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ABSTRACT 

Kinematics and Timing of Orogen-Parallel Flow, 
Grouse Creek Mountains, Utah 

By 

Tonia G. Arriola 

Dr. Michael L. Wells, Examination Committee Chair 
Professor of Geology 

University of Nevada, Las Vegas 

Alternating contractional and extensional events in orogenic belts play a 

significant role in dynamically adjusting crustal thickness during regional contraction. 

Distinguishing between these two contrasting kinematic regimes is not only important for 

understanding the tectonic setting but also provides insights into the dynamics of 

evolving orogenic wedges. The earliest pervasive fabric, D 1, in the Grouse Creek 

Mountains of northwest Utah is interpreted to have played an integral role in 

accommodating such a dynamic adjustment. It is interpreted that focused crustal 

thickening led to differences in gravitational potential energy along strike, facilitating an 

episode of mid-Cretaceous synconvergent orogen-parallel extension. The D2 event is a 

previously undocumented deformational event in the Pennsylvanian-Permian Oqtlirrh 

Formation and overprints the earlier D1 fabric. D2 is characterized by an axial planar 

cleavage, S2, associated with east-verging north-northeast-trending large-scale folds at 
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Marble Peak, South Hill and the Rosebud area, and is interpreted to record a top-to-the 

southeast contractional event. 
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CHAPTER I 

INTRODUCTION 

Synconvergent extension parallel to the strike of orogenic belts is well recognized 

worldwide, but its causes are poorly understood (Ellis and Watkinson, 1987; 

Mancktelow, 1992; Murphy et al., 2002; Davis and Maidens, 2003; Merschat et al., 2005; 

Wells et al., 2008). Orogen-parallel extension has been documented in several tectonic 

settings such as: (1) accretionary prisms; (2) magmatic arcs; (3) arcuate orogenic belts; 

and ( 4) retroarc fold-thrust belts. The causes proposed for orogen-parallel extension 

include the following end members: (1) transpression (Sanderson and Marchini, 1984; 

Ellis and Watkinson, 1987; Teyssier et al., 1995; Fossen and Tikoff, 1998); (2) arcuation 

(Marshak, 1988; Ferrill, 1991; Ferrill and Groshong, !993); (3) collisional and lateral 

escape (Molnar and Tapponier, 1975; Frisch et al., 1998; Seyferth and Henk, 2003; 

Rosenberg et al., 2004); and (4) gravitational relaxation due to unequal crustal thickening 

or thinning (Camilleri, 1998; Davis and Maidens, 2003; Miller et al., 2006; Wells et al., 

2008). Although several insightful studies from various tectonic settings have been 

conducted in order to understand the processes controlling orogen-parallel extension 

(Ellis and Watkinson, 1987; Mancktelow, 1992; Murphy et al., 2002; Davis and Maidens, 

2003; Merschat et al., 2005; Wells et al., 2008), the causes, which generate the spatial 

and temporal distribution of orogen-parallel extensional strain features common within 

mountain belts worldwide, remain insufficiently understood. 



Mid-crustal levels of the interior of the Sevier orogenic belt are exposed in 

northwestern Utah and record deformation within deep levels of a retroarc non-collisional 

orogen. These exposures, along with the well-constrained tectonic framework ofthe 

western United States; including plate boundary location (Armstrong, 1968; Burchfiel, 

1992; Decelles, 2004), convergent rates and direction, and inferred subduction angles 

(Engebretson, 1985; Decelles, 2004) through time; provide an excellent natural 

laboratory in which to study the driving mechanisms and the products of synconvergent 

orogen-parallel extension. 

The earliest ductile deformation fabric (Dt) in the Grouse Creek Mountains of 

northwest Utah affects Archean to Permian rocks and records an episode of mid­

Cretaceous deformation in the hinterlaqd ofthe Sevier orogen. The mid-Cretaceous D1 

fabric developed during a top-to-the north mid-crustal shear and is characterized by a 

flat-lying penetrative foliation and a north-northeast-trending penetrative elongation 

lineation (L1). Previous interpretations of the D1 tabric have been offered, including top­

to-the-east thrusting (Compton, 1977), top-to-the-north thrusting (Malavieille, 1987), and 

orogen-parallel extension (Wells eta!., 1997; Wells eta!., 2008). 

Outcrops of the Pennsylvanian-Permian Oquirrh Formation ofthe Middle 

allochthon in the Grouse Creek Mountains were excellent sites for studying the D1 fabric 

because:(!) the D 1 fabric is well developed in the Middle allochthon of the Grouse Creek 

Mountains, unlike exposures in the Raft River and Albion Mountains; (2) the Dt fabric is 

well preserved in the upper plate of the Middle detachment, above the Cenozoic 

mylonite; (3) strain fringes in greenschist facies rocks, in which the original fiber 

geometries are preserved, record the incremental strain history; and (4) strain fringes 
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contain phlogopite fibers and are thus amenable to in situ laserprobe 40 ArP9 Ar dating 

(Wells eta!., 2000; Wells eta!., 2008). 

In addition to the D1 fabric, a second deformational fabric is also present within 

the Pennsylvanian-Permian Oquirrh Formation in the field areas, to be referred to as D2• 

The preservation of the D2 fabric in these rocks provides an opportunity to determine the 

relationship between this fabric and large scale folds present in the field areas and to 

determine whether the kinematics of D2 deformation are more compatible with extension 

or shortening. 

Strain fringes are ubiquitous throughout the Pennsylvanian-Permian Oquirrh 

Formation and are important to determination of the kinematics and timing of the D1 and 

D2 deformational events. Strain fringes are useful kinematic indicators, providing 

information on incremental and finite strain (Ramsay and Huber, 1983), shear sense 

(Passchier and Trouw, 2005), flow vorticity, fold mechanics (Beutner and Diegel, 1985), 

and deformation age (Muller et a!., 2000; Wells et al., 2008). Numerous studies have 

been conducted on these syn-kinematic features (Ramsay and Huber, 1983; Beutner and 

Diegel, 1985; Fisher and Anastasio, 1994; Aerden, 1996; Muller et al., 2000; Koehn et 

al., 2000, 2001, 2003). In particular, finite and incremental strain studies have provided 

important insights on the progressive deformational history of the host rock. Strain 

fringes have been used to determine the kinematics and reconstruction of regional and 

outcrop scale folds, adding to the understanding of the development of large-scale 

recumbent folds (Beutner and Diegel, 1985; Fisher and Anastasio, 1994). Fibrous strain 

fringes preserved in the greenschist facies Pennsylvanian-Permian rocks of the Middle 

allochthon provide an opportunity to contribute to the ongoing research of using strain 
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fringes to determine incremental and finite strain, shear sense, flow vorticity, and fold 

mechanics. 

Purpose 

The purpose of this study is to provide a more complete kinematic description of 

the earliest ductile fabric D1 (as recorded in the Grouse Creek Mountains), and to test the 

hypothesis that the fabrics record an episode of mid-Cretaceous synconvergent orogen­

parallel extension in the hinterland of the Sevier orogen. Additionally, I document a 

previously recognized but poorly studied ductile fabric, D2, (associated with large scale 

folds) that records a reversal in shear sense. One of the principal research questions to be 

addressed here is whether or not the D1 fabric in the Grouse Creek Mountains records a 

contraction or extension. This question is addressed by considering the following sub­

questions: what is the overall distribution and orientation ofthe D 1 fabric, shear zone 

geometry and kinematics, sense of shear, degree of vorticity, and overall strain magnitude 

and gradient? Furthermore, what are the driving mechanisms and tectonic significance of 

the D 1 fabric? The other principal research question concerns the deformational history 

of the D2 fabric. This is addressed by considering the following questions: what is the 

overall distribution and orientation of the D2 fabric, kinematics, sense of shear, degree of 

vorticity, and overall strain magnitude and gradient? In addition, how is the D2 fabric 

related to the earlier D1 fabric and folds that are present throughout the field areas? 
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Significance 

Over the past several years, there has been an increasing recognition of the 

importance of alternating contractional and extensional events in the evolution of 

orogenic belts and that these kinematic alternations play a significant role in dynamically 

adjusting crustal thickness during orogenesis. (Platt, 1986; Manctelow, 1992; Wells, 

1997; Rey eta!., 200 I; Fergusson eta!., 2007; Sullivan and Snoke, 2007) Knowledge of 

the strain distribution and kinematics for these events within crustal rocks provides 

insights into the driving mechanisms for these kinematic alternations. This study 

presents kinematic, petrographic, and geologic map data that provides evidence for both 

contractional and extensional events in the hinterland of the Sevier orogen. From these 

data, I propose that the earliest ductile fabric (D1) in the Grouse Creek Mountains of 

northwestern Utah records an episode of mid-Cretaceous orogen-parallel extension, 

synchronous with orthogonal convergence of the Farallon plate with the North American 

plate. Synconvergent extension parallel to the strike of the Sevier orogenic belt played a 

significant role in dynamically adjusting crustal thickness during regional contraction. 

While synconvergent orogen-parallel extension is widely recognized in oblique plate 

margin settings, this study provides new insights on the development of orogen-parallel 

extension in retroarc non-collisional settings such as the hinterland of the Sevier orogen 

in a tectonic regime of orthogonal plate convergence. Furthermore, I interpret the D2 

folds and fabrics as related to the ±ormation of a top-to-the-southeast contractional event, 

recording renewed crustal shortening following extension. Additionally, this study 

contributes to our understanding ofthe utility of syn-kinematic fibrous strain fringes in 

determining the progressive and incremental defonnational history and kinematics of 
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tectonic processes. Moreover, it provides more documentation on the methods for 

quantifying incremental and finite strain using strain fringes. Finite and incremental 

strain values and kinematic reconstructions are significant in the study of crustal 

deformation. In particular, the majority of balance cross-sections and restorations of 

fold-and-thrust belts fail to incorporate the amount of internal strain, which therefore 

should be considered in order to produce accurate results. 

Methodology 

Both field and laboratory work were conducted in order to determine the 

kinematics of the D1 and D2 deformational events. 

Field studies 

Mississippian to Permian rocks ofthe Middle allochthon were mapped at a scale 

of I: 12,000 in three areas totaling about 26 square kilometers in the central Grouse Creek 

Mountains: the Marble Peak klippe, North and South hills, and the ridge south of 

Rosebud Creek, to be referred to as the Rosebud area (Figure I). These locations were 

selected because they exhibit well developed D1 fabrics. Mesoscopic structural features 

associated with D1 and D2 were measured, including two foliations (S1 and S2 ), two 

stretching lineations (L1 and Lmm), intersection lineations, and relict bedding, with 

particular emphasis on determining whether folding was associated with D1 or D2 and 

whether S1 or S2 are axial planar to folds. Strain fringes were examined in the field as 

well as with a petrographic microscope, with an emphasis on determining the curvature 

of fibers within their respective cleavage (XY) planes, and asymmetries within their 

respective (XZ) planes. Fifty-seven oriented samples of fibrous strain fringes were 
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collected across transects from the Middle detachment to the highest structural levels 

throughout the three field locations. Thin sections were prepared parallel to L1 and 

perpendicular to St, parallel to S~, and where Sz was well developed, parallel to S2. 

Laboratory studies 

To represent and describe the kinematics of the Dt and Dz deformational fabrics, 

the field data were input into a geospatial ARCGIS database interactive map. This 

ARC GIS database contains all of the field data from Marble Peak, North and South Hill, 

and Rosebud Area, including GPS and sample locations, contacts of map units, St, S2, L1, 

Lmm, and tield pictures. The user can choose a GPS location and select and view the 

measurements ofthe outcrops as well as the pictures that were taken at the chosen 

location. GPS locations from the collection sites of every strain fringe sample are also 

indicated on the map to represent the distribution throughout the field areas, both laterally 

and vertically within the shear zone. In addition, a field map was created in Adobe 

Illustrator CS3. Stereoplots for all three areas were completed using Stereowin 1.2, and 

provide information on the kinematics ofthe Dt and D2 deformational events. 

Stereographic projections were used to quantitatively display three dimensional geologic 

data such as the planar (relict bedding, foliations, cleavages) and linear (lineations, poles 

to foliations) features associated with Dt and Dz to determine fold axes and to assist with 

interpretations of the geologic history. 

Thin sections prepared from all three field areas (Marble Peak, North and South 

Hill, and Rosebud Creek ridge) were examined with a petrographic microscope to 

determine the kinematics of the Dt and D2 events. Several digital photomicrographs of 

fibrous strain fringes were taken from every sample to aid in the kinematic study, and 
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measurements were made using ImageJ from NIH image company, developed by Larry 

Reinking. Methods and programs used for the kinematic study include: (I) rigid fiber 

model; (2) object-center path method; (3) Fringe Growth program; (4) and vorticity 

method. These methods will be discussed in greater detail under the appropriate heading 

in Chapter 4. Sense of shear was determined from digital photomicrographs for all of the 

fibrous strain tt·inge samples and from mesoscopic shear sense indicators measured in the 

field areas. 
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CHAPTER2 

REGIONAL GEOLOGIC AND TECTONIC SETTING AND GEOLOGY OF THE 

RAFT RIVER, ALBION, GROUSE CREEK MOUNTAINS 

The Grouse Creek Mountains of northwest Utah are part of the Raft River­

Albion-Grouse Creek metamorphic core complex, within the hinterland of the Late 

Mesozoic and early Cenozoic Sevier orogenic belt (Figure I) (Armstrong, 1968; Wells, 

1997). Prior to the onset of the Sevier orogeny, Archean and Proterozoic crystalline 

basement was overlain by a sedimentary wedge of Neoproterozoic, Paleozoic, and Lower 

Mesozoic platform, shelf, and slope deposits (Stewart eta!., 1990) (Figure 2). During the 

Mesozoic, the development of a convergent plate margin created back arc intraplate 

crustal shortening and led to the development of the Sevier orogen (Burchfiel eta!., 1992; 

Decelles, 2004). The Sevier orogen is characterized by east-vergent, decollement style 

low-angle thrust faults in the foreland fold and thrust belt marking the eastern limit 

(Armstrong, 1968), and contractional and extensional structures in the hinterland 

(Camilleri and Chamberlain, 1997; Wells, 1997). Following cessation of Sevier 

orogenesis, the Raft River-Albion-Grouse Creek Mountains underwent episodic crustal 

extension, magmatism, and metamorphism from the middle to late Eocene to the present 

(Compton, 1983; Wells et al., 1997). This produced metamorphic core complexes, which 

resulted in two opposing shear zones and detachments: the top-to-the-west Middle 

detachment and Middle Mountain shear zone, and the top-to-the-east Raft River 
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detachment and shear zone (Malavieille, 1987; Saltzer and Hodges, 1988; Wells eta!., 

2000). These Cenozoic shear zones and detachment faults exhumed the Mesozoic mid­

crustal fabrics that are the subject of this research. 

Previous work 

In the past few decades, numerous structural studies of the Raft River-Albion­

Grouse Creek metamorphic complex have been conducted, the majority of which focus 

on the Cenozoic extensional history, including multiple Cenozoic detachment faults and 

extensional shear zones (Malavieille, 1987a; Saltzer and Hodges, 1988; Manning and 

Bartley, 1994; Wells eta!., 2000; Wells, 2001; Sheely, 2002; Egger eta!., 2003). Studies 

of the Mesozoic geology have focused on metamorphic petrology and its tectonic 

implications, rather than on the Mesozoic fabrics (Dudash, 2001; Hoisch eta!., 2002; 

Harris, 2003; Kelly, 2004; Harris eta!., 2007). Specifically, the Cretaceous Dt 

deformation event has received little study (Compton eta!., 1977; Malavieille, 1987b; 

Wells, 1997; Wells eta!., 2000b; Wells eta!., 2008), despite being the most widespread 

and pervasive fabric in this core complex. A few interpretations of the Dt fabric have 

been offered, including top-to-the-east thrusting, top-to-the-north thrusting, and orogen­

parallel extension. This study focuses on this poorly understood aspect of the Mesozoic 

history and provides a better understanding of the widespread but currently enigmatic 

penetrative D1 fabric. 

An early study by Compton et al. (1977) interpreted the Dt deformation fabric as 

recording top-to-the east thrusting in the late Mesozoic and early Tertiary. Compton 

suggested that at least three sets of folds formed during metamorphism and a fourth after 
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metamorphism. The oldest of the fold generations, D1, is related to eastward thrusting 

and is documented to have fold axes and lineations that define a broad arc that rotates 

from east to northwest from the Raft River Mountains to the Grouse Creek Mountains. 

