finally, middle-Tertiary extension produced high-angle, basin and range style block faulting. Structural complexity in the region increases permeability and porosity of large areas of rocks, necessary for circulation of hydrothermal fluids, as well as provides deep-seated conduits for mineralizing fluids.

The deposit lies along a strong, northwest-directed lineament, the Eureka-Battle Mountain trend. This trend is defined by northwestward alinement of mineral occurrences, windows on the upper plate of Roberts Mountain Thrust and Oligocene-Eocene stocks.

MINERALIZATION

Base and precious metals deposits in Copper Canyon are genetically related to the 38.5 m.a. altered, porphyritic granodiorite Copper Canyon stock (see Figure 2). Mineralization occurs as disseminated and massive sulfide eplacements of calc-silicated, calcereous rock units. Mineralization also occurs as sulfide veins and fissure fillings within and outside areas of calc-silicate alteration.

Mining History.

Large-scale, open pit mining of copper ores from skarn
Figure 2. Generalized geologic map of the Copper Canyon area (modified from Blake et al., 1984).
adjacent to the stock was initiated by Duval Corporation in 1967. Total combined production from East and West copper pits was 16.2 st with an average grade of .79% copper, 0.72 oz/ton silver, and 0.025 oz/ton gold.

Mid-1970's gold exploration resulted in the discovery of the Tomboy-Minnie and Northeast Extension gold deposits at Copper Canyon. The Tomboy-Minnie deposits contain 3.9 st of ore grading 0.04 oz/ton gold an 0.28 oz/ton silver. These deposits occur in lenses confined to calc-silicatized, oxidized, lower Battle Formation calcareous conglomerates. Mineralizing fluids infiltrated along north-south trending high angle faults and were concentrated near intersections of northeasterly- and northwesterly-trending faults. The deposits are very close to and parallel to the Cambrian Harmony Formation and Battle Formation unconformable contact. Fluid migration may be partly controlled by this structure. A similar geologic environment is responsible for gold mineralization at Battle Mountain Gold Company's unannounced Surprise prospect in the Copper Basin area. Here gold mineralization is in the Harmony Formation just below the Battle contact. Reserves are said to be 2.1 st of 0.11 oz/ton gold.

Fortitude Geology.

The stratabound and stratiform Fortitude ore deposit occurs as massive-sulfide replacement of Antler Peak Limestone. The ore body is approximately 1,600' X 600' X 100' to 175' thick (N.B. - this is about the size of a claim.) The ore zone lies near the hanging wall of the north-south trending, west-dipping, Virgin fault (see Figure 3). The Virgin fault is intruded by an altered porphyritic dike, similar to the Copper Canyon granodiorite stock. The ore zone is bounded by north-trending faults of minor displacement that dip back into the Virgin Fault. These
Figure 3. East—West vertical section showing generalized geology of the Fortitude area. View is to the north. Rock units same as Figure 2.

Figure 4. North—South vertical section showing geology and alteration types in the Lower Fortitude area. View is to the east. AD = garnet dominant alteration (striped pattern), AD = actinolite dominant alteration, black pattern = morphed/ recrystallized limestone. Rock units same as Figure 2.
faults are believed to be antithetic faults to the major Virgin fault. Fluids probably ascended the Virgin fault and were trapped by these smaller faults.

The ore body lies in a distal skarn zone (Figure 4). An early, isochemical, garnet-dominant assemblage is replaced locally by actinolite-dominant hydrothermal alteration assemblage with minor associated pyrrhotite-chalcopyrite-pyrite-sphalerite-galena. A pyrite-marcasite-arsenopyrite-chlorite alteration assemblage along with the majority of gold mineralization replaces the calc-silicate alteration. Fluid inclusion data indicates that hydrothermal fluids responsible for the actinolite-assemblage and chlorite-assemblage alteration events had temperatures near 200°C. The gold in the ore occurs as free particles at intergrain boundaries between sulfides and free gold absorbed onto pyrrhotite. The ore is unusual when compared to Carlin-type deposits in its coarseness. 10% to 15% of the gold is recovered by gravity concentration.

The successive alteration-mineralization assemblages reflect the transformation from magmatic- to meteoric-derived fluid flow as well as cooling of the fluids. Late stage fluids responsible for chloritization, sericitization, and gold mineralization are dominantly meteoric in origin. These plumes are set into broad scale convective circulation by heat from cooling stock along a pervasively fractured zone associated with stock emplacement.

