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41o Inclined

Strike and dip of bedding

Contact  Solid where certain and location accurate. 

Inclined³
Strike and dip of compaction foliation in ash-flow tuff

27

Anticline   Solid where certain and location accurate, 
dashed where approximately located, dotted where concealed. 
Arrow shows direction of plunge.

Fault   Solid where certain and location accurate, dashed 
where approximately located, dotted where concealed.

Syncline   Solid where certain and location accurate, 
dashed where approximately located, dotted where concealed.
Arrow shows direction of plunge.

:
Oblique-slip fault   Solid where certain and location accurate, 
dashed where approximately located, dotted where concealed. 
Ball on downthrown side. Arrows show relative motion. 

:
Normal fault   Solid where certain and location accurate, 
dashed where approximately located, dotted where concealed. 
Ball on downthrown side. Locally showing dip. 

35

Strike-slip fault   Solid where certain and location accurate, 
dashed where approximately located, dotted where concealed. 
Arrows show relative motion. 
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QUATERNARY STRATIGRAPHY
 
Quaternary alluvium and fan deposits   Gravely sand and 
clayey, silty sand with sub-angular to rounded pebble- to 
boulder-sized clasts. The clasts are mostly composed of tuff, 
carbonate and quartzite from nearby Oligocene–Miocene and 
Paleozoic units. The deposit surface is less compacted and 
erosionally dissected than the older Quaternary deposits (Qoa). It 
can be distinguished clearly by its poor sorting and soft surface. 
Locally includes the Quaternary wash deposits and colluvium. 

Quaternary older alluvium   Generally poorly sorted sediments; 
gravely sand, and sandy gravel; sub-angular to rounded clasts; 
include various clast types from the surrounding rocks including 
clasts of tuff, quartzite, dolomite and limestone. The Qoa lies at a 
higher elevation than the Qa. In addition, Qoa is bedded, 
compacted and moderately cemented; usually the beds are 
exposed in cut banks where dissected. Small ridge-and-ravine 
topography is common.

TERTIARY STRATIGRAPHY

The phenocryst descriptions were compared to the quantitative 
phenocryst analyses done by Best et al. (1993) for the identified 
units within the study area. Where new counts were not done, 
phenocrysts percentages from Best et al. (1993) are reported. The 
ages of the identified units were derived from previous studies 
(Best et al., 1993, 2013a, b; Scott et al., 1993; Jayko, 2007).

Tertiary sediments   Fluvial to alluvial siltstones, sandstones, and 
conglomerates; locally cross bedded. Weathers tan to 
orange-brown and contains sub-angular to sub-rounded clasts of 
Oligocene–Miocene tuffs and Paleozoic marine units. 

Basalt   Grayish to gray-black, fresh and weathered; aphyric with 
sparse phenocrysts; massive center with more vesicular top and 
bottom. 

Kane Wash Tuff   (~14.7 Ma) Crystal-poor, poorly to highly 
welded ash-flow tuff that is zoned from rhyolite to trachyte; divided 
into three sub-units: the lower called 1, middle called 2, and upper 
called 3. Unit 1 is poorly welded with notable lithic fragments; unit 
2 and 3 are moderately to highly welded. Phenocryst total 
averages about 10% of the rock. Modal phenocryst percentages 
are approximately 5–40% quartz and 54–75% sanidine with a 
variety of accessory minerals. Thickness of all subunits 200m.

Hiko Tuff   (18.51 Ma) Crystal-rich rhyolitic ash-flow tuff; typically 
moderately to densely welded; however, it includes a less welded, 
lower, lithic zone in some locations. Color varies from grayish red 
purple to grayish purple. A thin layer of ash-fall tuff sits below the 
Hiko Tuff and on top of the Harmony Hills Tuff. The unit contains 
30–40% total phenocrysts and has modal percentages of: 
10–35% quartz, 15–35% sanidine, 30–65% plagioclase, 5–15% 
biotite, 0–5% hornblende, and trace clinopyroxene and titanite. 
Thickness 50–200m.