Malavieille (1987) conducted strain and kinematics analyses across the entire Raft 

River-Albion-Grouse Creek metamorphic core complex in order to determine the 

geometry and kinematics of the ductile shearing events, referred to as D1 and D2• He 

interpreted the D1 deformation event as related to thrusting to the north-northeast, 

corresponding to shortening in the Mesozoic. Malavieille's D2 event is related to 

opposing Cenozoic extensional shearing events, eastward in the Raft River Mountains 

and westward in the Albion-Grouse Creek Mountains. For clarification purposes, the Dz 

event recorded by the strain fringes in this thesis is not related to the "D2" event described 

by Malavieille. 

Wells ( 1997) interpreted the D1 ductile shearing event present in the Grouse 

Creek, Raft River, and Albion Mountains as gravitational spreading of nappes linked to 

foreland shortening, based on studies in the eastern Raft River Mountains indicating a 

northeast-trend to 1 1 lineations. Alternatively, kinematic studies of the D1 fabric and a 

correlation of the fabric between allochthon and PreCambrian basement across the entire 

core complex indicate a dominant northward direction to the shear at mid-crustal levels, 

interpreted as resulting from gravitational collapse parallel to the orogen (Wells et al., 

1997; Wells et al., 2008). A recent study by Wells et al. (2008) reinterprets the age of the 

0 1 deformational event as mid-Cretaceous (105 ± 6 Ma), recording a previously 

unrecognized event of mid-Cretaceous synconvergent orogen-parallel extensional flow in 

the Sevier hinterland. The D2 fabric in the study area (Figure 1) has been previously 
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recognized (Wells et al., 2008) as a younger growth event in strain fringes, but its age, 

distribution, and kinematic significance remain unknown. 

Middle Mountain shear zone 

The Eocene and Oligo-Miocene Middle Mountain shear zone of the Raft River­

Albion-Grouse Creek metamorphic core complex is exposed in the field areas (Figure 1 ). 

A low-angle normal fault, known as the Middle detachment, forms the upper boundary of 

the shear zone (Figure 2). This detachment places Mississippian-Pennsylvanian rocks 

over Late Proterozoic to Archean rocks within the field areas, thus creating a major 

unconformity in the stratigraphy. The Middle Mountain shear zone deforms Archean to 

Mississippian rocks; this is noted in the field by the overprint of northwest-trending 

stretching lineations (Lmm) (Figure 3). Two periods of movement during the Cenozoic 

are recorded within this shear zone (Wells eta!., 2004). The older shearing event records 

a top-to-the-northwest movement ~N63W, whereas the younger event is more west 

directed at N87W (Saltzer and Hodges, 1988; Wells et al., 1997; Wells eta!., 2004). 

Separation of the two events is based on the variation of the lineation trend, amount of 

deformation, and deformation temperature from the structurally deeper rocks to the 

structurally higher rocks (Wells eta!., 1997; Wells et al., 2004), as well as their 

relationship with Oligocene plutons. These two ductile shearing events overprint the 

pervasive mid-Cretaceous D1 top-to-the-north ductile fabric, with the exception of the 

Pennsylvanian-Permian Oquirrh Formation of the Middle allochthon. The Mesozoic 

fabrics within the Pennsylvanian-Permian Oquirrh Formation are well preserved 
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structurally above the Cenozoic Middle detachment and Middle Mountain shear zone in 

the study areas. 

Tectonostratigraphy 

The Grouse Creek Mountains expose three allochthonous sheets that overlie an 

autochthon consisting of predominantly Precambrian Adamellite (Compton eta!., 1977; 

Todd, 1980) (Figure 1). There are four tectonostratigraphic units: the autochthon, the 

Lower allochthon, the Middle allochthon, and the Upper allochthon (Figures 1 and 2). 

The autochthon is composed of Archean schist, amphibolite, trondjemite, and 

metamorphosed adamellite (orthogneiss) which is overlain by a Proterozoic package of, 

in ascending order, Elba Quartzite, schist of Steven Springs, and quartzite of Clarks Basin 

(Figure 2). Overlying the Proterozoic package is the Ordovician Pogonip Group (Garden 

City Formation and Swan Peak Quartzite from Wells, 1996), Eureka Quartzite, and the 

Ordovician/Silurian (?)dolomite (Figure 2). The highly strained, uppermost greenschist 

facies Pennsylvanian-Permian Oquirrh Formation tectonite within the Lower allochthon 

is below the Middle detachment (Figure 2). The Middle allochthon is composed entirely 

of lower grade (lower-middle greenschist facies) Oquirrh Fom1ation, which is the focus 

of this study. The Oquirrh Formation was emplaced along the Middle detachment fault, 

structurally above the Middle Mountain shear zone. The Upper allochthon is comprised 

ofunmetamorphosed Upper Permian-Triassic Gerster Formation, Thaynes Formation, 

and Tertiary sedimentary and volcaniclastic rocks, which are not exposed in the study 

areas (Figure 2). 
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CHAPTER3 

MESOSCOPIC GEOMETRIC AND KINEMATIC ANALYSES 

Introduction 

Kinematics is the study of the motion of an object or particles without the 

consideration of mass or force. During deformation, an object can undergo translation, 

rotation, dilation and distortion. A kinematic study can determine the sense of shear, 

tectonic transport direction and magnitude, and can provide information on the relative 

components of pure and simple shear within a shear zone. 

The central Grouse Creek Mountains have experienced multiple Mesozoic and 

Cenozoic deformational events. This study focuses on the two ductile deformational 

events, known as D1 and D2. The D1 fibers are mid-Cretaceous (Wells et al., 2008), and 

the age of the D2 event is unknown. D2 is a previously unrecognized deformational event 

that postdates the earlier top-to-the-north D1 ductile event. Mesoscopic structural 

features associated with these deformational events, such as foliations and lineations, 

were measured in the field and plotted on stereoplots to aid in determining the kinematics 

of the two deformational events. Foliations are useful kinematic indicators, providing 

information on strain, metamorphic conditions and overprinting relationships, and are 

thought to record or lie parallel to the XY plane of the finite strain ellipsoid (Passchier 

and Trouw, 2005). Stretching lineations record the X direction of finite strain ellipsoid 

(Passchier and Trouw, 2005), and provide information on the direction of extension 
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within the shear zone but not the sense of shear. Lineation measurements are used in this 

study to record the transport direction of extension within the shear zone. The sense of 

shear for the 01 and 02 events was determined by a field study of mesoseopic shear sense 

indicators, including asymmetric porphryoclasts, calcite blebs, boudins, chert stringers, 

and quartz veins. Sense of shear for both 0 1 and 02 events was also determined by 

petrographic analysis of fibrous strain fringes within the XZ plane of the strain ellipsoid 

for each deformation event. 

This thesis seeks to provide more documentation of the mid-Cretaceous ductile 01 

fabric and to determine the kinematics of the Oz fabric. 

Spatial distribution of01 and 02 fabric 

Throughout the study areas, the pervasive mid-Cretaceous 0 1 ductile fabric is 

well preserved structurally above the Cenozoic Middle detachment within the 

Pennsylvanian-Permian Oquirrh Formation of the Middle allochthon (Figures 3-8). 

Structurally below the Middle detachment, the 01 fabric is overprinted by the Eocene and 

Oligo-Miocene Middle Mountain shear zone (Figures 3-8). The 01 fabric is also 

preserved in regions beneath the Cenozoic shear zones. 

In the field areas, S1 is predominantly a flat-lying foliation (Figure 3), sub-parallel 

to lithological layering, and dips are variable due to doming from exhumation of the 

Cenozoic metamorphic core complex as well as from folding during development of Sz 

(Figure 3). In the Oquirrh Formation of the field areas, S1 is defined by a variable 

pressure-solution to crystal-plastic foliation defined by dissolution creep of quartz and 

dynamic recrystallization of calcite. A penetrative, generally north-northeast trending 
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elongation lineation recorded by strain fringes, stretched fossils, and stretched minerals 

are within the St plane (Figure 4). At the Rosebud area, the D1 fibers are curved within 

the plane of St. 

Within the field areas, Sz foliation is axial planar to folds, and is defined by 

alignment of micas, calcite and quartz. The obliquity between S2 and S1 and the 

development of Sz are dependent on the lithology and position about folds, and its 

development is heterogeneous. Throughout the field areas, the S2 cleavages are at low 

angles to subparallel to the S 1 foliation within the marbles, and are at higher angles to S 1 

within the silty lithologies. S2 gently dips -20°-40° to the east and west, on opposite 

limbs of folds present in the field areas, and is more pronounced in the southern parts of 

the field areas. The D2 strain fringes are developed within the S2 plane, thus indicating 

growth synchronous with the folding events. The D2 fibers exhibit a counter-clockwise 

curvature within the XY plane of S2. In addition, intersection lineations defined by the 

intersection of St and Sz trend north-northeast. Lt elongation lineations are parallel to the 

locally developed hingelines of the folds exposed at Marble Peak, South Hill, and the 

Rosebud area (Figures 3, 5, 6). 

Marble Peak 

Marble Peak exposes a large-scale east-verging fold within the Pennsylvanian­

Permian Oquirrh Formation. Through stereo graphic projection, the trend and plunge of 

the fold axis at Marble Peak is determined to be 184°, 06° (Figure 3). The interlimb angle 

determined by stereographic projection at Marble Peak is 140°. S1 is predominantly a 

flat-lying foliation sub-parallel to lithological layering at Marble Peak. Strikes of the St 

foliation at Marble Peak are variable due to doming, with a mean foliation of 098°, 07S0
, 
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and dips ranging from horizontal to 58° (Figure 3). The trend of the L1 elongation 

lineation at Marble Peak varies by 80°, from 162"-242°, with plunges ranging from 

horizontal to 38° to north and south (Figure 3). The mean vector trend and plunge are 

-020", 00° (Figure 3). S2 foliation at Marble Peak is variable, with strikes predominantly 

to the north-northeast and to the northwest (mean foliation of052°, !SSE"), and east and 

west dips ranging from 24° to 68°. 

North and South Hill 

Mesostructural measurements from North and South Hill are subdivided into two 

domains based on differences in orientations ofS1 and S2 foliations and trends ofL1 

elongation lineations. At North and South Hill, S1 is predominantly a flat-lying foliation 

' 
sub-parallel to lithological layering. The S1 foliation at North Hill is variable with 

predominantly east-west strikes (mean foliation of098°, 138°), and dips ranging from 

horizontal to 58° (Figure 5). North Hill exhibits two sets of elongation lineation (L1) 

trends; one set trends from (020° to 230°) and the other set trends ( 130° to 287°) to the 

northeast to northwest with plunges ranging from horizontal to 42°. S2 at North Hill 

strikes predominantly to the southeast (mean foliation of 130°, 048°), with dips ranging 

from 03° to 44° (Figure 5). 

At South Hill, a large-scale closed recumbent anticline, overturned to the east, is 

exposed within the Pennsylvanian-Permian Oquirrh Formation (Figures 8 and 9). The S1 

foliation at South Hill is variable with strikes predominantly to the southwest (mean 

foliation of 239°, 13 S0
) and dips ranging from horizontal to 57o (Figure 5). The 

elongation lineation L1 at South Hill exhibits a mean vector trend and plunge of 016 •, 06° 

(Figure 5). At South Hill, S2 is an axial planar cleavage with strikes predominantly to the 
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southwest (mean foliation of39°, 10W0
) and dominantly westward dips ranging from 02° 

to 32". The trend of the fold axis at South Hill is 001°, plunging 1! 0 to the north (Figure 

5). 

Rosebud area 

In the Rosebud area is a large-scale east-vergent tight antiformal fold in the 

northeastern part of the map area, with overturned limbs on the eastern side of an exposed 

cliff (Figure I 0). The S1 foliation at the Rosebud area is variable due to folding, with 

strikes predominantly to the north-northeast (mean foliation of059°, 03S£0), and dips 

ranging from horizontal to 85° (Figure 6). The trend and plunge of the fold axis at 

Rosebud Hill is 213° and plunges 01 o to the south, determined by stereographic 

projection of folded S1 (Figure 6). The L1 elongation lineation at Rosebud trends from 

055° to 182°, and plunges from horizontal to 33° (Figure 6). The mean vector trend and 

plunge are 207° and 03°. S2 at Rosebud is an axial planar cleavage with strikes 

predominantly to the west (mean foliation of 265°, 06S0
) and dips ranging from 02° to 

90°. 

Discussion of folds 

The folds at Marble Peak and South Hill trend similarly to the north, whereas the 

folds in the Rosebud area trend north-northeast (Figure 6). The fold at Marble Peak is 

not as well defined as the folds present at South Hill and the Rosebud area. A fold within 

the Marble Peak klippe is interpreted based on the relationship between S2, S1 foliation, 

and parasitic folds (Figure 7), the observation that S2 elsewhere is an axial planar 

cleavage, and from the orientation of measurements plotted on the stereonet program 

(Figure 3). Unfortunately, no stratigraphic facing indicators were observed in the field, 
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making it difficult to determine the vergence direction. The interlimb angle of the fold 

present at Marble Peak, as determined by stereographic projection, is 140°, and as such is 

classified as a gentle fold (Figure 3). However, if the majority of the measurements are 

represented by one limb, then the interlimb angle is incorrect. The L1 elongation 

lineations (vector mean 020°, 00°) are subparallel to the trend of the fold axis of 184", 06° 

at Marble Peak (Figure 3). Based upon these relationships and assumptions of Sevier 

kinematics, the exposed Pennsylvanian-Permian Oquirrh Formation at Marble Peak is 

interpreted to represent an east-vergent fold, truncated by the Middle detachment (Figure 

3). 

South Hill exhibits a well exposed, east-vergent, tight recumbent anticline within 

the Pennsylvanian-Permian Oquirrh Formation (Figures 8 and 9). The interlimb angle of 

the fold at South Hill, determined by stereographic projection, is 32", which classifies it 

as a tight fold (Figure 5). The L1 elongation lineations (vector mean 016 °, 06°) are 

subparallel to the trend of the fold axis at South Hill (Figure 5). The trend and plunge of 

the fold axis at South Hill is 001°, II 0 , determined by stereo graphic projection (Figure 5). 

The folded strata are cut by two low-angle westward dipping faults with eastward 

displacements; younger-on-older and older-on-younger (Todd, 1980). 

The east-verging antiformal tight fold exposed at the Rosebud cliff face exposes 

an overturned limb. On the eastern side of the cliff, an east-vergent overturned tight fold 

is well exposed, whereas on the western side, the opposite overturned limb is not well 

exposed and is mostly covered by talus (Figure 1 0). The interlimb angle for the eastern 

limb at Rosebud is 23°, thus classifYing the fold as tight. The L1 elongation lineation 

19 



mean vector trend and plunge are 207°, and 03°, and is subparallel to the trend and plunge 

of the fold axis of2!3° and 01° (Figure 10). 

Syntectonic fibers from strain fringes were collected along the fold and are used 

in this study as kinematic and strain indicators for the mechanics and formation of the 

folds. Incremental strain data from displacement-controlled fibrous strain fringes have 

been fruitful in determining the kinematics of folds (Beutner and Diegel, 1985), and are 

displayed as Cumulative Incremental Strain History Diagrams (CISH), which are 

discussed in Chapter 4. 

Shear sense indicators 

Microscopic and mesoscopic features were used in this study to determine the 

sense of shear for the D1 and D2 deformational events. Sense of shear can be determined 

from the asymmetry of mesoscopic and microscopic features-shear sense indicators­

which are produced during non-coaxial progressive deformation (Passchier and Trouw, 

2005). Mesoscopic shear sense indicators, including asymmetric porphryoclasts, calcite 

blebs, boudins, chert stringers, and quartz veins, were measured at South Hill and the 

Rosebud area; these features record an overall top-to-the-north sense of shear for D1 

(Figure 11 ). Mesoscopic shear sense indicators are not present at Marble Peak; thus in 

this location, only microscopic shear sense indicators were used. 

Asymmetric shear sense indicators, such as asymmetric porphyroclasts, are 

present at South Hill within the Oquirrh Formation tectonite, in proximity to the 

Mississippian Chainman Diamond Peak Formation lithologic contact. The tectonite 

contains dominantly sigma-type as well as delta-type porphyroclasts, recording a top-to­

the-north sense of shear (Figure 12). The tectonite is exposed on the overturned limb of 
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the recumbent fold, as suggested by east-dipping cleavages present within the quartz rich 

siltite below the tectonite (Figure 13). 