Fortitude Mining & Production - Facts & Figures

The Fortitude ore deposit contains reserves of 7 million tons of ore grading 0.282 oz/ton gold and 0.82 to 1 oz/ton silver. On the average, 92% of the gold and 50% of the silver is recovered by carbon-in-pulp, cyanide-leach methods. Thirty-two hundred to thirty-five hundred tons of ore are
processed daily by the mill. Mining costs are $11 to $12 per ton. Overall production costs are $220 per ounce. This figure is expected to decrease to $200 per ounce with decreased stripping ratio. Stripping ratio will average 7:1 through mine life. The company expects to extract 26,000 ounces of gold yearly. Appendix B is a copy of a recent article from EM & J describing mining, milling and recovery in detail.

EXPLORATION STRATEGY

Geochem.

A suite of 18 samples were taken from altered host sediments, bounding fault zones, ore zones, and distal, weakly altered sediments (see Appendix A for geochem results and sample descriptions). The samples were taken from the 6075' level which is approximately 200' from the surface (Figure 5). In general, base, precious metals, and pathfinder elements concentrations are elevated in zones of intense alteration, increased sulfide content, and/or structures. The deposit was a blind ore body covered by 300' or more of sediments. A deep-seated, mineralized fault with gold mineralization cutting a favorable stratigraphic package is the best geochemical evidence for a Fortitude-type deposit.

Geophysics.

Rumor has it that the ore body was discovered during a dump condemnation drilling program. The hole was chosen to test a magnetic anomaly. The anomaly was intense but very small. Obviously a variety of geophysical methods pioneered during copper porphyry exploration could help identify
Figure 5: Approximate Sample Locations.
sulfide-rich replacement bodies, fault structures, alteration zones, and stratigraphy/igneous rock types.

Geologic Model.

The following are important criteria for a Fortitude-style, gold-rich, replacement body.

1. 37-40 m.a. porphyritic granite to granodiorite stocks, that have associated base-metal mineralization and fairly strong, prophyry-style alteration. This time interval is consistent with a strong pulse of igneous activity and gold mineralization in Nevada. The Battle Mountain-Eureka mineralized trend has a number of plutons of this age.

2. Evidence for a strong, widespread, late-stage epithermal alteration event. Alteration assemblages indicative of such an event include, chlorite, sericite, pyrite, quartz + gold.

3. High and low angle structures which provide fluid pathways and structural traps, respectively.

4. Exploration of the concentric, gold-rich zones peripheral to a copper and base metal-rich zone surrounding an altered stock. This zoning has been recognized surrounding the Copper Canyon stock and possibly the Eureka stock in the Eureka district.

EXPLORATION TARGETS

Eureka District.

Ratto and Windfall occur in a peripheral zone surrounding the Eureka stock. Further examination in the peripheral zone south of Ratto is warranted. Ratto is currently being offered for sale by Amselco. Geologic reserves of 4 to 5 million tons of 0.08 oz/ton have been established, although mining reserves are significantly less. Information about the property has been requested.
Ely District.

An extensive, late-stage quartz-sericite-pyrite alteration assemblage occurs in the Ely copper district. Silver King has mineable reserves in this area.

Iron Point.

Bruce Miller says moly mineralization in a stock was encountered in deep drill holes. The stratigraphy of the area is such that the Antler Peak should occur at depth and could be mineralized adjacent to buried stock. Iron-stained and widespread clay alteration at surface suggest a large-scale hydrothermal system existed in the area.

Bullion District.

NICOR has 1.1 million tons of 0.1 oz/ton gold mineralization in the crest of the Pinoon anticline. The mineralization is related to small plugs and dikes, probably offshoots of a shallowly buried intrusive.

Districts Related to Intrusive Rocks in Eastern Assemblage Carbonates:

Ferber
Currant
Spruce Mountain
Dolly Varden
Cedar Mountains
Deep Creeks, Utah
References

APPENDIX "A"
TO: Mr. Robert E. Bennett
Long Lac Mineral Exploration
1475 Greg St.
Sparks, NV 89431
tel: 702/356-8058