Harmony Hills Tuff   (22.56 Ma) Crystal-rich andesitic ash-flow 
tuff that ranges from highly to poorly welded. Contains relatively 
large phenocrysts and has flattened pumice. The color varies from 
very dark grayish red on weathered surfaces to grayish red on 
fresh surfaces. Locally, the uppermost part of the Harmony Hills 
includes a thin layer of a fluvial deposit with lithic ash-flow tuff. The 
thickness decreases to the east and is thickest in the southwest 
corner of the quadrangle, where it may contain two cooling units, 
and it pinches out in the southeastern part. The phenocryst 
assemblage is: 0–10% quartz, 0–3% sanidine, 55–70% 
plagioclase, 10–20% biotite, 0–15% hornblende, and 0–5% 
clinopyroxene with a total of 40–50% phenocrysts. Thickness 
50–200m.

Pahranagat Formation   (22.93 Ma) Crystal-rich rhyolitic ash-flow 
tuff; highly to moderately welded; commonly with a poorly welded 
base; color varies from grayish orange to light reddish brown. The 
Pahranagat Formation pinches out within the quadrangle. The 
total phenocryst percentage is 20–45% total and modal 
percentage is: 21–49% quartz, 16–42% plagioclase, 22–42% 
sanidine, and 1–6% biotite. Adularescent sanidine is common. 
Thickness 20–50m. 

Bauers Tuff Member of the Condor Canyon Formation   
Relatively phenocryst poor, rhyolitic ash-flow tuff; densely to 
partially welded; brown to red brown; large, light gray fiamme. 
Contains 10–20% total phenocrysts composed of 15–45% 
sanidine, 35–70% plagioclase, 0–10% biotite and trace 
clinopyroxene. Thickness 10–50m.

Leach Canyon Formation   (24.03 Ma) Dark to light grayish 
orange, rhyolitic ash-flow tuff; partially welded, pumice is dark 
colored; lithic fragments are common. The total phenocryst 
percentage is 10–30% with modal percentages of: 20–50% 
quartz, 5–40% sanidine, 20–55% plagioclase, and 0–15% biotite. 
Thickness 30–200m.

Water-laid sediments and tuffs   White, very light gray and light 
tan water-laid sediments and ash-fall tuffs. Sediments are bedded 
siltstone to sandstone composed of ash and transported crystals 
commonly of quartz, sanidine, plagioclase, and biotite; locally 
cross bedded. Ash-fall tuffs are rhyolitic, contain small 
percentages of total phenocrysts and form massive beds.

Undivided Shingle Pass and Bauers Tuffs   Either Shingle Pass 
or Bauers Tuffs. Crystal assemblage is plagioclase > sanidine > 
biotite with about 10–20 percent total phenocrysts.

Undivided tuffs   Unidentified Tertiary tuffs and units with a local 
distribution. 

Shingle Pass Tuff   (26–27 Ma) Dark grayish red to grayish 
red, brown, orange, red, or purple, relatively crystal-poor 
rhyolitic ash-flow tuff; white to pastel-colored pumice lapilli. 
Subdivided into three mappable units, but only two occur in the 
northern part of the quadrangle and three occur in the south. 
For all units either sanidine or plagioclase is the most common 
phenocryst. The lower member (Tspl) has 10–20% total 
phenocrysts; 5–15% quartz, 45–60% sanidine, 25–35% 
plagioclase, and trace biotite. The middle member (Tspi) has 
5–15% total phenocrysts: 5% quartz, 25–50% sanidine, 
55–60% plagioclase, and 5–10% biotite. The upper member 
(Tspu) has 5–10% total phenocrysts with trace quartz, 30–40% 
sanidine, 50–60% plagioclase and 5–10% biotite. Thickness of 
all subunits 50–200m.