Mesoscopic shear sense indicators at the Rosebud area, such as asymmetric 

boudins (Passchier and Trouw, 2005), are associated with the D1 fabric and record an 

overall top-to-the-north sense of shear (Figure 11 ). The asymmetric boudins of the 

earlier D1 fabric are overprinted by the development of the D2 fold within the Rosebud 

area. The measured mesoscopic shear sense indicators consistently record a top-to-the­

north sense of shear. Microscopic shear sense indicators ofD 1 and D2 will be discussed 

in Chapter 4 of this thesis. 
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CHAPTER4 

STRAIN AND KINEMATIC ANALYSES OF STRAIN FRINGES 

Introduction 

A kinematic study of strain fringes was conducted in thin section to determine: (I) 

sense of shear; (2) finite strain; (3) amount of rotation for fibers and core objects in the 

XZ and to a lesser extent, the XY plane of the finite strain ellipsoid; (4) the progressive 

incremental strain history; and (5) the progressive incremental orientations within the XY 

plane of S1 and S2. A strain analysis is used to measure the changes in shape and size of 

an object due to deformation. Fifty·seven oriented samples were collected. Of these, 37 

were selected for a finite and incremental strain analysis to determine the lateral and 

vertical strain gradient within the shear zone. 

What are strain fringes? 

Fibrous strain fringes contain fibrous minerals precipitated in low pressure sites 

adjacent to rigid objects, and are usually composed of a different mineral species from 

the rigid object (Kerrich, 1978; Davis and Reynolds, 1984; Groshong, 1988; Knipe, 1989; 

Passchier and Trouw, 2005). Strain fringes are useful kinematic indicators, providing 

information on flow and deformation history (Passchier and Trouw, 2005), and are used 

to estimate sense of shear and finite and incremental strain histories (Ramsay and Huber, 

1983). Strain fringes form by the process of fluid assisted mass transfer. Dissolution 
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along grain boundaries oriented at high angles to the intinitesimal shortening direction 

within the matrix or core object occurs due to enhanced mineral solubility resulting from 

high elastic strain energy due to grain to grain interactions. Material is dissolved and 

transported by fluid-assisted diffusion from areas of high compressive stress to areas of 

low compressive stress, and is deposited as crystalline growths in the direction of the 

maximum instantaneous stretching axis (ISA) (Kerrich, 1978; Davis and Reynolds, 1984; 

Groshong, 1988; Knipe, 1989; Passchier and Trouw, 2005). 

Four factors contribute to the fringe geometry: (1) the shape of the core object; 

(2) the type of strain fringe; (3) the flow regime in the surrounding matrix; and (4) 

whether fiber growth in the fringe is displacement controlled or face controlled (Passchier 

and Trouw, 2005). The growth sense of fringe structures can be syntaxial or antitaxial; 

tiber growth from the core object to the matrix is syntaxial, and fiber growth from the 

matrix to the core object is antitaxial. There are three types of strain fringes: pyrite type, 

crinoid type, and composite type. The most common type of strain fringes are pyrite 

type; since the strain fringes in this study are pyrite type, the discussion is restricted 

accordingly. Pyrite" type strain fringes are different from the other types in that fibers 

grow with crystallographic continuity from the matrix ( antitaxial) towards the core object 

(Ramsay and Huber, 1983). There are two different end member types of fibers based on 

the relationship between their orientation, the shape of the core object, and the maximum 

instantaneous stretching axis: displacement-controlled fibers and face"controlled fibers or 

a combination of both, intermediate fibers (Ramsay and Huber, 1983, Koehn et al., 2000, 

2001, 2003). 
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Displacement-controlled tibers are typically very narrow, the fibers consist of one 

or more mineral species growing sub-parallel, and they can be used to determine the 

progressive strain history (Ramsay and Huber, 1983) (Figure 14). Displacement­

controlled fibers grow parallel to the relative displacement between the matrix and the 

core object and are thought to record the incremental and finite strain history (Ramsay 

and Huber, 1983; Koehn eta!., 2000, 2001, 2003). Recent studies have focused on 

displacement-controlled fibers to determine their use for strain history, growth, and what 

the fibers actually trace (Aerden, 1996; Koehn eta!., 2000,2001, 2003). 

Koehn et al., (2000, 2001) has modeled strain fringes numerically using a two 

dimensional computer model "Fringe Growth" (Koehn et al., 2000, 2001 ), and by analog 

using wooden objects in a simple shear box with a Polydimethylsiloxane substance 

(Koehn et al., 2003). The "Fringe Growth" program simulates the incremental growth of 

undeformed antitaxial strain fringes and users can change the parameters of growth. 

Moreover, ostensibly, the user can create self made core objects by converting the shape 

into a text file and uploading into the program. 

Several attempts were made to create core objects from the Grouse Creek samples 

to input into the program Fringe Growth, but unfortunately they were unsuccessful. 

While the program works well with pre-defined shapes, self-created complex core objects 

do not work properly (Koehn, personal communication). Koehn determined through 

modeling that face-controlled fibers show a tendency to grow around smooth core 

objects, and fringe structures with both displacement-controlled fibers and face­

controlled fibers grow around rough core objects (Koehn eta!., 2000). Furthermore, the 

surface roughness determines whether or not the fibers track the instantaneous stretching 
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direction (Koehn et a!., 2000). According to Koehn et a!. (2000), the long axis of 

displacement-controlled fibers records the opening direction and rotation of the core 

object and the fringes with respect to the maximum instantaneous stretching axis (ISA). 

Modeling of strain fringes using polydimethylsiloxane wax illustrated that fringes and 

core objects can rotate relative to each other, and the aspect ratio ofthe core object and 

fringe structure influences the amount of rotation that occurs (Koehn, eta!., 2003). In 

addition, hook-shaped object-center paths can result from variable rotation rates of non­

equant core objects and therefore do not always represent a change in orientation of the 

instantaneous stretching axis (Koehn, eta!., 2003). Consequently, such hook-shaped 

object-center paths cannot always be attributed to multiple deformation phases, contrary 

to the interpretation of strain fringes from the Pyrenean shear zone (e.g., Aerden, 1996; 

Muller eta!., 2000). 

Face-controlled fibers are typically fairly wide (>30 1-1m) with fibers forming 

perpendicular to the face of the core object (Figure 14). Determining the strain history of 

face-controlled strain fringes is more complicated, and only in some cases can the 

infinitesimal strain history, in addition to magnitude of finite extension, be determined 

(Ramsay and Huber, 1983). Strain history cannot be determined from the directions of 

face-controlled fibers, but rather is determined from the geometry of the contact suture, 

which records the progressive displacement history (Ramsay and Huber, 1983). A suture 

is the surface separating two parts of a strain fringe, each originating from a different core 

object face and with a different orientation of fibers (Passchier and Trouw, 2005) (Figure 

14). The suture is trapped by comers of the core object (Koehn et al., 2000). Face­

controlled fibers sometimes contain inclusion trails known as "ghost" fibers, which 
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appear to mark out displacement paths, similar to displacement-controlled fibers, and can 

be used to determine the strain history (Ramsay and Huber, 1983). Therefore, face­

controlled fibers, by themselves, can be used to determine the magnitude of extension but 

not the displacement path and history. Only the suture or the "ghost" fibers can be used 

to track the displacement path and determine the strain history. 

Kinematic and petrographic analysis of strain fringes 

Thin sections of fibrous strain fringes were analyzed within the principal planes of 

the finite strain ellipsoid from the Pennsylvanian-Permian Oquirrh Fonnation at Marble 

Peak, North and South Hill, and the Rosebud area (Figure 15). Two sets of fibers, known 

as D1 and D2, are present within the strain fringes (Figure 16). D 1 fibers exhibit 

dominantly face-controlled fibers as well as displacement-controlled fibers (Figure 1 4). 

D2 fibers exhibit displacement-controlled fibers (Figure 14). 

Depending on the type of fiber growth, face-controlled or displacement­

controlled, different methods were used to measure the finite and incremental strain 

history of each strain ffinge. The different methods used were based on the relationship 

between their orientation, the shape of the core object, and the maximum infinitesimal 

strain orientation (Ramsay and Huber, 1983). Methods and results for both D1 and D2 

will be separated and discussed below. 

D1 sense of shear 

Face-controlled strain fringes are useful microstructural features for providing 

sense of shear during non-coaxial progressive deformation (Ramsay and Huber, 1983). 

Face-controlled strain fringes are used in this study to provide the sense of shear for the 
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D1 event and to provide information on the incremental strain paths. Sense of shear for 

D1 was determined microscopically from samples within the XZ plane of the finite strain 

ellipsoid, parallel to lineation in the X direction and perpendicular to foliation. Samples 

were collected across the three field areas at Marble Peak, North and South Hill, and the 

Rosebud area. 

Throughout the field areas, D1 fibers dominantly record a top-to-the-north sense 

of shear as seen from asymmetric fiber packages and contact sutures. At Marble Peak, 

D1 face-controlled fibers are undeformed and well preserved, recording top-to-the-north 

sense of shear (Figure 17). North and South Hill preserves both top-to-the-north and top­

to-the-south D1 fibers (Figure 18). However, the top-to-the-south D1 fibers are within the 

east-verging overturned limb of the recumbent anticline at South Hill. The 0 1 fibers at 

the Rosebud area consistently record a top-to-the north sense of shear (Figure 19). 

D 1 finite strain 

The Durney and Ramsay method (1973) was used on all of the 0 1 fibers 

exhibiting face-controlled undeformed strain fringes that do not exhibit a suture or "ghost 

fiber." This method is based on the assumption that previously formed fibers behave 

rigidly and are undeformed. Measurements were made from digital photomicrographs 

taken from a petrographic microscope and analyzed in two graphics programs (Adobe 

Illustrator CS2 and ImageJ). Only the finite stretch, and not the incremental strain 

history, can be measured with this method. The total finite extension is derived by 

dividing the total length ofthe strain fringe (l,r) structure by the diameter of the pyrite 

core object (Dco) and multiplied by 100 to gain an extension percent (Figure 20). 

Finite extension = (l,r!Dco) x 100% 
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Finite strain analysis was conducted on 37 samples of fibrous strain fringes 

throughout the field areas. Finite strain results were determined from samples within the 

XZ plane ofthe finite strain ellipsoid. Overall results for the finite strain analysis on 

fibrous strain fringes showed an increase in strain magnitude southward within the field 

area for the D1 fibers. 

Uncertainties 

Finite strain values per sample will fluctuate depending on whether or not the thin 

section recording the principal plane of finite strain (XZ) was cut through the centroid of 

each strain fringe. In addition, curvature of the fibers in and out of the plane (XZ) will 

also ini1uence the fiber geometry and the amount of strain that was recorded. Therefore, 

for each sample, the maximum t'inite strain values were used as the minimum amount of 

extension that was recorded by each strain fringe within the thin sections. 

Marble Peak 

At Marble Peak within the Pennsylvanian-Permian Oquirrh Formation, t'inite 

strain magnitudes from 0 1 fibrous strain fringes ranged from 49% to 165% extension, 

with significantly greater magnitudes evident in the Oquirrh limestone ofthe lowest pa11 

of the Middle allochthon (Figure 21). Greater magnitudes of 408% extension of the D1 

fibers were found in the northern part of Marble Peak resulting from overprinting from 

the 0 2 event (Figure 21 ). These face-controlled strain fringes are deformed by a 

crenulation cleavage, S2, and therefore are recording an inaccurate finite strain magnitude 

for 0 1. Vertically within the allochthon at Marble Peak, strain magnitudes are 

heterogeneous with higher magnitudes for the 0 1 fibrous strain fringes within the central 

to western side of the klippe. 
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North and South Hill 

At North and South Hill, finite strain magnitudes ofDt fibrous strain fringes 

ranged from 107% to 322% extension (Figure 22). It is unclear how homogenous or 

heterogeneous strain magnitudes are at North and South Hill due to the lesser abundance 

of strain fringes as compared to the other field localities. 

Rosebud area 

Further south at the Rosebud area, finite strain magnitudes for the D1 fibrous 

strain fringes increase considerably, ranging from 184% to 634% extension (Figure 23). 

It is unclear whether or not a vertical strain gradient exists at the Rosebud area, due to the 

lack of vertical exposure of strain-fringe-bearing rocks. However, there is a lateral strain 

gradient across the field areas within the Oquirrh Formation, with higher magnitudes for 

the D, fibrous strain fringes in the southeastern part of the Rosebud area. 

D 1 amount of rotation (vorticity analysis) 

Vorticity records the amount of rotation relative to the amount of stretching at a 

point in space and time and is used to determine the degree of non-coaxiality of a ductile 

flow (Tikoff and Fossen, 1995). In order to conduct a vorticity analysis, the flow 

apophyses, the orientation of the instantaneous stretching axes, and the angle between the 

maximum instantaneous stretching axis and the shear zone boundary need to be 

established (Figure 24). A vorticity analysis was conducted on the D1 strain fringes from 

Marble Peak, in order to establish whether the Dt deformational event is associated with 

extension or shortening. The use of three dimensional kinematic vorticity analysis was 

first established by Ramberg (1975) and McKenzie (1979). The framework for three 

dimensional kinematic vorticity analyses was established by Tikoff and Fossen (1995), 
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whose study discusses the use and limitations of three-dimensional kinematic vorticity 

analysis. Tikoff and Fossen (1995) conclude that the internal kinematic vorticity number 

is useful for a two-dimensional analysis, but that it is less precise and consequently less 

useful in most three-dimensional deformations. 

In order to conduct a vorticity analysis, certain assumptions must be made. First, 

a reference frame needs to be determined. Therefore, for purposes of this study, the 

reference frame is assigned to the foliation, which represents the boundary of the shear 

zone. Other studies have assumed that the foliation records the X axis of the finite strain 

ellipsoid, which represents the shear zone boundary. (Simpson and DePaor, 1993; Tikoff 

and Fossen, 1995). Determining the orientation of the instantaneous stretching axes is 

also necessary. Displacement-controlled fibers and sutures within face-controlled fibers 

have been documented as providing information on tracking the orientation of the 

instantaneous stretching axes (Durney and Ramsay, 1973; Ramsay and Huber, 1983; 

Tikoffand Fossen, 1995; Wallis, 1995). The last incremental orientation of the 

displacement-controlled fibers or sutures is thought to record the approximate orientation 

of the maximum instantaneous stretching axis (Wallis, 1995). The kinematic vorticity 

number can be determined if the angle between the shear zone boundary and the 

extensional instantaneous stretching axes is known (Figure 24). 

Face-controlled strain fringes exhibiting sutures were used for the vorticity 

analysis of the D1 deformational event. Four samples were analyzed within the XZ plane 

of the finite strain ellipsoid. Angles between the S1 foliation, which parallels the shear 

zone boundary, and the last increment of the suture ranged between 8° and 44°. Angles 

plotted on the vorticity diagram (Tikoffand Fossen, 1995) (Figures 25a and b), yielded 
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kinematic vorticity numbers (Wk) between 0.28 and 0.99. For pure shear, Wk = 0 and for 

simple shear, Wk =I. Sample MWOO-GC-16-01 yielded a kinematic vorticity number of 

0.28. Sample TA-06-MP-06-02 yielded a kinematic vorticity number of 0. 77. Sample 

TA-06-07-04-01 yielded a kinematic vorticity number of0.47. Sample TA-06-MP-01-

3A-02 yielded a kinematic vorticity number of0.99. The values recorded ranged from 

pure to simple shear deformation within the extensional realm, collectively recording a 

thinning shear zone, and thus interpreted to record extension. 

Uncertainties 

Errors in the vorticity analysis could result if there is an inaccurate reference 

frame under the assumption that the foliation records the shear zone boundary, if the last 

increment of the suture within face-controlled fibers does not record the instantaneous 

stretching axis, if the aspect ratio of the rigid core object influences the orientation of the 

ISA, or if the assumption of steady state deformation is inaccurate. These assumptions 

and factors could all produce an inaccurate kinematic vorticity number. 

Orientations within S1 (XY plane) 

Incremental orientations of the long axes of the strain fringes were measured 

within the St plane at the Rosebud area (Table 1). Within the XY plane ofDt (St), Dt 

fibers exhibit a clockwise curvature, which can be seen in Figure 26. In the Dt Rosebud 

samples, a northeast elongation lineation is recorded in the distal parts of the fiber 

ranging from ( -270°-343°), and an orientation in the proximal parts records a northeast 

elongation lineation (-354°-024°) (Table I) (Figure 26). Distal parts of the strain fringe 

record a mean orientation of 312°, and proximal parts record a mean orientation of 032° 
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(Figure 26). The clockwise rotation displacement path recorded by the D1 strain fringes 

can be seen in Figure 27. 

