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Playa depositsMGrayish white, fine-grained silt 
and clay deposited in a small, fault-controlled 

depression on Pond Peak and in a landslide-controlled 
depression in the northwest part of the quadrangle.

TalusMCoarse, angular, boulder-sized rock 
fragments derived from adjacent rock units and 

deposited on steep slopes. Mapped only locally where it is 
extensive or conceals contacts between older units.

Young alluviumMPoorly sorted Holocene 
deposits of boulder- to silt-sized material 

deposited on alluvial fans and as channel deposits along 
drainages in upland areas. Fan surfaces commonly exhibit 
bar- and swale-surface morphology and are minimally 
dissected. Desert pavement is not commonly developed and 
clasts are carbonate coated. Rare boulders ≥1 m.

Intermediate-age alluviumMPoorly sorted 
Pleistocene deposits of boulder- to silt-sized 

material deposited on alluvial fans. Fan surfaces are 
commonly darker due to development of a desert pavement 
of rock-varnish-coated cobbles and are moderately 
dissected. Clasts are carbonate cemented where observed 
in pits.

Paiute Alloformation  (Bell and others, 2005). 
Represents a major period of subaerial fan 

building between Lake Lahontan cycles. Poorly sorted, 
alluvial fan deposits of boulder- to silt-sized material found 
as high, moderately dissected surfaces between lower Jones 
and Secret Canyons in the northeast corner of the 
quadrangle. 

Upland alluviumMGravelly deposits of alluvial 
fans, colluvium, and stream deposits; includes 

coarse basin-fill material in fault-controlled upland basins.

Landslide depositsMHolocene and Pleistocene 
chaotic masses of boulder- to clay-sized material 

resulting from debris slides and slumps, rock avalanches(?), 
and translational landslides. Includes some colluvium and 
talus. Older deposits that have been dissected by Holocene 
stream courses are difficult to recognize.

Intermediate-age boulder alluviumMCoarse, 
poorly sorted boulder and cobble alluvium and 

colluvium. Found as intermediate-elevation remnant 
pediment deposits on bedrock in areas of lower relief, and as 
steep-slope deposits on the mountain front and locally within 
the range.

Older boulder alluviumMCoarse, poorly sorted 
boulder and cobble alluvium and colluvium. Found 

as the highest and most dissected remnant pediment 
deposits on bedrock in areas of lower relief and as steep-
slope deposits on the mountain front. 

Lousetown FormationMDark-gray, dark-reddish-
brown-weathering, flows of olivine basalt and 

basaltic andesite. Massive to vesicular or microvesicular, 
locally platy jointed. In one thin section, phenocrysts (≤10%) 
of elongate plagioclase (0.1–0.2 x 0.5 mm) and olivine (≤5 
mm, partly to completely altered to iddingsite) are found in a 
groundmass of plagioclase and pyroxene microlites and 
glass. Intersertal and pilotaxitic, locally with rare xenocrysts 
of quartz and hornblende (completely altered to pyroxene + 
Fe-Ti oxides). Vesicles open or thinly coated with hyaline 
opal. The thin-sectioned rock contains 56% silica and has a 
K-Ar date (whole rock) of 6.9 Ma (OG-163, table 1). 
Thickness <100 m southwest of Pond Peak.

Dacite of Pond PeakMLight-gray, light-brown 
weathering, flows and domes, and lesser flow 
breccias and lahars of pyroxene-hornblende dacite 
(68–71% SiO2). Local flow banding and platy flow 

jointing; rarely lithophysal or spherulitic. Contains 
phenocrysts (10–15%) of clear to spongy plagioclase 
(10–12%, typically ≤1 mm, rarely to 2.5 mm), black, elongate 
hornblende (~1%, 1.2 mm; rarely thinly rimmed by fine 
pyroxene and Fe-Ti oxides), green orthopyroxene (0–1%, 
≤0.4 mm), and trace magnetite (≤0.2 mm) in a locally flow-
banded, pilotaxitic to felted groundmass of plagioclase 
microphenocrysts and glass. Tdpi, fine-grained, intrusive 
dikes or small irregular masses, commonly with steep flow 
foliation and glassy margins. Dacite to low-silica rhyolite 
based on the total alkali versus silica diagram (Le Maitre, 
1989; see table 3). Dated by K-Ar methods at 8.3 Ma (OG-
164a and 165a, table 1). 

Basaltic intrusive rocksMNarrow dikes 
(commonly 1–3 m) and small, irregular intrusive 

bodies of basalt or basaltic andesite that cut flows of Tps 
and older rocks. These rocks are fine grained, dark gray, 
sparsely porphyritic, with trachytic to felted textures, and only 
rarely vesicular. One sample from a canyon between 
Olinghouse Canyon and Green Hill contains phenocrysts 
(~3%) of elongate plagioclase (2–3%, 0.4–3 mm long) and 
minor pyroxene (<0.4 mm) in a groundmass of plagioclase 
laths (<0.2 mm long), fine pyroxene(?) and glass(?). This 
rock is propylitically altered, containing pyrite, chlorite, and 
calcite. One dike from this area is reported to contain 
fragments of Thd (Geasan, 1980), and thus may be younger 
than that unit; however, some basaltic intrusive rocks of the 
quadrangle may be sources for rocks of unit Tps, and thus of 
equivalent age.