Monotony Tuff   (27.57 Ma) Crystal-rich, dacitic ash-flow tuff. 
The color ranges between grayish orange to dark grayish 
orange; 10–60% total phenocrysts on average, but grades 
upwards from medium to high amounts of phenocrysts. Lower 
part is poorly welded with the upper section more welded. The 
phenocryst percentages are: 5–30% quartz, 0–15% sanidine, 
45–65% plagioclase, 5–20% biotite, 0–10% hornblende, and 
0–10% clinopyroxene. Large purple amethyst and obvious 
biotite are apparent in hand samples. The Monotony Tuff is the 
oldest unit of the pyroclastic section within the quadrangle. 

Tertiary–Cretaceous sediments   Conglomerate and 
freshwater limestone (locally mapped as TKl). The 
conglomerate is bedded, poorly sorted, with sub-angular 
pebbles and cobbles of various Paleozoic carbonate and 
quartzite units; up to 90% limestone clasts. The freshwater 
limestone is light gray to tannish gray and typically darker 
colored fresh than weathered; commonly vuggy. The TKs 
unconformably overlies Paleozoic units that range from 
Ordovician Pogonip Group to the Devonian carbonates. TKs is 
unconformably overlain by Tertiary tuffs including the oldest in 
the area, the Monotony Tuff. Thicknes of TKs less than 10m.

PALEOZOIC STRATIGRAPHY

Simonson Dolomite   Consists of alternating bands of dark 
and light yellow-gray color, coarse to fine crystals of dolomite. 
The lowest sub-unit is a coarse grained, light tan, crystalline 
cliff-forming dolomite ranging from 160 to 310 feet (48–94 m) 
thick. The middle sub-unit is composed of an alternating 
sequence of whitish gray dolomite resembling the Sevy 
Dolomite and brown, fine- to medium-grained dolomite. Large 
stromatoporoids are common in this sub-unit. Its thickness 
ranges from 250 to 400 feet (76–121 m). A brown cliff-forming 
sub-unit is the third unit; it is a dolomite containing 
stromatoporoids, corals and bryozoans. This dolomite member 
is massive and has a thickness range of 70 to 180 feet (70–54 
m). The highest sub-unit is an alternating light and dark 
member that resembles the lower sub-unit, but it has thicker 
beds and fewer laminations. Sedimentary breccias occur in 
this 200 to 460 foot (60–140 m) thick uppermost sub-unit. The 
uppermost 50 feet (15 m) may contain Stringocephalus. 
Thickness 300–400m.

Oxyoke Canyon Sandstone   Yellowish brown, well-sorted 
medium- to fine-grained sandstone; locally cross bedded; 
upper contact with Simonson is gradational. Regionally it may 
be grouped with Simonson Dolomite. 

Sevy Dolomite   Homogenous, unfossiliferous, 
microcrystalline dolomite that commonly weathers whitish 
gray. On fresh surfaces it can be tan, gray, or pinkish gray. Two 
sub-units were identified in the field: a lower sub-unit that 
mostly consists of yellowish gray, fine phaneritic to aphanitic 
dolomite, and an upper sub-unit that contains interbedded 
sandstone zones that are commonly brecciated. In the 
southern part of the area these sandstones were mapped with 
Dse. Thickness 125–130m.

Undefined carbonate unit   Dark gray, medium- to 
fine-grained dolomite; chert is common locally. No fossils 
where found; the rocks are highly brecciated and/or sheared, 
but lithology, bedding thickness, color, and chert morphology 
suggest that this unit is most likely one of the Devonian, 
Silurian and/or Ordovician formations. Thickness 50m.

Laketown Dolomite   Light and dark gray, medium- to 
coarse-grained, crystalline dolomite; commonly has a banded 
appearance, alternating dark dolomite with light gray dolomite. 
Fossils and chert nodules are present in some layers. 
Thickness 200–225m. 

Ely Springs Dolomite   Medium- to coarse-grained, dark-gray 
dolomite; fossiliferous and typically cherty. Significant portions 
of the lower half of the formation are partially dolomitized gray 
limestone. The lower 50 feet (15.25 m) is commonly limestone 
with about 30% chert. Thickness 150m.

Eureka Quartzite   Vitreous orthoquartzite; medium- to 
fine-grained; cross bedded; well sorted, well-rounded grains. 
Commonly weathers to rusty, yellow-brown, or red color; white 
to nearly white where fresh; locally the Eureka Quartzite is 
highly brecciated. Its lighter color makes it stand out as a white 
band between gray carbonate rocks. Thickness ~50m.