Measurement 
SampleXY s. s. s2 s2 technique 

D1 D2 
D1 old voung D2 old young 

Rosebud Area 
RB-IOA-01 NA NA · ·n·•240 145 Object-center path 
RB-13-lOA-03 NA NA '418 '' ,,, 113 Object -center path 
RB-18-03b-O 1 NA NA . 'T2JO 

;:, 

'147 Object-center path ' ' 

RB-19-06-02 NA NA ''• 204 115 Object-center path 
,•, Medial lines through 

RB-23-08-0 I 3Tl 024 243 125 centroid & ocr 
' Media1lines through 

RB-13-07-01 ' < 3:2:6 ' '· .. Q47 NA NA centroid 
;v 

"' i' Medial lines through ,, 
: :'' 027 RB-25-0 1-01 ' 326, 175 138 centroid & OCP 

I , • , • •,·; .•. Media11ines through 
RB-06 I··· '34:f ./ (!.:'14 NA NA centroid 

'•. 
' .... 

Medial lines through 
RB-24 :300 354 NA NA centroid 

Medial lines through 
RB-14 285 033 NA NA centroid 

Medial lines through 
RB-20B 270 033 NA NA centroid 

Medial lines through 
RB-21 326 ' 045 NA NA centroid 

' Medial lines through 
RB-03-08-0 I 320 045 NA NA centroid 
Mean 312 032 215 131 

Table I. Recorded incremental orientations ofD1 and D2 fibrous strain fringes within the 
XY plane of S 1 and S2• Measurement techniques were from object-center path method 
(OCP) for displacement-controlled fibers, and medial lines through the centroid for face­
controlled fibers. Proximal parts of strain fringes are younger and distal parts are older. 
Samples from Rosebud area. 
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D2 sense of shear 

Displacement-controlled strain fringes are fruitful microstructural features that are 

used to determine sense of shear during coaxial and non-coaxial progressive deformation 

(Ramsay and Huber, 1983). Displacement-controlled fibers are used to determine the 

sense of shear for the Dz event and to provide information on the incremental strain paths. 

As previously discussed for the D1 fibers, sense of shear for 0 2 fibers was determined 

within the XZ principal plane ofthe finite strain ellipsoid. Throughout the field areas, Dz 

fibers consistently record a top-to-the-south shear sense (Figures 18-20). 0 2 fibers at 

Marble Peak are displacement-controlled fibers recording top-to-the-south sense of shear 

with lesser strain magnitudes than the 0 1 fibers (Figure 17). Dz fibers record a top-to­

the-south sense of shear further south, within the field area at North and South Hill 

(Figure 18). In the southernmost extent of the field areas, in the Rosebud area, the Dz 

fibers record a top-to-the-south sense of shear (Figure 19). 

D2}inite strain 

The object-center path method was used in the analysis of non-coaxial 

displacement-controlled D2 fibers, which track the opening direction of the maximum 

instantaneous stretching axis (Figure 20). The object-center path method was initially 

developed by Aerden (1996), further developed by Koehn et al. (2000), and was 

developed to separate the opening paths of fringes from rotation of the core object. The 

object-center path length along the path can be used to determine the incremental and 

finite strain. The curvature along the path and the core object relative to the fringes is 

used to determine the amount of rotation. According to Aerden (1996), single 

displacement fibers should not be used, so the fringe structure must be treated as a whole. 
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This method reconstructs polyphase deformation histories for displacement-controlled 

fibrous strain fringes by rotating a traced rigid core object along marginal points 

reproducing the natural fiber pattern from a photomicrograph (Figure 28) (Aerden, 1996). 

The center of the core object is plotted on each increment tracing the displacement path 

and showing the translation between the core object and the fringes (Figure 29). 

Six simulations were conducted using the "Fringe Growth" program to 

substantiate that the object-center path method, as applied, accurately reveals the 

incremental strain paths (Figure 30a-c ). Pre-defined shapes similar to Grouse Creek 

samples were used for modeling the strain fringes. Measurements for incremental and 

finite strain were completed using Adobe Illustrator CS2 and the ImageJ program. 

Measurements were taken along the object-center path trajectory for each increment of 

finite strain (Figure 29). 

A finite strain analysis was performed on displacement-controlled fibrous strain 

fringes following the object-center path method. Overall results for the finite strain 

analysis on the 0 2 fibrous strain fringes indicate an increase in strain magnitude 

southward within the field area. 

Marble Peak 

Finite strain magnitudes from 0 2 fibrous strain fringes ranged from 17% to 61% 

extension within the Oquirrh Formation at Marble Peak (Figure 21 ). Overall, there are no 

apparent trends for strain gradient throughout the Marble Peak klippe. These finite strain 

magnitudes are much lower than the finite strain magnitudes recorded at North and South 

Hill and the Rosebud area. 
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North and South Hill 

At North and South Hill, finite strain magnitudes ofD2 fibrous strain fringes 

ranged from 28% to 73% extension (Figure 22). It is inconclusive whether or not a strain 

gradient or pattern exists for the D2 fibers, due to the lack of a sufficient number of 

suitable samples. 

Rosebud area 

At the furthest south of the field areas at the Rosebud area, finite strain 

magnitudes for the D2 fibrous strain fringes ranged from 52% to 511% extension (Figure 

23). With the exception ofthree samples from two separate locations, all samples were 

collected from the upright limb of the east-verging fold. Samples TA-06-RB-13, 18, and 

19 were collected at hinge zones and indicate higher amounts of finite strain (Figure 23). 

Finite strain results yield higher strain magnitudes at the Rosebud area than at the areas 

further north at North and South Hill and at Marble Peak. Therefore, a lateral strain 

gradient from the southern extent of the field area to the northern part is obviously 

present. Unfortunately, due to a lack of vertical exposure of strain-fringe-bearing rocks, 

the question of a vertical strain gradient for the D2 cannot be determined. 

D2 incremental strain and vorticity analysis 

Incremental strain analysis was determined for 12 samples of fibrous strain 

fringes throughout the field areas within the XZ plane of the finite strain ellipsoid. These 

incremental strain histories are used to quantifY temporal variations in the magnitude and 

orientation of elongation as a function of structural position around the fold at Rosebud. 

Analyses were performed on face-controlled and displacement-controlled fibrous strain 

fringes following the object-center path method. Results from the incremental strain 
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analyses from displacement-controlled fibrous strain fringes were plotted on Cumulative 

Incremental Strain History Diagrams (CISH), which will be discussed below. The upper 

numerical value of finite strain was used, per sample, recording the minimum amount of 

extension, due to the amount of error that will occur when the samples were not cut 

through the pyrites centroid. Results for the incremental strain analysis on fibrous strain 

fringes indicate an overall increase in strain magnitude southward within the field area 

for the D2 fibers. 

Uncertainties 

Incremental strain values per sample will vary depending on how the increments 

were segmented. Incremental segmentation was based on angular change of fibers and 

determined by the object-center path method, which separates the movement between the 

pyrite and the fringe into components of translations and rotations. Possible human 

errors exist when separating the increments of rotation versus translation along the 

displacement path. Use of the object-center path method was verified by modeling strain 

fringes with the "Fringe Growth" program. Modeling the components of both translation 

and rotation obtained by the object-center path method produced strain fringes very 

similar to the natural samples. The shape and smoothness of the core object greatly 

influences the morphology of the fibers. Therefore, the pre-defined shapes that were 

used to most represent the core objects, also introduces some amount of error with the 

outcome of the fiber morphology as seen with the results. 

Cumulative Incremental Strain History diagrams (CISH) were used to determine 

how strain accumulates (y axis) relative to the changes of the orientation of the 
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incremental extension direction from the horizontal reference frame (x axis) (Clark et al., 

1993; Fisher and Anastasio, 1994; Anastasio et al., 1997). These graphs depict extension 

versus orientation with respect to a horizontal reference frame (S2) (Clark et al., 1993; 

Fisher and Anastasio, 1994; Anastasio et al., 1997). Measurements for the CISH 

diagrams were taken from D2 fibrous strain fringe samples from the field areas that 

exhibited displacement-controlled grmvth. The reference frame for all measurements 

was taken viewing west with north to the right. Therefore, clockwise rotation on the 

graphs is positive and counter-clockwise is negative. This reference frame reverses that 

of Fisher and Anastasio (1994) and Clark eta!. (1993) due to a change in viewing 

direction. This reference frame was chosen for a more intuitive graphical representation 

of the ClSH diagrams. The slope of the curve determines the amount of external vorticity 

and gives information on the reorientation of the extension direction and rate of rotation 

(Clark ct al., 1993; Fisher and Anastasio, 1994; Anastasio et al., 1997). Vertical paths 

represent coaxial deformation, that is a constant orientation of extension, and horizontal 

paths represent non-coaxial deformation with little or no accumulation of strain (Clark et 

a!., 1993; Fisher and Anastasio, 1994; Anastasio et al., 1997). 

CJSH results 

Incremental strain histories for D2 strain fringes at the Rosebud area were plotted 

on CTSH diagrams to determine the degree of non-coaxiality ofthe D2 event (Figure 31 

and 32). The results clearly demonstrate a non-coaxial strain history and provide 

information on the incremental strain history and kinematics during the development of 

the D2 event. Two locations were sampled at the Rosebud area-within an upright limb 

of a fold at the northwest side and an upright limb of the southeast side-and will be 
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discussed separately. Due to the lack of exposure, no samples were collected from the 

overturned limb at the Rosebud area. At both locations, the Dz fibrous strain fringes 

undoubtedly display an overall top-to-the-south shear sense. 

At the northwest side of the Rosebud area within the upright limb of the fold, the 

slopes determined from the nine CISH diagrams clearly demonstrate a non-coaxial strain 

path, with one exception from a hinge zone (TA-06-RB-18). This sample has an initial 

path reflecting a non-coaxial slope and progressively rotates into a coaxial path 

approaching subparallelism to the S2 cleavage. This sample was collected from a hinge 

zone of the fold, which is evidenced by the mutually perpendicular relationship ofS1 and 

Sz, and by the presence of D1 asymmetric boudins overprinted by a component of pure 

shear during D2. The CISH diagrams display an overall amount of rotation that varies 

throughout the samples, ranging from oo to 96° (difference between initial orientation and 

final orientation). The overall average rotation for these samples is -50°. Samples TA-

06-RB-22-05-01 and 02 record a total rotation of0° and I o respectively, and sample TA-

06-RB-16-05-03 records a 2° rotation. These samples being much different than the 

majority of samples, cause a shift in the overall averages; by eliminating them, the overall 

averages increased to ~60°. Nearly all of the youngest fiber increments displayed in the 

CISH diagrams are inclined -65° to the S2 cleavage planes and rotate into sub-parallelism 

(older distal fibers) with the cleavage plane, which is consistent with progressive rotation 

of fiber segments toward S2. In a simple shear flow, the infinitesimal shortening and 

extension directions are inclined 45° to the shear plane. The youngest parts of the fringe 

structures will initially develop parallel to the maximum instantaneous stretching axis. 

Studies document this relationship and propose that the youngest parts of the fibers 
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record the orientation of incremental extension relative to the final orientation of bedding 

(Etchecoper and Malievielle, 1987; Fisher and Byrne, 1992; Fisher and Anastasio, 1994; 

Anastasio et al., 1997). In other words, earliest formed fibers rotate into the shear 

direction, and only the orientation of youngest part of the fibers relative to bedding last 

increment of strain reflect (Fisher and Anastasio, 1994). Therefore, during simple shear, 

fiber growth should initiate at a 45° angle to the shear plane (D 1 cleavage) and rotate into 

parallelism with the cleavage, if the fibers are recording contemporaneous development 

of the cleavage. 

However, fibers do not always rotate into parallelism with cleavage, as 

documented by a large scale leading edge fold in the Sevier orogen from the Lost River 

Range (Fisher and Anastasio, 1994; Anastasio et al., 1997). This relationship is 

attributed to the following: (I) mineral fibers in strain fringes are defonned; (2) strain 

fringes developed after folding began, and growth is not synchronous with initial 

development of folds; and (3) fiber shape is a consequence of general shear. If the 

younger parts of the fibers inclined 65° to the cleavage plane are recording the opening 

direction of the extensional instantaneous stretching axis and the cleavage plane 

represents the flattening plane, then the maximum principal stress direction is oriented at 

a subhorizontal angle to the shear plane. These fibers record the maximum instantaneous 

stretch direction, which makes the minimum instantaneous stretch direction 

(instantaneous shortening) oriented at a subhorizontal angle to the shear plane. 

Therefore, this orientation is recording horizontal shortening 25° to the shear plane. Few 

exceptions include samples TA-06-05-03 and TA-06-RB-23-03, which show the 

opposite. In these cases, youngest fiber increments are sub-parallel to the S2 cleavage 
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plane and rotate approximately 70° to Sz. Fisher and Anastasio (1994) and Anastasio et 

al. ( 1997) determined that this could possibly indicate that fiber growth did not occur 

during the early stages of folding, that the fibers over rotated during fold development, or 

that the fibers are deformed. 

At the southeast side of the Rosebud ridge area, the strain histories depict 

variations in the orientation of incremental extension. The majority of the samples 

demonstrate a higher degree of coaxial character TA-06-RB-11 and 13 with lesser 

amounts of rotation, with one exception TA-06-RB-14. This particular sample 

demonstrates a higher degree of non-coaxiality than the other samples from the area. 

Sample TA-06-RB-13 was collected from a hinge zone of the fold, evidenced by a 

mutually perpendicular relationship between S1 and Sz. The Dz fibrous strain fringes 

from the southeast side of the Rosebud area demonstrate a top-to-the-south shear sense. 

An overall amount of rotation varies from 5° to 77°. The overall average rotation from 

these samples is -38°. Sample TA-06-RB-11A-02-0l records a 5° rotation, and sample 

T A-06-RB-13-1 OA-02 records a 10° rotation. These two samples record the overall 

averages; by eliminating them, the overall averages increased to 60°. However, these 

samples reflect a coaxial strain history, so eliminating them would be erroneous. Of the 

few samples collected at the southeast side of Rosebud area, there was only one sample 

displaying rotation TA-06-RB-14-07. The youngest fiber increments displayed in the 

CISH diagram are inclined -65° to the S2 cleavage planes and older segments are rotated 

into sub-parallellism with the cleavage plane. The other samples display a coaxial strain 

history. As previously mentioned, the younger parts ofthe fibers inclined 65° to the 

cleavage plane are recording the opening direction of the extensional instantaneous 
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stretching axis and the cleavage plane represents the t1attening plane. These fibers record 

the maximum instantaneous stretch direction, which makes the minimum instantaneous 

stretch direction (instantaneous shortening) oriented at a subhorizontal angle. Therefore, 

the maximum principal stress direction is oriented 25° to the shear plane and is recording 

a horizontal shortening component parallel to bedding. 

Orientations within S2 (XY plane) 

The large scale folds within the field areas display an axial planar cleavage, 

known as the Sz foliation. Within the Szplane, D2 fibers exhibit a curvature recording 

progressive incremental changes in infinitesimal strain orientation (Figure 33). 

Incremental orientations of the long axis of the strain fringes were measured within the 

XY plane from samples at the Rosebud area. Samples from the Rosebud area were 

selected based on the maximum obliquity between S 1 and 82. These samples exhibited 

the greatest resolvable distinction between the D1 and D2 fibers within the 81 and S2 

planes. The D2 fibers lie within the Sz plane and exhibit a progressive curvature from 

northeast-southwest (204°-240°) within the older distal parts to an orientation of 

northwest-southeast (147°-113°) in the proximal younger fibers (Table 1) (Figure 33). 

Distal parts ofthe strain fringe record a mean orientation of215°, and proximal parts 

record a mean orientation of 131 o (Figure 33). The distal parts ofD2 fibers are sub­

parallel to the fold hinge (215°) at Rosebud and progressively rotate perpendicular (147-

1130) to the fold hinge in the proximal part~, thus recording a counter-clockwise vertical 

rotation about the Z axis of the finite strain ellipsoid (Figure 33). The counter-clockwise 

rotation displacement path recorded by the D2 strain fringes can be seen in Figure 27. 
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CHAPTERS 

DISCUSSION 

D1: contraction or extension? 

One of the principal research questions addressed by this thesis is whether the D1 

fabric in the Grouse Creek Mountains records contraction or extension. Distinguishing 

contraction from extension is a critical matter in the study of mid-crustal shear zones and 

relies on establishing the tectonic significance of ductile fabrics in metamorphic rocks. 

Several studies have analyzed the structural, metamorphic, and geochronological patterns 

observed in shear zones to distinguish extension from contraction (Wallis et al., 1992; 

Wheeler and Butler, 1994; Wells et al., 2005). Structural criteria include analyzing the 

shear zone geometry and kinematics, hanging-wall deformation, and the overall thinning 

or thickening of a shear zone (Wallis et aL, 1992; Wheeler and Butler, 1994; Wells et aL, 

2005). In particular, kinematics of the shear zone can be determined by the relative 

movement of the hanging wall and footwall, or from kinematic indicators or offset 

markers (Wheeler and Butler, 1994). Metamorphic criteria include observations of 

pressure and temperature differences between the hanging wall and footwall that 

distinguish whether the hanging wall contains structurally deeper or shallower rocks with 

respect to their pre-faulting configuration. Similarly, geochronological criteria allow this 

distinction to be made, including observations of discordance between hanging-wall and 
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footwall thennal histories. This study focuses primarily on the structural criteria used to 

distinguish contractional from extensional origins for the D1 fabric. 