Hornblende daciteMDikes and irregular intrusive 
masses, including rare sills(?), which form an 

intrusive screen cutting predominantly Tps in the main part 
of the Olinghouse mining district. Narrow (~1 m) dikes are 
locally flow banded and have finer grained margins. Pale 
orange weathering, yellowish gray, hydrothermally altered 
porphyritic rock which originally contained phenocrysts (10-
25%) of plagioclase (1–2.5 mm) and a few percent each of 
flow-aligned hornblende (elongate to distinctly acicular, ≤3 x 
10 mm) and equant pyroxene (<1 mm) in a finely crystalline 
groundmass of flow-aligned microlites or more equant 
feldspar and quartz(?). Textures are commonly pilotaxitic 
although some samples are nearly seriate; fine-grained 
phaneritic groundmass textures are also reported (Bonham 
and Papke, 1969; Geasan, 1980). Rarely, quartz 
phenocrysts (commonly <0.5 mm, rarely 3 mm) are 
observed as darker, cognate inclusions (≤1 cm). Cubes of 
limonite after pyrite are common in some samples, and the 
dikes are variably but nearly ubiquitously altered to mixtures 
of epidote, chlorite, calcite, sericite, and adularia(?) (as 
patchy plagioclase replacements). Considered to be 
predominantly dacitic based on phenocryst mineralogy and 
major-element chemistry (Geasan, 1980, table 10). One 
uncommonly fresh-appearing dike from the southeast flank 
of Green Hill contains phenocrysts of unaltered basaltic 
hornblende, slightly adularized(?) plagioclase, and variably 
chloritized pyroxene. Hornblende from this rock has a 
plateau 40Ar/39Ar age of 10.51 Ma (OG-221, table 2), 
suggesting that at least some dikes are synmineralization 
(dated as 10.52 Ma on vein adularia from Green Hill; see 
OG-220b, table 2).

Pyramid sequenceMTps, undivided basaltic 
flows, minor poorly exposed basaltic pyroclastic 
rocks, and locally, thin, discontinuous epiclastic 
and silicic pyroclastic beds (where not mapped 
separately). Flows (~2–10 m thick) are massive to 
locally vesicular and brecciated, very dark gray 
basalt and basaltic andesite, consisting of sparse 
to common phenocrysts of plagioclase (<5–40%, 
0.25–2 mm), olivine (1–3%; 0.4–3 mm, rarely 5 

mm), and commonly sparse pyroxene (0–5%, 2 mm) in a 
trachytic to pilotaxitic (rarely intergranular to ophitic) 
groundmass of magnetite, plagioclase, and pyroxene 
microphenocrysts, and sparse brown glass. Olivine is 
commonly partly to completely replaced by iddingsite, and 
rare, rounded quartz xenocrysts(?) (≤1 mm) and rectilinear 
clots of fine magnetite (possibly ghosts of basaltic 
hornblende) are locally observed. Vesicles (rarely up to 
several centimeters in diameter) are locally rimmed or filled 
with chlorite(?), epidote, banded cryptocrystalline silica 
(agate), calcite, and the zeolites heulandite and mordenite 
particularly in the area of the Olinghouse mining district. 
Basaltic pyroclastic rocks include bedded reddish-brown 
scoria (commonly with steep initial dips) and propylitized 
breccias which have rounded to angular light-grayish-green 
scoriaceous clasts (<1 to several centimeters) in a fine-
grained, yellowish-gray tuffaceous matrix. Thin (1–2 m), 
discontinuous, lacustrine, thinly laminated, dark shale (with 
leaf fossils and rare fish bones and scales) and 
volcaniclastic sandstone crop out locally, particularly in 
Pierson Canyon (Axelrod, 1995) and near the base of Tps 
between White Horse and Tiger Canyons. The Pyramid 
sequence has been mapped as Chloropagus Formation in 
Pierson Canyon (Axelrod, 1995) and to the south of the 
quadrangle (Rose, 1969). Age probably about 12–15 Ma 
(see Henry and others, 2004; Garside and others, 2000; 
Stewart and others, 1994). Thickness 1–2 km or more. A 
flow near the base of the unit in upper Jones Canyon is 
about 13.1 Ma (OG-285, table 2), somewhat younger than a 
14.9 Ma K-Ar age (new constants) reported from Fort 
Defiance Canyon by Bonham and Papke (1969, Appendix 
A). Chemically (table 3) basaltic andesite and low silica 
andesite. Tpt, <30 m thick rhyolitic welded ash-flow tuff and 
associated nonwelded surge(?) material intercalated in 
basalt flows; vitrophyre consists of phenocrysts (~5%) of 
plagioclase (≤1.6 x 4 mm), quartz (~1 mm) and sparse 
biotite, hornblende, and pyroxene. K-Ar age of 11.7 Ma (OG-
54 table 1; Garside and others, 1993).  Probably the same 
tuff dated by D. I. Axelrod at 13.3±0.7 Ma (Stewart and 
others, 1994, loc. J4). Crops out near south border of the 
quadrangle. Tpss, White to very pale orange, massive to 
plane-laminated and cross-bedded, subaerial(?) and 
lacustrine deposits of silicic ash, pumice lapilli, and small 
phenocrysts of biotite, quartz, and feldspar. Rare plant 
fossils including reeds were observed in these rocks. Several 
areas of outcrop in the south part of the quadrangle. Tpsi, 
intrusive basaltic rocks similar to Tps flows and interpreted 
to be of similar age. Tpsb, Boulder gravels at and near the 
base of Tps flows in Home Ranch and Jones Canyons in the 
northwest part of the quadrangle. Coarse boulder gravels 
consisting of cobbles and boulders (≤1 x 2 m) of older ash-
flow tuffs and hornblende andesite; includes minor basalt 
scoria, tuffaceous sandstone, and silicic lapilli tuff.