Lot Identity: LOA-60307B
Digest: 5.0 gram
Report Date: 03/07/86

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Ag</th>
<th>As</th>
<th>Au</th>
<th>Cu</th>
<th>Hg</th>
<th>Mo</th>
<th>Pb</th>
<th>Sb</th>
<th>Ti</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 3181</td>
<td>1</td>
<td>76.01</td>
<td>18.40</td>
<td>64.88</td>
<td>2160</td>
<td>.582</td>
<td>1.016</td>
<td>512.6</td>
<td>2.444</td>
<td>.948</td>
</tr>
<tr>
<td>B 3181</td>
<td>2</td>
<td>1.491</td>
<td>47.73</td>
<td>.1335</td>
<td>67.08</td>
<td>.991</td>
<td>3.971</td>
<td>359.9</td>
<td>3.811</td>
<td>.982</td>
</tr>
<tr>
<td>B 3181</td>
<td>3</td>
<td>1.477</td>
<td>504.2</td>
<td>.0859</td>
<td>62.47</td>
<td>.911</td>
<td>1.167</td>
<td>737.7</td>
<td>6.529</td>
<td>.963</td>
</tr>
<tr>
<td>B 3181</td>
<td>4</td>
<td>20.41</td>
<td>61.79</td>
<td>.0599</td>
<td>402.1</td>
<td>.477</td>
<td>4.765</td>
<td>2192</td>
<td>17.05</td>
<td>.994</td>
</tr>
<tr>
<td>B 3181</td>
<td>5</td>
<td>75.28</td>
<td>36.57</td>
<td>.3196</td>
<td>3729</td>
<td>.121</td>
<td>4.922</td>
<td>2095</td>
<td>4.266</td>
<td>1.330</td>
</tr>
<tr>
<td>B 3181</td>
<td>6</td>
<td>1.053</td>
<td>19.77</td>
<td>.1337</td>
<td>144.3</td>
<td>.478</td>
<td>2.455</td>
<td>101.7</td>
<td>4.155</td>
<td>.980</td>
</tr>
<tr>
<td>B 3181</td>
<td>7</td>
<td>.7961</td>
<td>133.7</td>
<td>.0681</td>
<td>28.59</td>
<td>.7756</td>
<td>1.580</td>
<td>49.23</td>
<td>4.831</td>
<td>.945</td>
</tr>
<tr>
<td>B 3181</td>
<td>8</td>
<td>33.15</td>
<td>769.5</td>
<td>.3871</td>
<td>817.8</td>
<td>.881</td>
<td>5.371</td>
<td>1894</td>
<td>32.33</td>
<td>.943</td>
</tr>
<tr>
<td>B 3181</td>
<td>9</td>
<td>2534</td>
<td>19.78</td>
<td>.0375</td>
<td>10.00</td>
<td>.854</td>
<td>1.113</td>
<td>24.40</td>
<td>.972</td>
<td>.972</td>
</tr>
<tr>
<td>B 3181</td>
<td>10</td>
<td>9.355</td>
<td>1169.</td>
<td>.0325</td>
<td>461.5</td>
<td>.477</td>
<td>13.77</td>
<td>457.9</td>
<td>71.84</td>
<td>.974</td>
</tr>
<tr>
<td>B 3181</td>
<td>11</td>
<td>19.03</td>
<td>741.6</td>
<td>.2244</td>
<td>32.43</td>
<td>.655</td>
<td>12.88</td>
<td>47.32</td>
<td>5.931</td>
<td>.952</td>
</tr>
<tr>
<td>B 3181</td>
<td>13</td>
<td>1.117</td>
<td>6.054</td>
<td>.0299</td>
<td>3.340</td>
<td>.494</td>
<td>2.312</td>
<td>10.03</td>
<td>.9993</td>
<td>.988</td>
</tr>
<tr>
<td>B 3181</td>
<td>14</td>
<td>.6666</td>
<td>5.018</td>
<td>.1940</td>
<td>21.01</td>
<td>.491</td>
<td>14.77</td>
<td>14.25</td>
<td>.982</td>
<td>2.042</td>
</tr>
<tr>
<td>B 3181</td>
<td>15</td>
<td>64.51</td>
<td>12.76</td>
<td>3.006</td>
<td>1932</td>
<td>.607</td>
<td>4.466</td>
<td>103.1</td>
<td>2.168</td>
<td>.972</td>
</tr>
<tr>
<td>B 3181</td>
<td>16</td>
<td>5.243</td>
<td>962.3</td>
<td>.2218</td>
<td>946.4</td>
<td>1.682</td>
<td>.6156</td>
<td>59.81</td>
<td>5.990</td>
<td>1.206</td>
</tr>
<tr>
<td>B 3181</td>
<td>17</td>
<td>14.28</td>
<td>1933.</td>
<td>.0885</td>
<td>227.3</td>
<td>.999</td>
<td>11.51</td>
<td>823.9</td>
<td>19.38</td>
<td>.974</td>
</tr>
</tbody>
</table>

Red: Indicates data above high standard and may not be quantitatively accurate.

This report has been reviewed and approved by:

William E. Henderson, Lab Director/Chemist

Date: 3/7/86

Battle Mine

Red: Indicates data above high standard and may not be quantitatively accurate.

This report has been reviewed and approved by:

William E. Henderson, Lab Director/Chemist

Date: 3/7/86

Battle Mine