Previous workers suggest that the D1 fabric is related to thrusting produced during 

Mesozoic contraction; Compton eta!. (1977) interpreted top-to-the east thrusting, 

whereas Malavieille (1987) interpreted top-to-the north-northeast thrusting. 

Alternatively, the fabrics may be extensional in origin (Wells et a!., 2008). To test these 

alternative hypotheses, the strain geometry, kinematics, and vorticity of the shear zone is 

discussed below. 

Shear zone geometry and kinematics 

The traditional approach of using the geometry and kinematics of shear zones as 

criteria for distinguishing contraction from extension cannot be used for the D1 shear 

zone because there are no indications of whether the shear zone cuts up or down section 

to the north or whether there are changes in structural depth in the shear direction (Lister 

and Davis, 1989; Wheeler and Butler, 1994; Butler and Freeman, 1996). However, the 

geometry of the shear zone, its foliation and lineation orientations, and the kinematics of 

shearing, when viewed in the context of their orientation and position within the orogenic 

belt, allow some constraints on whether the shear zone records contraction, transpression, 

or extension. 

The overall orientation, the characteristic curved shape, and the geometry of 

toliations are used to determine the shear sense and allow some predictions of the 

geometry of the shear zone (Sanderson, 1982; Passchier and Trouw, 2005). Foliations 

are thought to record or lie parallel to the XY plane of the finite strain ellipsoid (Passchier 

and Trouw, 2005), and consequently are useful shear sense indicators within a shear zone 
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when analyzing sigmoidal foliation trajectories, the geometry of the foliation relative to 

the shear zone boundary, and shear band cleavages. Furthermore, and most importantly, 

they are used to determine whether or not the fabrics developed within the shear zone 

record contraction or extension. Conventionally, during heterogeneous simple shear, 

foliations may show a characteristic sigmoidal curved shape in the overall shear zone. 

This reflects the orientation of the finite strain axes (specifically, XY principal plane), 

and develops as a result of the foliations rotating from the instantaneous stretching axis 

towards the fabric attractor with increasing non-coaxial strain (Ramsay and Graham, 

1970; Passchier and Trouw, 2005). However, a study by Y onkee (2005) suggests that 

foliation patterns in heterogeneous simple shear with downward increasing shear strain 

are commonly subhorizontal at the base of the shear zone, and rotate to -45° toward the 

top of the shear zone, reflecting the variations in orientation of the finite strain ellipsoid 

(Figure 34a). 

In contractional settings where overall thickening of the shear zone occurs, 

foliation patterns are at higher angles to the shear zone boundary than in heterogeneous 

simple shear regimes (Sanderson, 1982; Yonkee, 2005). Thickening shear zones undergo 

layer parallel shortening and simple shear producing higher angle foliations at the base of 

the shear zone that rotate to nearly vertical at the top (Figure 34b) (Sanderson, 1982; 

Yonkee, 2005). Alternatively, in extensional settings where thinning of a shear zone 

occurs, foliations are at a much lower angle than observed in contractional settings 

(Sanderson, 1982; Yonkee, 2005). Thinning shear zones undergo layer parallel extension 

and simple shear, producing foliations that are subhorizontal at the base of the shear zone, 

increase in angle within the middle, and eventually flatten out at the top (Figure 34c) 
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(Sanderson, 1982; Y onkee, 2005). In a transpressional setting, theory predicts that high­

angle foliations should be dominant over low-angle foliations, as transpressional zones 

record a component of shear zone-perpendicular contraction (Sanderson and Marchini, 

1984; Y onkee, 2005). 

The base and top of the Dt shear zone cannot be established due to overprinting 

by the Cenozoic MMSZ and detachment of the base and lack of exposures defining the 

top of the shear zone. For that reason, interpretation relies on predictable foliation 

trajectory patterns for contractional and extensional regimes that develop during non­

coaxial deformation as discussed below (Figure 34). 

The Dt fabric is characterized by a flat-lying foliation (S J) sub-parallel to bedding 

and a generally north-northeast-trending penetrative elongation lineation (L1). However, 

the mere presence of flat-lying foliations is not necessarily definitive of extension or 

contraction since flat-lying foliations sub-parallel to a shear zone boundary can develop 

both during coaxial deformation and non-coaxial deformation. For instance, during non­

coaxial deformation, flat-lying foliations are developed in zones of high shear strains 

where the foliation rotates into parallelism with the shear zone. Altematively, flat-lying 

foliations may be produced during coaxial deformation, where a higher component of 

pure shear in which the shortening axes is perpendicular to the shear zone boundary 

producing layer perpendicular shortening. 

Assuming that the S1 foliation, which is parallel to bedding, represents the shear 

zone boundary, then an interpretation can be made as to whether the shear zone records 

extension or contraction (Simpson anp DePaor, 1993; Tikoff and Fossen, 1995). S1 is a 

flat-lying foliation that is sub-parallel to bedding regardless of vertical or lateral strain 
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gradients within the shear zone. The S1 foliation does not record the amount of high 

shear strains required to have rotated foliation towards parallelism with the shear zone 

boundary. Moreover, coaxial strain without a component of simple shear must be ruled 

out based on the asymmetric shear indicators within the shear zone, which will be 

discussed later on. Therefore, when comparing the orientation of the S 1 foliation to the 

previously mentioned models, the flat-lying foliation is more indicative of an extensional 

thinning shear zone than of a contractional shear zone. A flat-lying foliation (S 1) that is 

parallel or subparallel to bedding with a significant component of pure shear has been 

previously interpreted to record extension (Wallis, 1995; Camilleri, 1998; Davis and 

Maidens, 2003; Wells eta!., 2008). Studies have documented that within footwalls of 

large thrust sheets, collapse occurs in response to loading, producing flat-lying foliations 

(Camilleri, 1998; Wells et al., 2008). Therefore, the S1 foliation is interpreted to have 

developed within an extensional flow. 

In addition to foliations, lineations are good strain indicatos recording the X 

(maximum finite stretch) direction of the finite strain ellipsoid (Passchier and Trouw, 

2005). Within the S1 plane of the foliation lies a north-northeast-trending penetrative 

elongation lineation (L1) recorded by strain fringes, stretched fossils, and stretched 

minerals. Within the XY plane ofDt (SJ), D1 strain fringe fibers at the Rosebud area 

exhibit a clockwise rotation of infinitesimal strain. The variable trend of the elongation 

lineation (11) throughout the field areas and the clockwise rotation of infinitesimal strain 

in the XY plane provide information on the direction of extension and are consistent with 

N-S gravitational flow (e.g., Camilleri, 1998; Davis and Maidens, 2003), as opposed to 

kinematics governed byE-W plate convergence (Figure 35). Therefore, it is interpreted 
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that the flat-lying foliation and north-northeast trending elongation lineation records a 

component of vertical shortening accompanied by north-south elongation related to 

gravitational collapse within a extensional setting. 

Asymmetric shear sense indicators support the hypothesis that the D1 fabric 

records a top-to-the-north shearing event. Measurements of mesoscopic sense of shear 

indicators (asymmetric boudins, chert stringers and porphyroclasts) and microscopic 

shear sense indicators (strain fringes) within the D1 fabric consistently demonstrate a top­

to-the-north shear sense. Determination of sense-of-shear in a flat-lying shear zone 

cannot in itself distinguish between shortening and extension. However, since the Sevier 

fold-thrust belt is dominantly north trending, and has traditionally been interpreted to 

record east-directed shortening (Royse, 1993; Y onkee, 1997), top-to-the-north shear in 

the hinterland of anN-trending curvilinear orogen is most consistent with extensional 

rather than contractional deformation. 

Vorticity study 

Another criterion that was used to determine whether the D1 fabric records 

compression or extension is the vorticity of ductile flow. 

The vorticity study conducted on face-controlled strain fringes from Marble Peak 

show results ranging from simple to pure shear, recording a thinning shear zone, and thus 

extension. Previous strain studies indicate that a thinning shear zone behavior, while not 

diagnostic by itself, commonly occurs within extensional shear zones (Wallis eta!., 1992; 

Wells, 2001; Wells et al., 2005). lfthe D1 fabric was produced during contraction, angles 

greater than 45° would have resulted between S1 and the sutures within the strain fringes 

and would have recorded thickening in the shear zone. Vorticity results of the D1 strain 
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fringes indicate a non-coaxial strain path and that they were produced during layer 

parallel extension. Therefore, the vorticity study supports the hypothesis that the D1 

ductile fabric was produced during extension as opposed to contraction. 

Finite strain 

Finite strain results for D1 strain fringes indicate that they are heterogeneous both 

laterally and vertically within the allochthon, with values for extension ranging from 28% 

to 634%. Higher amounts of strain are present in the Rosebud area, which is the 

southernmost part of the field areas, and at one locality north at Marble Peak. As 

previously discussed for the D1 strain gradient, the question arises whether or not the 

lateral or vertical increase in strain is due to variable depths exposed within the shear 

zone or rather, are truly a mixture oflateral strain gradients at constant structural level. 

At the Marble Peak, North and South Hill localities, section is locally omitted 

along the Middle detachment. To a first order, Marble Peak comprises stratigraphically 

higher rocks than the Rosebud area. In addition, the D1 fabric in the Grouse Creek 

Mountains is evident in Archean to Ordovician rocks in areas unaffected by Cenozoic 

extension and is not developed in the Middle allochthon in the Raft River or Albion 

Mountains. Using these parameters, there appears to be a strain gradient both laterally 

and vertically within the shear zone, even though section is discontinuous across the field 

areas. Laterally across the field areas, strain magnitude increases southward into the 

Rosebud area. Vertically within the allochthon, a strain gradient is evident at Marble 

Peak, with increasing strain magnitude deeper into the shear zone in close proximity to 

the Middle detachment (Figure 36). It was difficult to determine whether a vertical strain 
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gradient was present at the Rosebud area due to the lack of exposure of the base of the 

Oquirrh Forruation and underlying units. 

Tectonic significance ofDt: orogen-parallel extension? 

Another principal research question addressed is the driving mechanisms and 

tectonic significance ofthe Dt orogen-parallel extensional event. Although widely 

recognized in the hinterlands of orogens (Ellis and Watkinson, 1987; Mancktelow, 1992; 

Murphy eta!., 2002; Davis and Maidens, 2003; Merschat eta!., 2005; Wells et al., 2008), 

the causes of orogen-parallel extension are not well understood. The end member causes 

proposed for driving orogen-parallel extension are: (I) transpression (Sanderson and 

Marchini, 1984; Ellis and Watkinson, 1987; Teyssier eta!., 1995; Fossen and Tikoff, 

1998); (2) arcuation (Marshak, 1988; Ferrill, 1991; Ferrill and Groshong, 1993); (3) 

collisional and lateral escape (Molnar and Tapponier, 1975; Frisch eta!., 1998; Seyferth 

and Henk, 2003; Rosenberg eta!., 2004); and (4) gravitational relaxation due to unequal 

crustal thickening (Coleman, 1996; Camilleri, 1998; Davis and Maidens, 2003; Wells et 

al., 2008). In order to determine the driving mechanisms responsible tor orogen-parallel 

extension within the hinterland of the Sevier orogen, the proposed tectonic models will be 

explored within the context of the well-constrained tectonic framework of the western 

United States. First, the tectonic framework of the western United States will be 

discussed. 

Tectonic framework 

The tectonic framework for the western United States, including plate boundary 

location and convergent rates and direction, are reasonably well constrained (Armstrong, 
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1968; Burchfiel, 1992; Decelles, 2004). The positions of the mid-Cretaceous North 

American plate boundary and its retroarc fold-thrust belt have been well established by 

numerous studies through palegeographic reconstructions (e.g., Armstrong, 1968; 

Burchfiel, 1992; Decelles, 2004). The area of proposed orogen-parallel extension 

occurred within mid-crustal levels of the retroarc setting of the Sevier orogen. Although 

intrabatholithic strike-slip faulting occurred within the Sierran arc as early as 105 Ma 

(Decelles, 2004), there is no evidence for strike-slip faults and related transpressional 

shear zones within the retroarc setting of the hinterland of the Sevier orogen. 

Furthermore, paleomagnetic reconstruction of the Farallon/Kula plates indicate 

dominantly orthogonal convergence with the North American plate during the proposed 

105 Ma orogen-parallel extension (Engebretson, 1985; Decelles, 2004). In addition, 

convergent rates were constant at 50 mm/yr during mid-Cretaceous time of orogen­

parallel extension and increased abruptly to 100 mm/yr at -I 00 Ma (MUller et al., 1997; 

Decelles, 2004) (Decelles Figure 4B showing rate). This well-constrained tectonic 

framework for the western United States provides an excellent opportunity to detern1ine 

the driving mechanisms and tectonic signit1cance for the Dt orogen-parallel extensional 

event. 

Transpression 

Orogen-parallel extension has been documented in transpressional settings 

resulting from oblique plate convergence. Ellis and Watkinson (1987) summarize several 

localities documenting orogen-parallel extension and attribute extension to oblique plate 

convergence during collision. These localities include the western Alps, the Variscides 

oflreland and France, the Himalaya, and the south-central Canadian Cordillera. These 
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settings are characterized by wide orogenic zones with major strike-slip faults subparallel 

to the plate boundary (Sanderson and Marchini, 1984; Teyssier et al., 1995; Fossen and 

Tikoff, 1998). These zones undergo wrench shear accompanied by horizontal shortening 

and vertical lengthening (Sanderson and Marchini, 1984; Fossen and Tikoff, 1998). 

Within these zones, the type of deformation that occurs is dependent on the angle of plate 

convergence relative to the plate margin. Vertical foliations and a vertical or horizontal 

lineation are predictable observations in transpressional settings (Fossen and Tikoft; 

1998). Vertical foliations are more conclusive criteria used for determining a 

transpressional setting than are stretching lineations (Fossen and Tikoff, 1998). 

This tectonic scenario can be ruled out based on the geometry and kinematics of 

the D1 shear zone, which are inconsistent with the predictions of high angle foliations and 

strike-slip faults in transpressional zones. The D1 shear zone is characterized by flat­

lying foliations parallel to lithological layering, and there are no documented strike-slip 

faults in the back arc setting. In addition, paleomagnetic reconstruction of the Farallon 

plate indicates dominantly orthogonal convergence with the North American plate during 

the mid-Cretaceous at the time of the D1 orogen-parallel extensional event, not oblique 

plate convergence (Engebretson, 1985; Decelles, 2004). Therefore, transpression was not 

the driving mechanism responsible tor the development ofthe Dt orogen-parallel 

extensional event. 

Arcuation 

Extension parallel to the strike of orogenic belts occurs in arcuate orogens, which 

can develop primary arcuation or undergo secondary arcuation. Primary arcs are fold­

thrust belts that are initially curved during their early development and secondary arcs are 
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initially straight fold-thrust belts that undergo arcuation. Examples of primmy arcs where 

orogen-parallel extension has been described are the forearc of Sumatra, the fold-thrust 

belt of the Himalayas, and the eastern Carpathians (McCaffrey, 1996; Zweigel et al., 

1998; McCaffrey and Nabelek, 1998). Examples of secondary arcs where orogen­

parallel extension has been described are the Cantabria-Asturias arc of southwestern 

Europe, and the northern Subalpine chain in France where the fold-thrust belt was 

initially straight and underwent oroclinal bending (Marshak, 1988; Ferrill and Groshong, 

1993). A study by Zweigel et al. (1998) documents< 20% orogen-parallel extension in 

the eastern Carpathians. It has been suggested that lower values of orogen-parallel 

extension are indicative of primary arc settings rather than secondary arc settings, 

through the use of sand wedge modeling (Zweigel, 1998). In addition to determining the 

magnitude of extension, the structural geometry of folds was documented as generally 

trending subparallel to the primary arc. 

Most orogenic belts around the world display map-view curvatures that have been 

the subject of a great deal of study. Several explanations for these curvatures include 

rigid plate indentor, rigid basement obstacle or a precursor basin geometry, change in 

sedimentary wedge thickness, changing thrust direction, and oroclinal bending, wbich is 

also known as secondary arcuation. 

The argument could be made that the curvature seen in the Cordilleran fold-thrust 

belt evolved during secondary arcuation, not primary arcuation, and if so, produced the 

D1 extensional fabric as seen in the Raft-River-Albion-Grouse Creek Mountains. 