Rhyolite of White HillMVery light-gray and 
pinkish-gray rhyolite (75.7% SiO2; table 3), locally 
flow banded and spherulitic. Flow dome; obvious 
flows mapped as Twhf. Consists of phenocrysts 

(15–20%) of rounded to equant and embayed to vermicular 
smoky quartz (~10%, 1–2 mm), plagioclase (~4%, 1–4 mm 
long), sanidine (~3%, 1–3 mm), and books of biotite (1%, 
0.4–0.8 mm) in a fine-grained, (originally) devitrified 
groundmass of potassium feldspar and quartz. Biotite is 
chloritized and felsic minerals are altered to sericite and 
calcite. Sanidine is found mainly as skeletal remnants. Flows 
mapped east of White Hill underlie Tps. Sanidine was dated 
at 17.75 Ma (OG-247, table 2).

MegabrecciaMPoorly exposed unit apparently 
consisting almost entirely of small to large (<1 cm 

to 5 m) angular to subrounded clasts of ash-flow tuffs (units 
Td, Tnh, Tcs, and Tph), as well as sparse clasts of 
amygdaloidal basalt and hornblende andesite. Overlies and 
cuts(?) across ash-flow tuff units of which it contains clasts. 
Matrix of megabreccia is apparently pyroclastic, containing 
phenocrysts similar to those of Twh (Geasan, 1980). The 
megabreccia is overlain by flows of Tps east of White Hill. 
Spatially associated with, and intruded by, Twh. Tmb may be 
a vent breccia related to Twh volcanism.

Hornblende andesite of Stud Horse 
CanyonMIntrusive bodies of light- to medium-

dark-gray andesite and dacite (table 3), consisting of 
phenocrysts (≤30%) of equant to elongate plagioclase 
(15–25%, 0.04–2.5 mm, rarely 2 x 5 mm), elongate 
hornblende (~8%, <0.5 x 2.4 mm), trace small (~0.2 mm) 
quartz, locally small biotite (trace to 2%), and orthopyroxene 
(<3%, ≤1.2 mm) in a fine-grained holocrystalline anhedral-
granular or pilotaxitic groundmass of predominantly 
plagioclase and magnetite microphenocrysts. A K-Ar age of 
20.3 Ma (OG-143, table 1) suggests that the unit may be 
related to Thaf.

Hornblende andesite of Fort Defiance 
CreekMFlows, breccias, domes(?), and lahars(?) 

of hornblende andesite which are intruded by and probably 
genetically related to Thas. Light- brownish-gray weathering, 
purplish-gray or medium-dark-gray porphyritic rocks 
containing phenocrysts of equant to elongate plagioclase 
(15–20%, 2 mm), elongate hornblende (5–10%, <1 x 5 mm), 
orthopyroxene (1%, ≤0.04 mm), trace biotite (<0.4 mm), and 
accessory magnetite (2%) in a perlitic glassy to 
microcrystalline groundmass. Includes both monolithologic 
and heterolithologic breccias (lahars?); massive rocks are 
very rarely flow-banded. The preferred 40Ar/39Ar age from 
the unit is 20.15 Ma (OG-273, table 2).

Tuff of Painted HillsMLight-gray or light-purplish-
gray, locally reddish-brown-weathering, crystal-

rich rhyolitic ash-flow tuff, commonly moderately to slightly 
welded and containing sparse white to pinkish gray pumice 
(commonly ≤5 x 20 mm). Contains phenocrysts (25–35%) of 
rounded, corroded and somewhat vermicular quartz 
(5–20%, ≤3 mm), plagioclase (10–25%, <2.5 mm), equant 
sanidine (0–10%, ≤1.5 mm), biotite (<5%, ~1 mm, rarely ≤3 
mm), Fe-Ti oxides (≤0.2 mm), and locally, magnetite-rimmed 
basaltic hornblende (0–2%, ≤1 mm, rarely 0.6 x 2 mm). 
Local indistinct columnar jointing. Probably consists of more 
than one cooling unit, as an abrupt change in welding is 
observed in mid-unit south of Tiger Canyon (Geasan, 1980) 
and possibly in the upper Secret Canyon area. Basal 1–1.5 
m zone above Tcs consists of finely laminated to cross-
bedded tuff (ground surge?). Exposed to the northwest in 
the Pah Rah Range, Virginia Mountains, and Dogskin 
Mountain (Faulds and others, 2003; Garside and others, 
2003; Henry and others, 2004). Probably related to Tcs 
(Henry and others, 2004) and erupted from a caldera in the 
Stillwater Range (John, 1995). 40Ar/39Ar dated at 24.9 Ma 
(Henry and others, 2004). Thickness is 400 m or more.

Tuff of Chimney SpringMLight gray, moderate 
reddish-brown-weathering, ledge-forming, slightly 
to moderately welded rhyolitic ash-flow tuff. 
Contains phenocrysts (~25%) of commonly 

smoky or reddish, corroded, embayed, and somewhat 
vermicular quartz (<10%, 1–2 mm), equant, adularescent 
sanidine (~10%, 1–2 mm), a few percent plagioclase, rare 
altered biotite (<1%, ≤1 mm in diameter), and accessory Fe-
Ti oxides. Contains sparse, indistinct pumice (mostly 3 x 12 
mm, but locally up to 3 x 12 cm) and sparse lithic fragments 
of flow-banded rhyolite and intermediate volcanic rock 
(commonly ≤1 cm, but rarely ≤4 x 6 cm). Portions weather to 
rounded, reddish boulders of decomposition. Locally at the 
base is a ~1 m plane-bedded tuff (ground surge?) which 
grades upward into nonwelded tuff. Thickness probably 
<100 m. In one area near the east edge of the quadrangle, a 
thick nonwelded zone in a paleovalley is mapped separately 
(Tcsn). Age 25.07 Ma (Henry and others, 2004). Thickness 
<200 m.