Pogonip Group   Gray limestone with shale, siltstone, and 
silty limestone. Three sub-units of Pogonip Group were 
identified within the Pahranagat Range (Reso, 1963); only the 
lower and middle units are exposed in the quadrangle and they 
are mapped together as one unit; the lower consists of 
abundant chert nodules in gray limestone; locally contains 
pebble conglomerate with sandy beds; no fossils were found. 
The middle unit consists of thin-bedded limestone, with fewer 
or a lack of chert nodules; fossils such as gastropods are 
present. Thickness 500–>700m.
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STRUCTURAL GEOLOGY

The Lower Pahranagat Lake NW quadrangle includes an 
area that underwent at least two deformations. The first was 
Cretaceous shortening during the Sevier orogeny and 
accompanying uplift of the Nevadaplano, a high orogenic 
plateau. The second was Oligocene–Miocene extension that 
is associated with normal-, oblique-, and strike-slip faults. 
Quaternary fault scarps are present in the region, but only a 
small part of a scarp is exposed at the southern edge of the 
quadrangle. 

No major structures of the Sevier fold-and-thrust belt or 
associated central Nevada thrust belt are exposed in the 
quadrangle, just one small reverse fault in the north that 
offsets Paleozoic units. The Gass Peak and correlative 
Pahranagat thrusts may exist at depth; however, they are cut 
by younger structures and covered by either the 
Cretaceous–Tertiary sediments (conglomerates and 
freshwater limestone) or the Oligocene–Miocene units.  

The Cretaceous–Tertiary sediments and the 
Oligocene–Miocene units unconformably overlie the 
Paleozoic units. The unconformity is angular, which suggests 
presence of Cretaceous shortening structures. In addition, the 
unconformity has a buttress geometry, which suggests that 
the Paleozoic units formed paleo-hills.

Oligocene and/or Miocene extension is evidenced by normal-, 
oblique-, and strike-slip faults. The majority of these faults cut 
all of the exposed tuffs suggesting that they are younger than 
the 14.7 Ma Kane Wash Tuff. However, a few faults cut 
through the 18.5 Ma Hiko Tuff and are covered by the Kane 
Wash Tuff, which suggests a minor post 18.5 Ma and 
pre-14.7 Ma faulting event.
 
The major post-14.7 Ma structures are part of the NE-striking, 
left-lateral Pahranagat 0 (a.k.a. Pahranagat fault system) 
(e.g., Tschanz and Pampeyan, 1970; Jayko, 2007). Parts of 
each of the three major left-lateral faults are exposed: the 
Arrowhead Mine fault in the north, the Buckhorn fault in the 
center, and the Maynard Lake fault in the south. Each of these 
faults transmits slip from NNE-, N-, and/or NNW-striking 
normal and oblique-slip faults, and thus, are transfer faults. 
These three faults together, form a zone of slip transfer.
  
Several E–W striking apparent normal faults and the 
Buckhorn syncline lie between the Buckhorn and Arrowhead 
Mine faults. The syncline is spatially closer to the Buckhorn 
fault than the Arrowhead Mine fault. This syncline plunges 
gently NE and is an open fold. Tuffs as young as the Kane 
Wash Tuff are folded suggesting Miocene, or younger, 
folding. This syncline and the E–W striking faults are 
interpreted to accommodate differential deformation in the 
rocks between the Arrowhead Mine and Buckhorn faults.

Small duplexes occur along the Arrowhead Mine and 
Maynard Lake faults. The duplex along the Arrowhead Mine 
fault is exposed in Oligocene–Miocene ash-flow tuffs. The 
duplex along the Maynard Lake fault contains both 
Oligocene–Miocene tuffs and highly faulted 
Ordovician–Devonian marine rocks. Each duplex occurs near 
a bend in a strike-slip fault, which suggests that the duplexes 
aid in accommodating changes in fault strike.
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