Primary and secondary arcuation can be distinguished by characterizing the overall 

geometry, kinematic, distribution and magnitude of strain along an arcuate orogen. 
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Therefore, in order to determine whether or not the Dt fabric is the remnant of arcuation 

or developed during a primary arcuate setting, the overall geometry of the salients and re­

entrants in the Mesozoic frontal Sevier fold-thrust belt will be discussed. 

East of the study area, the Idaho-Wyoming-Utah salient spans northeastern Utah, 

western Wyoming and southeastern Idaho and is represented by arcuate folds and thrusts 

of the frontal belt of the east-verging Sevier fold-and-thrust belt (Decelles, 2004). The 

Idaho-Wyoming-Utah salient contains eight major thrust systems. The strain magnitudes 

observed parallel to the trend of the salient have been documented as recording along 

strike-parallel extension of less than I 0% (Dixon, 1982; Coogan and Royse, 1990; Mitra, 

1994; Apotria, 1995; Paulsen and Marshak, 1999; Yankee, 2005). Total shortening 

across the salient has been recorded as high as I 00 kilometers (Coogan and Royse, 1990). 

In particular, a study by Apotria (1995) documented fold axis trend sub-parallel to the arc 

in both the hanging wall and footwall of the Idaho-Wyoming-Utah salient. In addition, 

principal shortening axes determined by styolite measurements and calcite strains 

provided evidence of sho1tening directions, regional transportation, and counter­

clockwise rotation resulting from oblique ramps (Apotria, 1995). 

If the present -232 mile (arcuate length) Idaho-Wyoming-Utah salient was 

initially straight (-200 miles from mapview endpoints) and underwent arcuation, the 

magnitude of line parallel strain would only be -16%. Finite strain magnitudes recorded 

from the D1 fibers are at a much higher magnitude of -227% and are not compatible with 

the low estimate based on radius of curvature and low documented values of 10% 

(Yankee, 2005). Furthennore, since analog modeling of orogen-parallel extension in 

sand wedge models determines a much higher value of strain from arcuation than from 
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primary arcs, the strain magnitude of the Idaho-Wyoming-Utah salient is not compatible 

with arcuation. Therefore, orogen-parallel extension recorded by the D1 fabric could not 

have resulted from arcuation of the Idaho-Wyoming-Utah salient. 

Collision and lateral escape 

Synconvergent orogen-parallel extension occurs in continental collision zones 

where intense crustal deformation leads to the lateral flow of orogenic material; this is 

known as lateral escape. Modeling of lateral extrusion reveals the strain distribution 

within the internal structure of the orogen and highlights the areas where lateral extrusion 

is significant in the lower part of the crust (Seyferth and Henk, 2003). Localization of 

lateral extrusion is due to the lack of a rigid block impeding extension. Several studies 

document the existence of lateral extrusion within active collisional zones. The most 

prominent example of lateral extrusion is in Southeast Asia where the Indian and 

Eurasian plates converge, producing the largest collisional zone and orogen in the world. 

A study by Molnar and Tapponier (1975) from this area estimates a 1500 km amount of 

displacement from lateral extrusion. Another example oflateral extmsion is in the 

Eastern Alps and Carpathians, where 170 km of displacement from lateral extrusion have 

been documented (Frisch et a!., 1998). An additional example of lateral extrusion caused 

by oblique collision is the Tauern Window ofthe Eastern Alps (Rosenberg et al., 2004). 

Rosenberg et al., (2004) modeled the effects of an oblique indentor and observed the 

strain patterns produced during this type of motion. 

It is well documented that during the Late Mesozoic, the Sevier orogen was 

developed during a non-collisional plate margin setting (Burchfiel eta!., 1992; Decelles, 

2004). There is no documentation of a rigid plate collision or accretionary events during 
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the Mesozoic Sevier orogen or the western United States that could have resulted in 

extrusion. Consequently, the D1 extensional fabric could not be the product of lateral 

extension formed as the result of an indenter. 

Gravitational relaxation 

Gravitational collapse is defined as the gravity driven ductile flow that effectively 

reduces lateral contrasts in gravitational potential energy (Rey et a!., 200 I). During 

orogenesis resulting from plate convergence, gravitational potential energy is stored in 

the isostatically compensated overthickened crust and can be released laterally by 

extension from areas of high potential energy to areas oflow potential energy (Platt and 

England, 1993; Rey eta!., 2001; Vanderhaeghe and Teyssier, 2001 ). The overthickened 

crust produced during orogenesis through time increases the geothermal gradient (thermal 

relaxation) causing gravitational flow. This fundamental process can result in orogen­

parallel extension in the interior of orogens during mountain building processes 

(Coleman, 1996; Davis and Maidens, 2003; Wells et al., 1997; Wells eta!., 2008). 

Camilleri ( 1998) investigated the effects of gravitational relaxation in the footwall 

of the Mesozoic Windermere thrust sheet from the Sevier hinterland in northeast Nevada. 

The results of that study suggested that with a sufficient amount of loading from thrust 

sheets, the rocks in the footwall weaken due to thermal relaxation and ultimately collapse 

in gravitational flow. Barrovian-style metamorphic fabrics, S and SL tectonites formed 

during prograde metamorphism. During thermal relaxation and prograde metamorphism, 

the rocks in the footwall underwent primarily coaxial deformation that produced 

foliations parallel or sub-parallel to bedding (Camilleri, 1998). Moreover, Camilleri 
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(1998) documented a variability of stretching lineation regionally, with no evidence of 

rotation of lineation after their formation. 

A study by Davis and Maidens (2003) of the Eastern Goldfields Province in 

Western Australia documents orogen-parallel extension as the result of gravitational 

collapse during orogenesis. In this situation, thermal weakening of the crust was 

associated with granite emplacement and not from overthickening of the crust; however, 

the same basic principle produced gravitational collapse (Davis and Maidens, 2003). 

This study also documented flat-lying foliations and lineations that recorded tectonic 

transport produced during gravitational collapse (Davis and Maidens, 2003). 

Gravitational relaxation due to unequal crustal thickening appears to be the most 

logical tectonic scenario producing the D1 fabric. Flat-lying foliations sub-parallel to 

bedding are more consistent with gravitational flow than with a transpressional setting 

(Camilleri, 1998; Davis and Maidens, 2003; Wells et al., 2008). Furthermore, the 

variable trends ofthe L1 lineations across the Grouse Creek Mountains are also more 

consistent with gravitational flow responding to differences in potential energy gradients, 

than from tectonically induced shearing (e.g., thrust faults) parallel to the orogen 

(Camilleri, 1998; Davis and Maidens, 2003). The D1 fabric, S1 and L1 are interpreted to 

have developed from thermal relaxation of the overthickened crust in the footwall of 

coeval Mesozoic thrusts within the Sevier fold-thrust belt. For instance, multiple motions 

on the Williard thrust, one ofthe major thrust sheets within the Idaho-Wyoming-Utah 

salient, carried thick Proterozoic and Paleozoic rocks eastward between ~ 120-110 Ma 

and -115-100 Ma (Decelles, 2004). Another thrust fault known as the Basin-Elba fault, 

the remnant of a once areally extensive thrust nappe, is located in the Northern Albion 
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Mountains at Mount Harrison (Miller, 1980; Saltzer and Hodges, 1988; Wells et al., 

1997). This thrust nappe is thought to be responsible for much of the thrust burial within 

the Raft-River-Albion-Grouse Creek Mountains and was later removed by the Middle 

detachment fault (Wells et al., 1997; Harris eta!., 2007). Therefore, the driving 

mechanism responsible for the development of the top-to-the north D1 orogen-parallel 

fabric is interpreted to be the result of gravitational relaxation within the footwall of the 

overlying hinterland Mesozoic thrusts. The overall tectonic framework of the western 

United States, along with the strain geometry, kinematics, and vorticity of the shear zone 

of the D1 ductile event, provides the evidence supporting the hypothesis that the D1 fabric 

records an episode of mid-Cretaceous synconvergent orogen-parallel extension within the 

hinterland of the Sevier orogen (Figure 37). 

D2: contraction or extension? 

Alternating contractional and extensional events in orogenic belts play a 

significant role in dynamically adjusting crustal thickeness during regional contraction. 

The D1 event is interpreted to play an integral part in this dynamic adjustment and to have 

resulted from focused crustal thickening leading to differences in gravitational potential 

energy along strike, which further lead to extension parallel to the orogen. The D2 event 

within the field areas is a previously undocumented deformational event in the 

Pennsylvanian-Permian Oquirrh Formation of the Grouse Creek Mountains and 

overprints the earlier D1 fabric. D2, as demonstrated in this thesis, is characterized by an 

axial planar cleavage, S2, associated with east-verging north-northeast-trending large­

scale folds at Marble Peak, South Hill and the Rosebud area. 
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The principal research question regarding the D2 deformation to be addressed is 

whether the D2 event in the Grouse Creek Mountains records contraction or extension. 

Distinguishing contraction from extension is important in that it will allow the tectonic 

significance of the deformational event to be established, and furthermore, will allow 

some relative temporal constraints to be made through correlation of the kinematic 

sequence determined in the field area to dated kinematic sequences determined elsewhere 

in the RAG (Wells, 1997; Harris eta!., 2007). 

In order to establish whether the event is caused by contraction or extension, 

interpretation of the kinematics of the D2 deformation and development of the east­

verging folds and associated S2 and D2 fibrous strain fringes is necessary. Proper 

interpretation of these folds is of utmost importance for the structural and tectonic 

analyses. Previous studies of the folds pre.sent at South Hill and the Rosebud area have 

interpreted them to have resulted from eastward tectonic thrust transport between 20 to 

12 Ma (Compton eta!., 1977) and from emplacement of the Oligocene Red Butte stocks 

(Todd, 1980). The argument could be made that the folds developed during crustal 

shortening or developed during extension. Recumbent folds, such as the one seen at 

South Hill, have been documented in numerous mountain belts, and while most are 

interpreted as recording contraction, there is an increasing recognition that such folds can 

develop during extension (Malavieille, 1987; Froitzheim, 1992; Mancktelow, 1992; 

Janecke et al., 1998). Synextensional folds, such as sheath folds, are not uncommon in 

progressive simple shear regimes within orogenic belts, and most have hinge lines 

subparallel to the extension direction (Cobbold and Quinquis, 1980; Lacassin and 

Mattauer, 1985; Malavieille, 1987; Ghosh et. al, 1999; Alsop and Holdsworth, 2004; 
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Alsop and Holdsworth, 2006). Sheath folds are thought to initially form at high angles to 

the shear direction and to progressively rotate up to 90° during progressive non-coaxial 

shear into orientations with hinge lines parallel to the direction of transport (Cobbold and 

Quinquis, 1980; Lacassin and Mattauer, 1985; Malavieille, 1987; Ghosh et. a!, 1999; 

Alsop and Holdsworth, 2004; Alsop and Holdsworth, 2006). Malavieille (1987) 

documented kilometer scale sheath folds and "a" type folds within the Raft River 

Mountains and attributes formation to top-to-the-east noncoaxial strain across an inclined 

surface. Additionally, synextensional recumbent folds have been interpreted to develop 

where initially steep layering is subjected to horizontal extension and subvertical 

shortening (Froitzheim, 1992). More commonly, extensional folds are closely related to 

faults and have been attributed to eight common mechanisms. These mechanisms are: (1) 

isostatic folds, (2) fault-bend folds, (3) fault-propagation folds, ( 4) fault-drag folds, (5) 

constrictional folds, (6) displacement gradient folds, (7) transtensional folds and (8) 

compound folds (Janecke et al., 1998). 

Alternatively, and most commonly, these folds and associated fabrics could 

record subhorizontal shortening related to crustal shortening as previously interpreted by 

Compton (1972) and Todd (1980), although of a significantly older age. Recumbent 

folds have been recognized throughout the Raft River-Albion-Grouse Creek Mountains 

by numerous authors (Compton, 1972; Todd, 1980; Miller, 1980; Malavielle, 1987; 

Wells, 1997). In particular, a study by Wells (1997) interprets recumbent folds from the 

Raft River Mountains as developing during a contractional event known as D3, and 

assigns an age of 60-45 Ma based on a structural sequence relative to dated structural 

events. Furthermore, recumbent folding of the Mahogany Peaks fault in the footwall of 
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the Basin-Elba fault at Mount Harrison in the northern Albion Mountains may be 

associated with a period of pressure increase evident in P~ T paths constructed from 

growth zoned garnets (Hoisch et al., 2002; Harris, 2008). 

To test these alternative hypotheses, the strain geometry, kinematics, and vorticity 

of the D2 folds and associated fabric will be discussed below. 

D2 geometry and kinematics 

Foliations are used in this study to determine the shear sense and allow some 

predictions of the geometry of the 0 2 structures. A relatively flat-lying axial planar 

cleavage, S2, within east-verging north-northeast trending large-scale folds at Marble 

Peak, South Hill, and the Rosebud area, distinguishes D2• Orientations of axial planar 

cleavages show a consistent geometrical relationship with axial planes of folds, can be 

used to trace the axial plane, and provide the orientation and geometry of the folds. 

Marble Peak exposes a limb of a large-scale east-verging fold with S2 axial planar 

cleavages striking predominantly to the north-northeast and to the northwest (mean 

foliation of052', 18SE"), and east and west dips ranging from 24° to 68°. At South Hill, 

within a large-scale east-verging recumbent anticline, S2 strikes are predominantly to the 

southwest (mean foliation of 219°' 1 OS0
), with dominantly westward dips ranging from 

02° to 32°. At Rosebud, S2 is within a large-scale east-verging fold displaying strikes 

predominantly to the west (mean foliation of265°, 06S0
) and dips ranging from 02° to 

90°. The average trend and plunge of fold axes at Marble Peak, South Hill, and Rosebud 

is (184°, 06°), (001 ', 11 °) and (213', 01 ')respectively. Marble Peak, South Hill, and the 

Rosebud area exhibit relatively flat-lying Sz mean foliations, indicating that the folds are 

recumbent. Based on the mean orientations of S2 and the trend and plunge of the fold 
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axes from Marble Peak, South Hill, and Rosebud, these folds are correlated to the same 

D2 contractional event. 

The obliquity between Sz and S1 and development of S2 is dependent on the 

lithology and position about folds, and its development is heterogeneous. For instance, 

within the Oquirrh Formation, S2 is at a higher angle to S1 within the competent 

sandstone lithology and at lower angles in the less competent siltstone and marble 

lithology. Sz is interpreted to be a pressure solution cleavage, and is more pronounced in 

the southern parts of the field areas at North and South Hill and the Rosebud area. S2 is 

weakly developed throughout the Oquirrh Formation at Marble Peak, except for one 

locality north of Marble Peak where S2 is strongly developed and overprints the D1 

fabric. At this location, Sz is at a high angle to S1 associated with a well developed 

crenulation cleavage. 

The overall orientation of foliations is used to determine the shear sense and 

allows some predictions of the geometry of the D2 event. Previously the predictable 

patterns of foliations for contractional and extensional settings were presented in the D1 

discussion. In contractional settings where overall thickening of the shear zone occurs, 

foliation patterns are at higher angles than in hetereogenous simple shear regimes. In 

extensional settings, foliations are at a much lower angle. Thickening shear zones 

undergo layer parallel shortening and simple shear producing higher angle foliations at 

the base of the shear zone that rotate to nearly vertical at the top, where the component of 

simple shear progressively lessens upwards (Figure 34b). Therefore, the higher angle Sz 

foliations, in particular in the lower strained rocks at Marble Peak, are more consistent 

with a contractional setting indicating vertical thickening. 
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In addition to foliations, lineations were used to indicate strain recording the X 

(maximum finite stretch) direction of finite strain ellipsoid (Passchier and Trouw, 2005). 

Within the Sz plane offoliation, Dz fibrous strain fringes are developed, thus indicating 

growth of strain fringes synchronous with the folding events. Within the XY plane of S2, 

the D2 fibers exhibit a counter-clockwise curvature from northeast-southwest (204° to 

240°) within the older distal parts to an orientation of northwest-southeast (147°-1!3°) in 

the proximal younger fibers. The distal (older) parts of the Dz fibers are sub-parallel to 

the locally developed fold hingeline at Rosebud (215°) and progressively rotate 

perpendicular (147° -113°) to the fold hinge in the proximal (younger) parts. The 

counter-clockwise rotation of the infinitesimal strain in the XY plane of the Dz fibers 

provides information on the progressive change in the direction of maximum incremental 

stretch or alternatively, the rotation or rocks within a strain field of constant orientation. 