Nine Hill TuffMBrownish-weathering, pinkish-
gray or grayish, strongly welded rhyolitic ash-flow 

tuff. Contains phenocrysts (~3-15%, ~1 mm) of sanidine and 
anorthoclase, subequal to sparse plagioclase, trace small 
biotite, and accessory Fe-Ti oxides (converted to hematite). 
Locally contains flow-banded(?) rhyolite lithic fragments (<1 
cm to 10 x 15 cm) that appear similar to Tuff. Common 
partial to complete vapor-phase alteration, with formation of 
tridymite and alkali feldspar in cavities (former pumice 
sites); elsewhere devitrified. Distinctive compressed pumice 
(1:3 to 1:7 aspect ratio) from less than 1 mm x 5 mm to 5 x 
25 cm. Thickness ≤130 m, variable. Deposited in 
paleovalleys. Lies on Tsc or directly on Kgd in northern part 
of quadrangle, where it is locally absent below Tcs. Age 
25.25 Ma (Henry and others, 2004).

Tuff of Campbell CreekMPinkish-gray, strongly 
to weakly welded ash-flow tuff containing 

phenocrysts (~30%) of rounded, vermicular quartz (~12%, 
≤1.5 mm), alkali feldspar (~8%, ≤1.2 mm), plagioclase 
(~8%, ≤1.2 mm), and biotite (1%, 1 mm) in a shard-rich 
matrix. Pumice is strongly to slightly compressed. 
Phenocrysts and matrix are partly altered to quartz, sericite, 
and alkali(?) feldspar. Underlies Tnh in a paleovalley cut in 
Tdm near the east edge of the quadrangle along Fort 
Defiance Creek, where it is only ~20 m thick. Age 28.86 Ma 
in the Dogskin Mountain area (Henry and others, 2004). 
Correlated with intracaldera tuff exposed in the Desatoya 
Mountains (Henry and others, 2004).

Tuff of Dogskin MountainMLight- to dark-gray, 
slightly to moderately welded, ash-flow tuff with a 

distinctive phenocryst assemblage (~15–20%) of elongate 
to equant plagioclase (15%, <2 mm) and biotite (~3%, 0.6–2 
mm) in a shard-rich matrix. Biotite and elongate plagioclase 
are aligned parallel to compaction foliation. Contains a few 
percent moderately compressed pumice lapilli and 
commonly, sparse pinkish lithic fragments (1-2 cm, rarely 10 
cm) of biotite-plagioclase volcanic rock. Locally very lithic 
rich, containing up to 25% of rounded pale purple rhyolitic 
lithic fragments (0.5–10 cm). Commonly propylitically 
altered; biotite is replaced by sericite at the Stud Mine (12.0 
Ma; OG-167, table 1). Possibly up to 300 m thick; 40Ar/39Ar 
age 29.21 Ma from the Virginia Mountains (Henry and 
others, 2004). May be included with unit Tsc in the north 
part of the quadrangle.

Tuffs of Whisky SpringMSequence of several 
commonly moderately welded rhyolitic ash-flow 

tuffs. Pale-orange to light-brown and light-pinkish-gray rocks, 
commonly light-brown or pale-reddish-brown-weathering, 
containing phenocrysts of platy-fractured sanidine, 
plagioclase, biotite, and sparse to trace quartz. Moderately 
welded ash-flow tuffs commonly contain 1–2 mm 
phenocrysts (~10–15%) of sanidine (~0–10%), plagioclase 
(5–15%), biotite (commonly <1%), and rarely, hornblende. A 
distinctive feature of the tuffs is the shard-rich nature of the 
matrix, visible in thin section and hand lens. Locally, a 
"nubbly" weathering surface is observed on rock outcrops; 
this probably represents closely spaced joints developed 
during hydration of glassy rock. Contains compressed 
pumice (commonly >5%, <1 to several centimeters in 
diameter) and common lithic fragments (0.5 to several 
centimeters) of metasiltstone, and silicic and intermediate 
volcanic rocks. Consists of several cooling units, some of 
which are separated in a few places by 1–5 m of tuffaceous 
and volcaniclastic siltstone, sandstone, and pebbly 
sandstone (with poorly preserved fossil twigs(?) and leaves 
at one locality). Commonly contains variable amounts of 
hydrothermal alteration minerals (sericite, chlorite, epidote, 
and clays). Thickness >300 m just to the east in the 
Wadsworth Quadrangle (Bell and others, 2005), with no 
base exposed. The unit was originally named for ash-flow 
tuffs exposed near Whisky Spring in the southern Pah Rah 
Range; these tuffs have been subdivided elsewhere into 
several significant units ranging in age from 29 to 31 Ma 
(e.g., Henry and others, 2004). Probably correlative with at 
least part of a much thicker and more complex group of ash-
flow tuffs, Tsc.

Tuffs of Secret CanyonMThick sequence of 
propylitically altered ash-flow tuffs consisting of 

multiple cooling units which are distinctly different from 
overlying Tcs and Tnh. Most of the tuffs contain phenocrysts 
of biotite (1–2%, 1–2 mm), have plagioclase (1–2 mm) as 
the dominant (>2:1) or only feldspar (10–15%), and are 
nearly devoid of quartz (0–trace). Tuffs are strongly to 
slightly welded, commonly contain 5–10% pumice (0.5 x 5 
cm, rarely 1 x 20 cm); shards are commonly obvious with a 
hand lens. Biotite is commonly altered to sericite or chlorite, 
plagioclase is partially altered to sericite and calcite, 
sanidine is recrystallized, and groundmass is altered to 
sericite and chlorite. Adularia from a small quartz vein in the 
tuffs north of Jones Canyon was dated at 17.8 Ma (OG-145, 
table 1). Ash-flow tuff units vary from ledge-forming to 
recessive, and consist of light-brownish- or pinkish-gray 
weathering rocks that are greenish gray or light gray on 
fresh surfaces. Lithic fragments (<1 to several cm) in the 
tuffs are common and consist predominantly of intermediate 
volcanic rocks with some metasiltstone. Unit Tsc crops out 
in Secret and Jones Canyons in the northern part of the 
quadrangle; it is the partial stratigraphic equivalent of Tws 
and Tdm (and resembles them), but is considerably thicker. 
In the Dogskin Mountain Quadrangle, at least 10 tuff units 
are mapped separately in this age range (Henry and others, 
2004). Thickness, as much as ~700 m; this considerable 
thickness results from accumulation in a paleovalley (e.g., 
Henry and others, 2004, p. 4).

ApliteMPinkish-gray aplitic (anhedral granular) 
rock consisting predominantly of subequal 

amounts of 0.1–0.2 mm grains of strained quartz, 
plagioclase, microcline (some as myrmekite), sparse 
smaller biotite, and Fe-Ti oxides. Comprises an irregular 
body that intrudes Kqm in the northwest part of the 
quadrangle.

Quartz monzodioriteMMedium grained, medium 
gray rock consisting of euhedral and subhedral 

elongate plagioclase (~63%, 2 x 7 mm), mostly subhedral 
hornblende and biotite (~12% each, 5 mm), and anhedral, 
interstitial quartz (5%, 2 mm), alkali feldspar (7%, 2 mm), 
and accessory Fe-Ti oxides (1%). Locally, hornblende is 
mantled by finely crystalline biotite.

STRUCTURAL GEOLOGY

Northeast-striking faults that cut Quaternary units in the 
southeast corner of the quadrangle are a part of the left-
lateral Olinghouse fault zone. Southwest of the quadrangle, 
the fault zone has a ~N60oE strike, which appears to 
change to ~N30oE as it crosses the quadrangle (Briggs and 
Wesnousky, 2005) and approaches the right-lateral, 
northwest-striking Pyramid Lake fault zone in the 
Wadsworth Quadrangle to the east (Bell and others, 2005). 
There are faulted Quaternary units and areas of drainage 
impoundment associated with northeast-striking faults to the 
northwest of the fault zone as far as Pond Peak. Faults in 
the Olinghouse mining district and dikes and veins that were 
emplaced or formed along them are parallel to these active 
faults. These mineralized or dike-filled bedrock faults are at 
least 10.5 Ma, based on the age of the dikes and vein 
mineralization (see below). Both low- and high-angle fault-
striae rakes were observed on bedrock fault surfaces, but 
only in a few places. We interpret all the northeast-striking 
faults in this part of the quadrangle as part of the left-lateral 
Olinghouse fault zone. There is considerable down-to-the-
east vertical separation on the Olinghouse fault, based on 
the offset of Oligocene ash-flow tuffs between Tiger Canyon 
and the Painted Rock I-80 interchange, 8 km to the south (in 
the Fernley West Quadrangle; see Faulds and Ramelli, 
2006). 
     North of the Olinghouse fault zone, north- and northwest-
striking faults predominate. The northwest-striking faults 
may be part of the right-lateral fault systems of the Pyramid 
Lake and Warm Springs Valley fault zones, and north-
striking faults may be kinematically linked normal faults 
(e.g., Faulds and others, 2005). Significant offset is apparent 
across a west-northwest fault zone in the vicinity of Jones 
Canyon.