Documentation of rotation of stretching lineations within the XY axial planar cleavage in 

other studies has been attributed to changing shear direction produced by nappe transport 

(Dietrich and Durney, 1986). The tectonic significance of the rotational component 

recorded by the D2 strain fringes will be discussed later on. 

Shear sense indicators 

Measurements of microscopic fibrous strain fringes (D2) throughout the field 

areas consistently record a component of top-to-the-south sense of shear. That is, the 

shear direction and sense varies from top-to-the-southwest during early D2 to top-to-the 

southeast during late D2, as the orientation ofthe fiber stretching direction changed. The 

degree ofnon-coaxiality and vorticity will be discussed below. 
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Finite and incremental strain results 

Finite strain results of Dz strain fringes are heterogeneous both laterally and 

vertically within the Oquirrh Formation with finite extensions ranging from 17% to 

511 %. Higher strain magnitudes are present in the southern extent of the field area 

(Rosebud). Section is locally omitted along the Middle detachment at Marble Peak and 

North and South Hill. Samples from the Rosebud area are within the pyrite bearing 

sandstone unit of the Oquirrh Formation just above the fossiliferous limestone unit that 

forms the base. The fossiliferous basal unit is missing at Marble Peak and is locally 

exposed at South Hill. Results from finite strain measurements in conjunction with map 

data indicate that the D2 strain fringes display a lateral strain gradient, increasing in 

magnitude toward the south. Although not very well represented, finite strain magnitudes 

plotted against structural level indicate that there is a vertical strain gradient as well. The 

Middle detachment introduces discrepancies due to the fact that at Marble Peak, it 

truncates the stratigraphic and inferred structural section at shallower levels whereas at 

Rosebud, deeper levels are preserved, making a vertical gradient from a single locality 

difficult to determine. However, if Marble Peak represents the upper part of the section 

and Rosebud is the lower part of the section, then a vertical strain gradient is evident. 

Therefore, both a vertieal strain gradient and a lateral strain gradient increasing in 

magnitude to the south are present throughout the field areas. 

Incremental strain results from displacement-controlled fibrous strain fringes (D2) 

document the vorticity of the D2 ductile flow. At Marble Peak, the displacement­

controlled D2 fibers exhibit a lesser magnitude and curvature of fibers and CISH diagrams 

were not used. Strain fringes at the Rosebud area exhibit higher amounts of strain 
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magnitude and curvature of fibers, theretore allowing a more complete analysis. Results 

of incremental strains were plotted on Cumulative Incremental Strain History diagrams to 

exhibit the degree on non-coaxiality of the D2 fibers. Based on the slopes of the CISH 

diagrams from the Rosebud samples, it is evident that the D2 fibers record a southward 

non-coaxial flow with an average (horizontal axis) rotation of -60°. In addition, the 

youngest parts ofthe Dz fibers are inclined 65" to the cleavage plane. These fibers record 

the maximum instantaneous stretch direction, which makes the minimum instantaneous 

stretch direction (instantaneous shortening) oriented at a subhorizontal angle. This 

relationship is more indicative of contraction as opposed to extension, therefore 

indicating that shortening produced the D2 folds and fabric. 

Folds 

Are the east-verging Dz folds contractional or extensional? The D2 geometry, 

kinematics, and vorticity were previously established; now the discussion focuses on 

whether the Dz folds formed from contractional (Compton, 1972; Todd, 1980) or 

extensional processes. The observed curvature of the strain fringes within the XY plane 

is opposite to what would be expected during hinge rotation of an extensional sheath fold. 

Hinge lines of a sheath fold typically initiate perpendicular to the flow direction, and 

rotate into parallelism with the direction of the extensional flow; this would predict strain 

fringe lineations to initiate perpendicular to fold hinge lines and to progressively rotate 

into parallelism with the hinge lines. The opposite relationship is seen in the field area, 

with strain fringe lineations initially developing parallel to the hinge line ofthe fold and 

progressively rotating to an orientation perpendicular to the hinge lines, therefore 

recording the opposite sense of curvature to that required for development of the sheath 
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fold. Moreover, there is no evidence of steeply dipping strata following the D1 event to 

produce extensional folds such as the folds proposed by Froitzheim ( 1992). The other 

possibility for the development of the folds during extension is drag folding from the 

Middle detachment or related normal faults. However, the Middle detachment truncates 

various structural levels across the field areas and within the folds, thus indicating that 

the folds developed prior to the Middle detachment. The alternative is that these folds 

record subhorizontal shortening related to crustal shortening as previously interpreted by 

Compton (1972) and Wells (1997). The geometry of the folds including hinge lines, and 

the kinematics are consistent with subhorizontal shortening, and these types of 

contractional folds are well recognized in the internal parts of most fold-thrust belts. 

Therefore, it is interpreted that the folds present at Marble Peak, South Hill, and the 

Rosebud area are related to contraction and produced during crustal thickening within the 

orogenic wedge. 

Relative age of D2 

An absolute age of the D2 folds and associated fabric was not directly established 

due to the lack of suitable minerals for isotopic dating. However, a relative age can be 

established based on overprinting and cross cutting relationships of older and younger 

deformational fabrics. Moreover, interpreting the folds as recording a contractional event 

allows relative time constraints to be determined through conelation to dated kinematic 

sequences elsewhere in the core complex. Age constraints for D2 are bracketed between 

105 Ma and Eocene-Oligocene for the following reasons: (1) Dz structures deform the 

105 Ma D1 fabric, and thus are younger; and (2) D2 event predates the development of the 
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Eocene-Oligocene Middle Mountain shear zone and Middle detachment. Nevertheless, 

further tightening of the age constraints can be obtained by correlating similar kinematics 

from other parts of the RAG. 

Based on the previously mentioned observations of cross cutting relationships and 

documented contractional events, two time intervals for 0 2 shortening are possible: one at 

105-87 Ma, and the other between 68-45 Ma (Figure 38). The kinematic history of the 

hinterland between I 05-87 Ma is unclear with an incomplete and sparse record of Late 

Cretaceous shortening. An event of -87 Ma thmst burial of metamorphic rocks from the 

Basin Creek area, determined by p. T paths derived from growth-zoned garnet, has been 

interpreted to record burial by thrust-sense motion of the Basin-Elba fault during 

reactivation (Harris eta!., 2007; Urihe-Cmz, unpublished) (Figure 38). Also within the 

hinterland is the top-to-the-southeast Windermere thmst (153 to 84 Ma), which was 

responsible for 30 km of crustal thickening and 69 km of shortening, and the 

Independence thrust responsible for -5 km of cmstal shortening (84 to 75 Ma) (Camilleri 

and Chamberlain, 1997) (Figure 38). Further east, within the Sevier foreland fold-thmst 

belt, the Idaho-Wyoming-Utah salient consists of eight major thrust faults with motions 

younging to the east which span the time between -153 Ma and -52 Ma (Armstrong and 

Oriel, 1965; Royse eta!., 1975; Dixon, 1982; Lamerson, 1982; Coogan, 1992; Hudec, 

1992; Camilleri and Chamberlain, !997; Decelles, 2004) and also could be responsible 

for the D2 contractional event. These faults include: Paris-Williard (Latest Jurassic-Early 

Cretaceous); Meade and Crawford (Middle Cretaceous); Absaroka (middle Late 

Cretaceous); Darby-Hogsback (Paleocene to Early Eocene); and Prospect (Early Eocene). 

Even though a dynamic relationship in the orogenic wedge exists between the foreland 

66 



thrust faults and the hinterland metamorphic rocks, distinguishing which thrust fault is 

related to the D2 event is not possible. As a result, timing of the D2 could not be closely 

correlated to known motions along foreland thrust faults. Because, there is no direct 

evidence linking the D2 structures to an individual thrust fault within the foreland fold 

thrust belt these thrust faults exposed in the eastern foreland fold-thrust belt can be 

discarded and attention is focused on the RAG core complex. 

Kilometer scale recumbent folds from the Raft River Mountains are bracketed 

between 68-45 Ma, and are interpreted as recording a contractional event (Figure 38). 

These recumbent folds deform the Mahogany Peaks fault (bracketed between 60 and 90 

Ma by muscovite argon cooling ages) and are overprinted by the Eocene-Oligocene 

Middle Mountain shear zone (Wells, 1997; Wells eta!., 1998) (Figure 38). The 
I 

Mahogany Peaks fault is exposed within the footwall of the Middle detachment fault at 

Marble Peak and is deformed by the Oligo-Eocene MMSZ. The time bracket (68-45 Ma) 

for shortening may be inferred from ages of monazite inclusions in garnet that vary in age 

from core to rim, and for which the garnets grew during compression, as determined by 

P-T path modeling (Hoisch eta!., 2002). In addition, the recumbent folds are in the upper 

plate ofthe Middle detachment and there is no evidence of the detachment being folded. 

On the other hand, correlating the D2 event to the- 87 Ma Basin-Elba thrust fault could 

also be a possibility. Therefore, there are two permissive timeframes for the D2 event, 

based on our understanding of the ages of shortening in the RAG; one is related to the 

Basin-Elba thrust (87 Ma) or the waning stages of the Windermere thrust (153-84 Ma) 

and the Independence thrust (84-75 Ma) during crustal shortening, and the other is related 

to the D3 recumbent folding event (68-45 Ma) from the Raft River Mountains and 
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proposed reactivation of the Basin-Elba fault (Figure 38). Both permissive conelations 

are significantly older than the time frame of20-12 Ma as proposed by Compton (1977). 

Tectonic implications for Dz 

Strain geometry, kinematics, relative age, and vorticity of the D2 folds and 

associated fabric all suggest that the Dz event is of contractional origin, most probably at 

-·87 Ma or during -68 to 45 Ma (Figure 38). Evidence of a rotation about the vertical Z 

axis of finite strain, as evident by lineation curvature within the XY plane (S2 cleavage) 

indicates one oftwo possibilities: (I) counter-clockwise rotation of the paleostress 

direction; or (2) clockwise rotation of the crustal rocks. Comparing the results to the 

regional tectonics of the area allows some discrimination between these two hypotheses. 

The counter-clockwise curvature recorded by the D2 fibers could be the result of a 

rotation of a paleostress direction. In order to test this interpretation, the possibilities of 

changes in paleostress orientation within the hinterland during the proposed timeframe of 

the D2 event will be discussed. Bird (2002) conducted an intensive compilation of 369 

paleostress direction indicators from geologic literature of the western United States for 

the time frame of 85 Ma to present. During the Sevier orogeny at 85 Ma, horizontal 

compression azimuths of045°-067° recorded the average tectonic transport of the orogen 

(Bird, 2002). At the waning stages of the Sevier and the onset of the Laramide orogeny, 

-64 Ma, horizontal compression azimuths were -048°, approximately parallel to the 

relative direction of the Farallon plate with North America (Engebretson et al., 1985; 

Bird, 2002). During the Eocene, -50 Ma, within 50% uncertainty, horizontal 

compression azimuths were -083° (Bird, 2002). A reversal from a horizontal 
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compressional stress to a horizontal tensional stress developed around 33 Ma (Bird, 

2002). 

As discussed previously, the D2 event is either -87 Ma or bracketed between 68-

45 Ma, based on two possible correlations to dated contractional events (Figure 38). 

Extension directions exhibited by the D2 strain fringes within the XY plane record a 

counter-clockwise rotation from 215° to 131°. Extension directions recorded by the 

earlier fibers of the strain fringes are parallel to the horizontal compressional axes, 

determined by the Bird study (2002). The older parts of the strain fringe fibers at 215° 

could have resulted from the 87 Ma paleostress direction of045°-067°. However, the 

younger parts of the fibers with an orientation of 131 o could not have resulted from the 

64 Ma paleostress direction of 48°. It is possible that the paleostress directions could 

have contributed to the vertical axis rotation of the stress field, but with the limited 

amount of samples collected over a small area; this does not make a compelling 

argument. In addition, the paleostress directions determined by Bird (2002) record a 

clockwise rotation not a counter-clockwise rotation as seen by this study. Therefore, the 

counter-clockwise vertical axis rotation recorded by the strain fringes is unlikely to have 

resulted from the clockwise rotation of the paleostress direction as documented by Bird 

(2002). 

Alternatively, counter-clockwise curvature of the D2 fibrous strain fringes within 

the XY plane could have resulted from a clockwise vertical axis rotation of the crustal 

rocks. As previously discussed, the D2 fibrous strain fringes grew synchronously with 

the development of the Dz folds and the possible ages for the Dz event is -87 Ma or 68-

45 Ma. Therefore, the counter-clockwise curvature recorded by the strain fringes will be 
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discussed in the context a crustal rocks undergoing vertical axis rotation within the 

tectonic setting. Because the progression in stretching direction is from parallel to 

perpendicular to hinge lines, the opposite relationship to that predicted by the sheath fold 

model (as discussed above), rotation during sheath fold development is discounted. 

Vertical axis rotation is a common and important component of crustal 

deformation. A well known example of vertical axis rotation is the Western Transverse 

Ranges of California, where vertical axis rotation is associated with wrench tectonics 

(McKenzie and Jackson, 1983; Lamb, 1994; Onderdonk, 2007). The Western Transverse 

Range has rotated 90° clockwise since 18 Ma, indicated by paleomagnetic data and 

geologic evidence (Onderdonk, 2007). However, this vertical axis rotation occurred 

within a transtorm boundary between the North American and Pacific plates, whereas the 

vertical axis rotation discussed in this study is within a fold-thrust belt. Several studies 

document vertical axis of rotation within thrust sheets from salients of the Sevier fold-

thrust belt (Apotria, 1995; Conder eta!., 2003; Kwon and Mitra, 2004). The primary 

control for the development of the arcuate shape of a salient during vertical axis rotation 

has been attributed to the basin geometry (Apotria, 1995; Conder eta!., 2003; Kwon and 

Mitra, 2004). In particular, a study by Conder et al. (2003) analyzed vertical axis rotation 

from paleomagnetic data within the Charleston-Nebo salient in Utah and attributed it 

divergent flow. The divergent flow model for thrust-salient development characterizes 

the overall stress distribution along the salient and predicts opposite sense of rotation 

along both lateral margins ofthe salient (Laubscher, 1972). Results from Conder et al. 

(2003), in conjunction with the divergent flow model (Laubscher, 1972; Marshak et al., 

1992), indicate counter-clockwise rotation in the northern parts and clockwise rotation in 
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the southern parts of the salient. If the kinematic modeling of this salient is correct, and 

the divergent model is valid, then clockwise rotation would be predicted in northwest 

Utah. 

The Grouse Creek Mountains lie west of the central to southern portion of the 

Idaho-Wyoming-Utah-Salient. During the time interval of -93 Ma and -89 Ma, the 

Paris-Mead-Willard thrust system was active at the latitude of the RAG and initial 

development of the salient is suggested (Decelles, 2004). The overall trend of fold axes 

at Marble Peak and South Hill is north-south, and in the Rosebud area is north-east. If 

the trend of the fold axes at Marble Peak and South Hill represents the frontal straight 

margin of the divergent flow model, and the fold trend at Rosebud represents the 

southern portion, then the counter-clockwise curvature observed by the D2 strain fringes 

is consistent with clockwise rotation and the divergent flow model. Therefore, the 

development and forward movement of the Idaho-Wyoming-Utah salient could have 

influenced the development ofthe D2 event, causing clockwise vertical axis rotation, as 

recorded by the strain fringes, of the folds during eastward-directed thrusting. 
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CHAPTER6 

CONCLUSIONS 

The earliest ductile fabric (D1) in the Grouse Creek Mountains of northwest Utah 

affects Archean to Permian rocks and records an episode of mid-Cretaceous 

synconvergent orogen-parallel extension in the hinterland of the Sevier orogen. Fibrous 

strain fringes from the Oquirrh Formation within the Middle allochthon provide a rare 

opportunity to establish the kinematics and vorticity of this top-to-the-north extensional 

flow. In addition, a second deformational event (D2), also recorded by fibrous strain 

fringe growth, shows kinematics oftop-to-the-southeast shearing and is interpreted as a 

contractional event. 

The following conclusions are drawn for D1: 

(1) Kinematic and vorticity studies within the D1 shear zone consistently demonstrate 

top-to-the-north noncoaxial extensional flow with a significant component of 

vertical shortening. 

(2) S1 in the study areas is a flat-lying foliation parallel to bedding with a north­

northeast trending elongation lineation. 

(3) Finite strain magnitudes are heterogeneous and range from 28% to 634%, 

increasing vertically and laterally towards the southern extent of the field areas 

within the Oquirrh Formation. 

( 4) Rosebud D 1 strain fringes exhibit a clockwise curvature within the S1 plane. 
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(5) The 01 fabric records an extensional event, as opposed to earlier interpretations 

of01 as recording contraction. 