MINERAL DEPOSITS

Main Olinghouse District

Historical lode production from the Olinghouse mining 
district in the southeast part of the quadrangle was from 
high grade ore shoots along narrow quartz+calcite veins 
and from tabular stockworks along fault zones. Most of the 
workings are near the head of Olinghouse Canyon, and a 
few mines are found to the north in Tiger Canyon. Most of 
the veins strike northeast and commonly dip steeply 
northwest and southeast (Bonham and Papke, 1969; 
Geasan, 1980). The mafic flows that make up the wall rocks 
are propylitically altered over a broad area, with epidote 
being more abundant in the center of the district (Green Hill 
and vicinity). A narrow alteration envelope of 
sericite+adularia (replacing plagioclase) is found around 
some veins; the alteration may best be observed in thin 
section (Jones, 1998). Adularia from vein material collected 
from a dump near the top of Green Hill (before open-pit 
mining) yielded an 40Ar/39Ar age of 10.52 Ma (table 2).
     In and around the main Olinghouse district, the Pyramid 
sequence is intruded by an anastomosing screen of 
northeast-striking hornblende dacite dikes. The dikes are 
commonly propylitically altered along with the enclosing 
Pyramid sequence. They are probably close in age to 
mineralization in the district, but they can be no older than 
11 or 12 Ma (the older age limit for the Pyramid sequence in 
the district). Most of the dikes are apparently dacitic, but 
altered basaltic dikes with similar strike are recognized in 
the area of the modern (Alta Gold Co.) Olinghouse Mine 
open pit (Wilson and others, 1999). A relatively unaltered 
pyroxene-hornblende andesite dike (10.4-10.5 Ma, table 3) 
on the southeast flank of Green Hill may slightly postdate 
mineralization.
    Historical vein production was mainly from mines on 
Green Hill between 1898 and 1904, but minor production 
continued into at least the 1950s (Bonham and Papke, 
1969). Placer mining of fine to coarse gold of 680 fineness 
(i.e., 680 parts per thousand) took place between 1860 and 
the early 1990s in alluvial gravels near Olinghouse, eluvial 
gravels near Green Hill, and in alluvial fan deposits over 2 
km downstream east of the mouths of Olinghouse, Frank 
Free, and Tiger Canyons (Vanderburg, 1936; Bonham and 
Papke, 1969: Robyn, 1994). Modern open-pit mining by Alta 
Gold Co., which began in 1998 and was suspended in 1999 
due to low gold prices, was initiated in a small pit on Green 
Hill and a larger pit just to the south (J. Cox, oral commun., 
2000).
     Coarse native gold (electrum, about 700 fine; Wilson and 
others, 1999) is found in the Olinghouse veins with quartz 
(in places amethystine), epidote, adularia, and calcite. The 
gold is found as wires, sheets, and spongy dendritic 
masses, in places encrusted with macroscopically 
crystalline gold, and has been marketed as specimen 
material. It has not been found disseminated in wall rock, 
although post-mineralization faulting has produced wider 
zones of ore consisting of crushed vein material and 
wallrock. Zeolite minerals are commonly present in the veins 
(Jones, 1998) and include heulandite, scolecite, and 
epistilbite. Scheelite occurs locally as stubby, white to clear 
crystals to 1 cm (Garside and others, 2000, p. 86). Pyrite, 
chalcopyrite, galena, sphalerite, bornite, and argentite 
(acanthite) are also present, but are generally very minor 
phases (Hill, 1911; Bonham and Papke, 1969). Telluride 
minerals (petzite and coloradoite) were reported in ore from 
the Gus Shave property (probably in the area of the Buster 
Mines), and 1% Te was reported from the Buster Mines (Hill, 
1911), located about 2.3 km northeast of Green Hill (Hill, 
1911; Townley, 1985). In addition, Kleine (2004a, b) reported 
hessite and laumontite. As, Sb, and Hg are reported to be 
commonly low in the ore (Wilson and others, 1999).
    The paragenetic sequence in the veins seems to be, from 
early to late: epidote, quartz, scheelite, gold, zeolite 
minerals, and calcite; possibly reflecting deposition from 
progressively cooler fluids. The sulfide minerals appear to 
be relatively early, and the paragenetic place of adularia is 
not known (Garside and others, 2000). However, Wilson and 
others (1999) reported that adularia and sericite preceded 
gold and sulfides.

White Horse Canyon to Secret Canyon

Several minor underground workings and small prospect 
pits are in the area east and northeast of White Hill. The 
amount of workings suggests that production from this area 
was small. The more significant workings are along 
northeast-striking, vertical or southeast dipping quartz veins. 
The veins have drusy quartz, local cockade structure, 
chalcedonic quartz, sparse pyrite, barite(?), and supergene 
iron and manganese oxide minerals. Samples of vein 
material contain up to 5 ppm Ag and 17 ppm Au (Tingley 
and Garside, 1999). Biotite phenocrysts in the wall rock 
adjacent to the veins are altered to sericite, which was dated 
at 12.0 Ma (OG-167, table 1) from a dump sample collected 
at the Stud Mine. It is uncertain if this determination dates a 
mineralizing event older than that at Olinghouse, or if the 
mica age was incompletely reset by the mineralization. 
     Northwest-striking silicified faults (ledges) exposed in the 
area of Rabbit Creek (map) have been only explored by 
small prospect pits. The ledges locally exhibit a vuggy silica 
texture. A sample from one ledge contained anomalous Sn 
(sample 4151, Tingley and Garside, 1999), suggesting the 
weak mineralization is of the high-sulfidation type.
     In the northeast corner of the quadrangle, between lower 
Jones and Secret Canyons, there are a number of 
prospects in Oligocene ash-flow tuffs. The prospects explore 
veins and altered fault zones; where examined, these faults 
and veins strike N30-50oW and dip steeply northeast or 
southwest, or are vertical. Horizontal striae were observed 
on one mineralized fault in Secret Canyon. Drusy quartz, as 
vein material or stockworks, is present, locally with calcite or 
adularia. The wall rocks adjacent to the veins are argillized 
or sericitized(?). Select vein samples contain up to 19 ppm 
Au and 29 ppm Ag (Tingley and Garside, 1999). Adularia 
from one prospect was dated at 17.8 Ma (OG-145, table 1), 
an age similar to rhyolitic magmatism at White Hill, 5 km to 
the southeast. 
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Mineral contents of igneous rocks were estimated visually from thin sections 
and rock slabs (which were stained for potassium feldspar). Igneous rock names 
are based on the IUGS classification (e.g., Le Maitre, 1989). Unit thickness 
estimated from the geologic map and topographic base map. Strikes and dips 
were averaged or rounded to the nearest 5o unless accuracy was better than 
that. Widths of narrowest dikes on map and cross sections were commonly 
exaggerated.

Contact   Dashed where approximately located, queried 
where uncertain, dotted where concealed, short dashes for 
contacts within units (between basalt flows and thin 
tuffaceous sedimentary units in Tps, at cooling breaks in Tsc 
and Tph, and separating probable landslide masses in Qls).

Fault   Showing dip, arrows show relative direction of 
movement, ball on downthrown side; dashed where 
approximately located, queried where uncertain, dotted 
where concealed.

Landslide scarp

Generalized open-pit outline (from Wilson and others, 
1999)

Lineament   Determined from aerial photography.

Vein   Showing dip. Quartz-calcite veins and silicified and 
argillized fault zones.
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Table 3. Chemical analyses of rocks from the Olinghouse Quadrangle and adjacent areas.

Sample OG-91b OG-60 OG-77 OG-153b OG-154 OG-1601 OG-54 OG-642 OG-731 OG-104 OG-1582 OG-143 OG-1592 OG-5a OG-127 OG-5b OG-31b OG-1562 OG-155b2 OG-120

Map symbol Tl Tdpi Tdp Tdp Tdp Tdp Tpt Tps Tps Tps Twh Thas Thas Tph Tph Tcs Tdm Tdm Tws Tsc
Rock name bas-and dacite dike dacite dacite dacite dacite rhyolite tuff andesite andesite basalt rhyolite dacite andesite rhyolite tuff rhyolite tuff rhyolite tuff rhyolite tuff dacite tuff rhyolite tuff rhyolitic tuff
W. Long. 119o 25.01' 119o 25.72' 119o 27.15' 119o 28.38' 119o 28.55'119o 28.55' 119o 27.63' 119o 25.98' 119o 20.47'119o 20.47'

39o 38.64' 39o 37.63'N. Lat.
 SiO2  56.84 67.95 69.47 68.01 71.09 68.21 75.95 57.26 57.64 51.80 75.71 64.32 61.42 71.64 68.19 75.56 71.88 69.43 74.84 65.17
 TiO2  1.06 0.43 0.45 0.45 0.37 0.44 0.14 0.78 0.79 1.65 0.11 0.51 0.70 0.34 0.55 0.22 0.39 0.46 0.15 0.65
 Al2O3 17.69 16.20 15.91 16.36 15.58 16.36 13.58 18.38 17.93 16.60 13.19 16.95 17.52 15.35 16.51 13.82 15.81 16.72 13.89 18.00
 FeO* 7.51 4.10 3.42 3.35 2.32 3.53 1.40 7.62 7.15 10.21 1.42 4.63 5.06 2.62 3.56 2.47 2.64 3.40 2.77 3.52
 MnO   
 MgO   

0.14 0.09 0.06 0.08 0.09 0.09 0.06 0.13 0.14 0.22 0.05 0.09 0.15 0.04 0.06 0.02 0.03 0.13 0.03 0.05
 3.23 1.26 0.59 1.21 0.83 1.03 0.24 3.58 3.28 4.99 0.25 2.57 2.67 0.47 1.22 0.27 0.42 0.48 0.22 0.95
 CaO   7.33 4.14 2.76 3.64 2.27 3.23 0.86 6.85 7.82 10.72 0.59 4.13 5.83 0.77 2.89 0.25 0.80 1.41 0.10 1.68
 Na2O  3.37 4.40 4.11 3.30 3.33 3.80 3.09 3.88 3.44 2.76 3.20 3.73 4.12 3.06 3.07 2.42 3.33 4.34 2.18 2.50
 K2O   2.52 1.21 3.02 3.39 3.91 3.10 4.58 1.24 1.60 0.40 5.38 2.80 2.21 5.52 3.74 4.88 4.49 3.52 5.70 7.27
 P2O5  0.31 0.21 0.20 0.21 0.21 0.20 0.10 0.28 0.20 0.65 0.10 0.26 0.31 0.20 0.21 0.10 0.21 0.10 0.10 0.21
LOI 0.52 3.62 0.84 2.13 1.99 1.34 3.50 0.43 0.21 4.19 1.18 1.05 2.92 1.38 2.06 1.23 1.60 1.76 1.06 3.24
Total** 99.16 99.12 99.25 99.09 99.16 99.51 99.37 100.29 99.71 100.45 100.67 98.88 100.50 99.38 99.97 99.17 99.27 100.21 99.97 100.29

Cr 78 6 6 17 10 40 19 19 40 189 4 33 57 <5 21 6 <5 7 25 <5
Ni 25 10 9 9 6 9 4 15 28 93 5 8 17 5 8 6 6 7 6 6
Cu 61 50 31 28 25 37 20 51 67 77 32 37 41 24 27 26 29 32 36 23
Zn 105 54 49 72 58 78 45 107 92 115 41 86 107 48 69 59 53 82 64 62
Ga 21 17 18 19 17 17 14 19 18 19 13 19 21 18 17 21 19 18 17 19
Rb 41 144 70 68 96 63 97 17 25 4 119 59 44 149 98 141 128 110 188 152
Sr 687 603 409 495 394 493 151 818 714 647 69 667 810 191 474 87 243 433 128 414
Y 26 13 12 14 13 14 11 21 19 33 10 17 16 23 14 42 19 18 22 18
Zr 242 196 189 190 177 185 98 128 132 209 90 166 180 218 186 264 251 261 219 217
Ba 966 1170 1280 1110 1140 1060 1180 618 672 545 245 1090 868 1250 1280 285 1330 1630 648 1450
Pb 40 40 30 50 50 40 30 30 70 50 40 30 40 30 40 40 30 30 30 40
Th 6 4 5 9 9 10 123 4 5 <4 13 5 9 15 14 23 17 15 23 14
Mo 20 21 13 12 12 17 17 21 20 18 23 21 18 12 13 13 14 20 23 8
U 2 2 2 2 <2 <2 <2 2 <2 3 <2 3 3 3 2 3 2 2 2 4

FeO*, total Fe calculated as FeO; if originally reported as Fe2O3, recalculated as FeO. Ten major oxide values normalized to 100% after recalculation of total Fe to FeO. Trace elements in ppm. Total** is sum of 10 major oxides before 
normalization; LOI = loss on ignition. Analyzed at NBMG Analytical Laboratory; analytical methods reported in Garside and others (2003, p. 4). 1 Derby Dam Quadrangle; 2 Wadsworth Quadrangle.  Bas-and = basaltic andesite

Table 1. K-Ar dates, Olinghouse Quadrangle.