(6) 01 fabric records an episode of mid-Cretaceous synconvergent orogen-parallel 

extension related to gravitational collapse, within the hinterland of the Sevier 

orogen. 

The following conclusions are drawn for 02: 

(1) 02 fabric and structures (folds) record a contractional event and overprint the 

~ 105 Ma 01 event. 

(2) The Oz folds at Marble Peak and South Hill trend north, whereas the folds at the 

furthest extent of the field area from Rosebud trend north-northeast. 

(3) Kinematic and vorticity studies ofOz demonstrate top-to-the-south noncoaxial 

flow with a component of horizontal shortening. 

( 4) 0 2 fibrous strain fringes evolved in a changing displacement tleld from top-to­

the-southwest during early 02 to top-to-the-southeast guring late Oz. 

(5) S2 in the study areas is an axial planar cleavage associated with recumbent folds 

that developed by pressure solution, and is most pronounced at the Rosebud area. 

(6) The absolute timing for 02, based on correlation to other shortening events in the 

RAG, permits 0 2 to be either ~87 Ma or between 68-45 Ma. 

(7) Finite strain magnitudes ranging from 17% to 511% increase laterally and 

vertically towards the southern extent of the tield areas within the Oquirrh 

Formation. 
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Figure 1. Generalized geologic map of Raft River-Albion-Grouse Creek Mountains 
(RAG) showing distribution of the L1 stretching lineation. Field areas (in boxes) are at 
Marble Peak, North and South Hill, and Rosebud area. Stereoplots showing L1 from 
Compton (1972, 1975), Miller (1980), Todd (1980), Sheely (2002), and Wells (1997). 
Inset, shows location map of Raft River-Albion-Grouse Creek metamorphic core 
complex, within the hinterland of the Sevier fold-thrust belt (Decelles, 2004). Lower 
grade metamorphic rocks shown in stippled pattern include: BP, Black Pine; PM, 
Pequop; higher grade metamorphic rocks shown in wavy line pattern include: R, Ruby; 
WH, Wood Hills; SR, Snake Range, and RAG. Traces of major thrusts of the fold-thrust 
belt include: W, Willard; P, Paris; M, Meade; C, Crawford; A, Absaroka; H, Hogsback. 
WC, Wasatch basement culmination. Arrows indicate estimates for thrust transport 
direction from Royse (1993) and Yonkee (1997). Inferred positions of Precambrian 
crustal boundary shown by light grey dashed line modified Lush et al. (1988), and by 
grey solid line after Nelson et a!. (2002), modified from Zartman (1974). Early Paleozoic 
shelf-slope break from Miller et al. (1991). 
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Figure 2. Tectonostratigraphic column of Archean to Miocene rocks in the Grouse Creek 
Mountains. Archean to Pennsylvanian-Pennian rocks are present within the three field 
areas. The primary focus of this study was the Pennsylvanian-Permian Oquirrh 
Formation within the Middle allochthon. Modified from Wells et al. (1998). 
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Figure 3. Geologic map of the Marble Peak klippe, showing the distribution and 
orientation of S 1. Sz, L1. Lrnm. Archean to Mississippian rocks show overprint of MMSZ; 
Pennsylvanian-Permian rocks preserve D1. Stereoplot shows lineations in red, poles to S1 
(black dots), S2 axial cleavages (blue lines), and hinge line of fold (red box with black 
outline). Dashed grey line marks outline of map area. Contour intervals are 40 feet. 
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Figure 4. Photographs A-E showing Lt elongation lineation in Oquirrh Formation. A, 
strain fringe elongation lineation at Rosebud. Band C, stretched crinoids at Rosebud. D, 
stretched brachiopods at Marble Peak. E, mineral stretching lineation at Marble Peak. F, 
relationship between S1 and S2 at Marble Peak, facing east. Pencil and hammer for scale. 
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Figure 5. Geologic map of North and South Hill, showing distribution and orientation of 
S~, Sz, L~, Lmm· Pennsylvanian-Permian rocks preserve D1 at South Hill, overprinted by 
Cenozoic deformation at North Hill. A, stereoplot of North Hill showing lineations in 
red, poles to S 1 in black dots and S2 axial planar cleavages with blue lines. B, stereoplot 
of South Hill showing lineations in red, poles to S1 in black dots and S2 axial planar 
cleavages with blue lines, and hinge line of overturned anticline. Contour intervals are 20 
feet. 
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Figure 6. Geologic map of Rosebud area, showing the distribution and orientation ofS~, 
Sz, L1> Lmm· Pennsylvanian-Permian rocks preserve D1. Stereoplot separated into North 
and South Hill showing lineations in red, poles to S1 in black dots, and S2 axial planar 
cleavages with blue lines, and hinge line of fold (red box with black outline). Contour 
intervals are 20 feet. 
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Figure 7. A, axial planar cleavage S2, at low angle with respect to compositional layering 
at Marble Peak; view looking south. S1 and S2 relationship is indicative of a lower limb 
of an east verging fold present at Marble Peale Hanm1er for scale. B, "S" shaped 
parasitic fold at Marble Peak indicating the lower limb of an overturned east verging fold. 
Picture facing north. Hanm1er for scale. 
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Figure 8. A, geologic map of South HilL B, photo of recumbent anticline in the Oquirrh 
Formation at South Hill, facing south from location 1 of A. C, close-up ofthe 
relationship between sl and s2 in the upper limb of the overturned fold, facing south. 
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Figure 9. Photomosaics and GoogleEarth images of South Hill recumbent fold. A, aerial view ofNorth and South Hill. B, 
GoogleEarth image of fold viewing east. C, photomosaic of fold viewing east. D, GoogleEarth image of fold vievving west. E, 
photomosaic of fold viewing west. Black lines trace S1 foliation of the fold, and blue line traces the axial surface of the recumbent 

~ fold. 
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Figure 10. A, geologic map of Rosebud area with stereoplot data showing L1 elongation 
lineation in red dots, poles to the sl planes in black dots, and s2 axial planar cleavage in 
blue lines. B, south-facing picture of the Rosebud fold exposed on a cliff face (box 
around area); red lines represent a form line, view to the south from circle 1. Dashed 
where interpretative. C, S1 and S2 relationship in a parasitic fold on the western limb, 
looking south at circle 2. 
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Figure 11. Shear sense indicators for D 1 deformation. A, asymmetric boudins in the 
tectonite at South Hill. B and C, asymmetric boudins in the Rosebud area. D, 
asymmetric chert stringers in the Rosebud area. E-F, asymmetic boudins at the cliff face 
of the Rosebud fold on the upright limb of the fold. Arrows on the pictures show the 
shear sense relative to north-south at the top of each picture. All show top-to-the-north 
sense of shear. 
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Figure 12. Shear sense for D2 deformation. A and B, top-to-the-north D2 

fabric shear indicators within the Oquirrh Formation tectonite. A and B, asymmetric 
boudins in the tectonite at South Hill. The tectonite at South Hill is in the overturned 
limb of the east-vergent recumbent fold; shear sense is reversed recording a top-to-the­
south shear sense for the D2 fabric. 
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Figure 13. A, contact h"tw"''" 
Tectonite in a parasitic fold in the South Hill fold. B, quartz rich section below the 
tectonite. C, relationship between the axial planar Sz cleavage and the flat-lying St 
foliation. This relationship along with orientation data indicates that the tectonite at 
South Hill is in the overturned limb ofthe east-vergent recumbent fold. Hannner for 
scale. Photograph facing southwest. 

92 



Face-controlled 
Quartz 

Displacement-controlled 
Quartz 

Figure 14. Photomicrographs for face-controlled fibers versus displacement-controlled 
fibers, showing geometric difference between the two types. A, face-controlled fibers 
form perpendicular to the face of the core object. Strain history cannot be determined by 
direction but can be determined from the suture, which records the progressive 
displacement history. B, displacement-controlled fibers grow parallel to the relative 
displacement between the matrix and the core object and are thought to record the 
incremental and finite strain history. 
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Figure 15. Figure showing the three principal planes of finite strain in relation to the 
strain fringes for Marble Peak and the Rosebud Creek ridge. Block diagrams represent 
the geometry and orientation of the strain fringes in this study. Curvatures for both D1 
and Dz strain fringes within respective XY planes are shown with respect to L1 elongation 
lineations. 
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Figure 16. Photomicrograph A is showing both D1 and D2 strain fringes within the XZ 
plane of S1 at Marble Peak. D1 displays face-controlled fibers and D2 exhibits 
displacement-controlled fibers. D1 records top-to-the-north and D2 records top-to-the­
south shear sense. Photomicrograph B shows D1 face-controlled fibers within the XZ 
plane of S1 at Marble Peak. 0 1 shear sense records top-to-the-north shear sense. 
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geologic map ofMatble Peak, showing D1 

sense and 0 2 top-to-the-south sheat sense. Southwatd sheat sense from D1 fibers was 
recorded within the Chainman-Diatnond Peak Formation in the northern part ofthe map, 
overprinted by the 0 2 deformation. Satnple numbers ate next to each arrow. 
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Figure 18. geologic map ofNorth and South D1 
south shear sense. Shear sense is to the south in the overturned limb of the recumbent 
fold. Sample numbers are next to each arrow. 
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Figure 19. Simplified geologic map of Rosebud, showing D1 top-to-the-north shear sense 
and D2 top-to-the-south shear sense. Sample numbers are next to each arrow. 
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Figure 20. Photomicrographs illustrating the Rigid Fiber Model for incremental coaxial 
and object-center path method for non-coaxial strain fringes. A, showing how 
measurements for finite strain were made for the Rigid Fiber Model from 
photomicrographs. Total finite extension is derived by dividing the total length of the 
strain fringe (l,r) structure by the diameter of the pyrite core object (Dc0), multiplied by 
1 00 to gain an extension percent. B and C, show how measurements were made for the 
object-center path method. The object-center path is determined by rotating a traced rigid 
core object along marginal points reproducing the natural tiber pattern from a 
photomicrograph. The center of the core object is plotted on each increment tracing the 
displacement path and showing the translation between the core object and the fringes. 
This method allows incremental and finite strains to be determined. See text for details. 
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Figure 21. Finite strain map ofD1 and D2 deformation for Marble Peak. Sample 
numbers are in the upper right hand comer of each rectangle. 
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Figure 22. Finite strain map for D1 and D2 deformation for North and South Hill. 
Sample numbers are in the upper right hand comer of each rectangle. 
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Figure 23. Finite strain map ofD1 and D2 deformation for the Rosebud area. Sample 
numbers are in the upper right hand comer of each rectangle. Dashed box indicates 
enlarged area. 
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Figure 24. Diagram illustrating the relationship between Wk with the flow apophyses 
and the orientation of the instantaneous stretching axes. Theta defines the angle between 
the deformation zone boundary and the instantaneous stretching axis. Theta angles 
between oo and 45° record a thinning shear zone, and angles greater than 45° record a 
thickening shear zone. Alpha is the acute angle between the flow apophyses and the 
shear plane. Modified from Tikoff and Fossen, 2001. 
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Figure 25a-b. Photomicrographs illustrating measurements used for vorticity analysis 
for the D1 face-controlled strain fringes. Theta measurements, determined as the angle 
between the sutures (red line) and s~, reflect the displacement path with respect to sl 
foliation (blue line). Last increment of suture records the approximate orientation of the 
maximum instantaneous stretching axis. Kinematic vorticity number is determined by 
wk =cos (90-2theta). 
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Figure 26. Photomicrographs ofD1 strain fringes within the XY plane at Rosebud area. 
Red lines represent the proximal parts (younger) and green lines represent the distal parts 
(older) of the D1 strain fringes. A, distal parts (older) of the strain fringe record an 
orientation of326 and the proximal parts (younger) record an orientation of047, 
recording a clockwise orientation of infinitesimal strain. B, distal parts (older) record an 
orientation of 311 and 024, recording a clockwise orientation of infinitesimal strain. C, 
distal parts (older) record an orientation of326 and 027, recording a clockwise 
orientation of infinitesimal strain. The scale is in the right hand comer of each sample, 
and the sample number is in the lower left hand corner. 
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Figure 27. Geologic map of Rosebud area showing displacement paths for D1 and D2 
strain fringes within the XY plane of S1 and S2 respectively. The displacement path for 
D1. in red, records a clockwise change in the maximum stretch direction through time. 
The displacement path for D2, in green, records a counter-clockwise rotation. 
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Figure 28. Photomicrographs showing how the object-center path method was used to 
determine the finite and incremental strain. Yellow dots represent the center of the core 
object and trace the translation and rotational paths used for measuring the incremental 
and finite strain. See text for details. 
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Figure 29. Figure from Koehn et al. (2000) showing how increments of translation and 
rotation were measured from photomicrograph A and figure B and inputted into the 
"Fringe Growth" program shown in C. D represents the final outcome of the modeling to 
reproduce the strain fringe in A, using the object-center path method. See text for details. 
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Fringe growth 
simulation 
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simulation 

Figure 30a-c. Simulations of fibrous strain fringes conducted using the "Fringe Growth" 
program to substantiate the object-center path method, which was used to measure the 
incremental and fmite strain. Translations and rotations were measured from 
photomicrographs in ImageJ and inputted into "Fringe Growth". Pre-defined shapes were 
used in the program. Principal planes are in upper left comer of each photomicrograph. 
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Figure 30b. 

Fringe growth 
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Figure 30c 
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Figure 31. Cumulative incremental strain history diagrams for D2 within the XZ plane ofS 1 for the folds at the northwest section of 
the map at Rosebud area. CISH diagrams illustrate strain (y axis) relative to the changes of the orientation of the incremental 
extension direction from the horizontal reference frame (x axis). Graphs depict the extension versus orientation with respect to a 
horizontal reference frame (S2). Reference frame for all measurements is a view looking west with north to the right. Therefore, 
clockwise rotation on the graphs are positive and counter-clockwise are negative. Slope represents the amount of external vorticity. 
Vertical paths represent coaxial deformation, and horizontal paths represent non-coaxial deformation. 
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Figure 31. Cumulative incremental strain history diagrams for D2 within the XZ plane of S 1 for the folds at the northwest section of 
the map at Rosebud area. CISH diagrams illustrate strain (y axis) relative to the changes of the orientation of the incremental 
extension direction from the horizontal reference frame (x axis). Graphs depict the extension versus orientation with r.espect to a 
horizontal reference frame (S2). Reference frame for all measurements is a view looking west with north to the right. Therefore, 
clockwise rotation on the graphs are positive and counter-clockwise are negative. Slope represents the amount of external vorticity. 
Vertical paths represent coaxial deformation, and horizontal paths represent non-coaxial deformation. 
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Figure 33. Photomicrographs ofD2 displacement-controlled strain fringes within the XY 
plane of the S2 axial planar cleavage at Rosebud area. A, distal parts (older) of the strain 
fringe record an orientation of218 and the proximal parts (younger) record an orientation 
of 113, recording a counter-clockwise orientation of infinitesimal strain. B, distal parts 
(older) record an orientation of204 and the proximal parts (younger) record an 
orientation of 115, recording a counter-clockwise rotation. The scale is in the right hand 
comer of each sample, and the sample number is in the lower left hand comer. 
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Figure 34. Patterns offoliation trajectories. A, heterogeneous simple shear zone 
increasing towards the base. B, thickening shear zone related to horizontal shortening 
(layer parallel) and vertical thickening. C, thinning shear zone related to horizontal 
thinning (layer parallel) and vertical thinning. Modified from Sanderson (1982). 
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Figure 35. Generalized geologic map of Raft River-Albion-Grouse Creek Mountains 
(RAG) showing distribution of the L1 stretching lineation. Field areas (in boxes) are at 
Marble Peak, North and South Hill and Rosebud area. Stereoplots showing L, from 
Compton (1972, 1975), Miller (1980), Todd (1980), Sheely (2002), Wells (1997), and 
this study. Modified from Wells et al. (2008). 
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Figure 36. Vertical strain gradient for D1 and D2 at Marble Peak within the Oquirrh Formation in relation to the Middle detachment. 
View looking east at Marble Peak from GoogleEarth. Finite strain magnitudes and approximate sample locations vertically within the 
allochthon are represented by triangles. 
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orogen-parallel extension 

Figure 37. Simplified tectonic model for development of orogen-parallel extension at 
mid-crustal levels in the interior of the Sevier orogen around ~105 Ma. Inset shows a 
structural culmination with lineations oriented parallel to the fold hinge lines. (From 
Wells et al., 2008). 
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Figure 38. Sequence of Mesozoic to early Cenowic deforrnation proposed for relative constraints on timing for the "D2" event. 
(Malavieille, 1998; Hoisch et al., 2002; Hoisch and Wells; 2004; Wells et al., 1998; Wells et al., 2000; Wells et al., 2008). 
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