Sample # Material Age (Ma) 1σ K2O (wt %) 40Arrad  (10-11 

mole/g)

40Arrad (%) Map symbol Map unit N. Lat. W. Long.

OG-163 whole rock 6.9 0.3 2.144 2.12393 25.7 Tl Lousetown Fm basalt 39o 38.64' 119o 28.10'
OG-164a hornblende 8.3 0.6 0.533 0.638956 9.2 Tdp dacite of Pond Peak 39o 38.62' 119o 28.40'
OG-165a hornblende 8.3 0.8 0.521 0.624136 6.8 Tdpi dacite of Pond Peak 39o 37.63' 119o 25.72'
OG-54 biotite 11.7 0.4 6.47 1.09020 73 Tpt tuff, Pyramid sequence 39o 38.04' 119o 25.98'
OG-167 sericite 12.0 0.4 7.79 13.50868 51.3 sericitized biotite in Tdm 39o 41.86' 119o 22.71'
OG-145 adularia 17.8 0.5 12.3 31.6054 73.8 quartz-calcite vein 39o 43.46' 119o 24.15'
OG-143 hornblende 20.3 0.7 0.662 1.94346 14.7 Thas hornblende andesite of Stud Horse Canyon 39o 43.53' 119o 24.85'

Analyses by E.H. McKee, U.S. Geological Survey (except for AD-15 and AX-19). Reported in Garside and others (2000, Appendix 1).
1 Data from Bonham and Papke (1969, appendix A, table 25); age recalculated.
2 Analytical data from Geochron Laboratories (1968); location from Stewart and others (1994, locality J4).

AD-151 whole rock 14.7 1.5 1.27 2.7125 46.1, 49.4 basalt, Pyramid sequence 39o ~42.9' 119o ~24.4'
AX-192 biotite 13.3 0.7 7.02 1.3525 26.8, 14.9 Tpt

Tps
tuff, Pyramid sequence 39o ~38.1' 119o ~26.3'

Table 2. 40Ar/39Ar Age Data, Olinghouse Quadrangle. 

Step Heating

Sample # Map symbol Rock type N. Lat. W. Long. Mineral

Sample # Map symbol Rock type N. Lat. W. Long. Mineral

mg

Ma

Plateau Age1 Isochron Age1 Total Gas Age

±2σ %
39

Ar
2

mswd Ma ±2σ
40

Ar/
36

Ar ±2σ mswd Ma ±2σ
OG-220b quartz-calcite vein 39o 40.15' 119o 25.21' adularia 20.2 10.52 0.04 73.5 1.12 10.53 0.04 284.0 6.0 2.5 10.59 0.06
OG-221 Thd hornblende dacite 39o 39.95' 119o 24.91' hornblende 16.3 10.51 0.24 96.4 1.24 10.42 0.24 301.0 6.0 1.0 10.58 0.42
OG-285 Tps basalt flow 39o 43.71' 119o 27.17' whole rock 26.7 13.11 0.09 62.0 1.40 12.79 0.32 302.5 4.2 1.0 13.39 0.16
OG-273 Thaf hornblende andesite 39o 42.81' 119o 23.87' hornblende 27.2 22.39 0.16 53.2 2.50 20.15 0.68 311.7 8.2 1.8 26.13 0.30

Single Crystal

Weighted mean ±2σ n mswd

OG-247 Twh rhyolite intrusive 39o 41.56' 119o 22.70' Sanidine 17.75 0.05 9 0.64

Decay constants and isotopic abundances after Steiger and Jäger (1977); λβ= 4.963 x 10-10 yr-1; λε+ε,= 0.581 x 10-10 yr-1; 40K/K = 1.167 x 10-4  

2 %39Ar = percent 39Ar used in plateau

Samples were analyzed at the New Mexico Geochronological Research Laboratory (OG-220b, OG-221, OG-247; methodology in McIntosh and others, 2003) and at the Nevada lsotope Geochronology 
Laboratory (OG-285, OG-273; Justet and Spell, 2001; Leavitt and others, 2004). Samples were irradiated at the Nuclear Science Center, College Station, TX. Neutron flux monitor Fish Canyon Tuff 
sanidine (FC-1); assigned age = 28.02 Ma (Renne and others, 1998).

1 Ages in bold are best estimates of igneous or alteration age; ages in regular type are alternative age calculations. For three of the four samples, plateau and isochron ages agree 
within analytical uncertainty.  The ages of adularia from OG-220b and hornblende from OG-221 are indistinguishable at 10.5 Ma. The absolute difference between plateau and 
isochron ages of sample OG-285 is large but still within analytical uncertainty because of the large uncertainty in the isochron age. Based on regional age patterns for basalts of the 
Pyramid sequence, 13.1 Ma is probably the best estimate. The isochron age of 20.15±0.68 Ma is probably the best estimate of the age of sample OG-273, even though the sample 
also gives a plateau encompassing three steps and 53.2% of the 39Ar. The U-shaped age spectrum for this sample suggests excess 40Ar, which is consistent with the high    
initial 40Ar/36Ar of 312 (C.D. Henry, written commun., 2006).

–
–

39o 38.62' 39o 38.62' 39o 37.66' 39o 37.43' 39o 38.08' 39o 38.10' 39o 37.37' 39o 41.27' 39o 41.46' 39o 43.53' 39o 41.46' 39o 40.50' 39o 43.35' 39o 40.39'
119o 23.81' 119o 22.92' 119o 22.45' 119o 24.85' 119o 22.19' 119o 23.01' 119o 23.86' 119o 23.00'

39o 40.41' 39o 41.54' 39o 41.46' 39o 43.80'
119o 22.77' 119o 22.23' 119o 21.93' 119o 29.67'
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