Assessment of Geothermal Resources of the United States—1975

GEOLOGICAL SURVEY CIRCULAR 726

Prepared in cooperation with the Energy Research and Development Administration

Assessment of Geothermal Resources of the United States—1975

D. E. White and D. L. Williams, Editors

GEOLOGICAL SURVEY CIRCULAR 726

Prepared in cooperation with the Energy Research and Development Administration

United States Department of the Interior

CECIL D. ANDRUS, Secretary

Geological Survey H. William Menard, *Director*

Library of Congress catalog-card No. 75-600076

First printing 1975 Second printing 1975 Third printing 1976 Fourth printing 1979

Free on application to Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, Va. 22202

CONTENTS

	Page
Introduction, by D. E. White and D. L. Williams	1
Hydrothermal convection systems, by J. L. Renner, D. E. White, and D. L. Williams	5
Igneous-related geothermal systems, by R. L. Smith and H. R. Shaw	58
Temperatures and heat contents based on conductive transport of heat, by W. H.	
Diment, T. C. Urban, J. H. Sass, B. V. Marshall, R. J. Munroe, and A. H.	
Lachenbruch	84
Geothermal resources in hydrothermal convection systems and conduction-domi- nated areas, by Manuel Nathenson and L. J. P. Muffler	104
Recoverability of geothermal energy directly from molten igneous systems, by	
D. L. Peck	122
Assessment of onshore geopressured-geothermal resources in the northern Gulf	
of Mexico basin, by S. S. Papadopulos, R. H. Wallace, Jr., J. B. Wesselman,	
and R. E. Taylor	125
Appendix, discussion of data used	141
Summary and conclusions, by D. E. White and D. L. Williams	147

ILLUSTRATIONS

FIGURE	1.	Map showing location of hydrothermal convection systems in the conterminous United States
		with indicated subsurface temperatures above 150°C
	2.	Map showing location of hydrothermal convection systems in Alaska and Hawaii with indicated subsurface temperatures above 150°C and between 90° and 150°C
	3.	Map shoping location of hydrothermal convection systems in the conterminous United States with indicated subsurface temperatures between 90°C and 150°C
	4.	Graph of theoretical cooling time versus volume for magma bodies
	5.	Map showing identified volcanic systems in the conterminous United States
	6.	Map showing identified volcanic systems and basaltic lava fields known to be less than 10,000 years old in Alaska and Hawaii
	7.	Map showing basaltic lava fields known to be less than 10,000 years old in the conterminous United States
	8.	Histogram of heat-generation values obtained in connection with q-A
	9.	Map of observed heat-flow (q) measurements in the United States
	10.	Map of reduced heat-flow (q*) measurements in the United States
	11.	Map showing probable extent of hot, normal, and cold crustal regions
	12.	Graph of temperature profiles for various types of provinces
	13.	Maps showing locations of hydrothermal convection systems with temperatures above 90°C and stored heat greater than or equal to 0.3×10^{15} cal
	14.	A, Graph showing electric power per well as a function of mass flow for various temperatures of hot-water and vapor-dominated systems; B, Graph showing electric power per well as a function of value needed to pay for the well for various well costs
	15.	Location map showing the extent of the assessed geopressured zones and their division into subareas
	16.	Graphs showing variation of well spacing with the ratio of flow rate to the 20-year formation drawdown for each of the conceptual reservoirs

TABLES

.

.

TABLE	1	Categories of goothermal resource hase
	2	Metric units used in this volume
	3 .	Identified vapor-dominated systems of the United States with probable subsurface temperatures exceeding 200°C
	4.	Identified hot-water convection systems with indicated subsurface temperatures above 150°C
	5. 6	Identified hot-water convection systems with indicated subsurface temperatures from 90° to 150°C
	7	Magnitudos ou bost contentia of identified relevante contenta
	Q.	Basia valoania folda probably lorg them 1000 room old
	Q.	Basic votant betweet probably less than 10,000 years of
	10	Deficit of temperature below a high-conductivity layer
	11	Basic calculations temperatures Tay at donthe a for various assumed values of at and A
	12	Heat stored in the denth intervals 0.2 km and 2.10 km
	13.	Heat stored heneath provinces in the denth intervals 0-3 km and 3-10 km
	14.	Heat content shove mean annual surface temperature of the continental crust
	15.	Recovery factors (e.) for electrical nowar generation
	16.	Estimated potential electric energy from identified high-temperature hydrothermal convection sys-
	17.	Typical values for electric energy produced per kilogram of reservoir fluid (w_{act}) as a function of source temperatures
	18.	Drilling cost model
	19.	Resources of hydrothermal convection systems for the generation of electrical power in megawatt
	20.	Intermediate-temperature hydrothermal convection systems with stored heat greater than or equal to 0.3×10^{18} cal
	21.	Areal extent and average pressure, temperature, and salinity conditions in each subarea
	22.	Assumed thickness and properties of sand and shale beds in idealized "conceptual reservoirs"
	23	Calculated aquifer parameters and water properties used in this study
	24.	Assessment of the "fluid resource base"
	25.	Assessment of "recoverable energy" under the assumed basic development plan, Plan 1
	26.	Estimated heat content of geothermal resource base of the United States
	27.	Geothermal resources of hydrothermal convection systems
	28.	Geothermal resources of geopressured sedimentary environments

Assessment of Geothermal Resources of the United States-1975

Introduction

By D. E. White and D. L. Williams

Over the past 10 years, various individuals and organizations have made estimates of the geothermal resources of the United States (White, 1965; Grossling, 1972; Rex and Howell, 1973; Hickel, 1973; Natl. Petrol. Council, 1973). These estimates have differed by several orders of magnitude. This wide variation has been due in part to lack of or differing assumptions regarding technology and economic conditions, but much of the uncertainty has been caused by an inadequate understanding of the nature and extent of the resources themselves.

Although future technology and economic conditions continue to be difficult to predict, considerable progress has been made during the past few years toward a better understanding of the resources—enough to improve significantly the basis for a comprehensive assessment of the magnitude, distribution, and recoverability of various categories of geothermal resources within the United States. The new assessment presented here is appropriate in light of this improved understanding and is designed to help Government and private industry to evaluate the present and future significance of these resources during their consideration of problems and opportunities for the development of geothermal energy.

Although these new resources estimates rest on a much improved scientific base, they should not be taken as final appraisals that are valid indefinitely into the future. They are limited by the data available to us early in 1975 and will need to be revised at appropriate times as more data and better methods of evaluation become available. A format has been chosen that is amenable to revision. This assessment of geothermal resources differs from previous resource statements in that it tabulates each identified system or subdivision of the major resource categories of table 1, listing the parameters assumed in calculating volumes, heat contents, and recoverabilities. As technology, economic conditions, and our knowledge of specific systems change, any of the variables may be changed to arrive at updated assessments.

Resource-related terms used in this circular are defined as follows:

- Geothermal resource base includes all of the stored heat above 15°C to 10 km depth in all 50 states.
- Geothermal resources are defined as stored heat, both identified and undiscovered, that is recoverable using current or near-current technology, regardless of cost. Geothermal resources are further divided into three categories based on cost of recovery:
 - (1) Submarginal geothermal resources, recovable only at a cost that is more than two times the current price of competitive energy systems;
 - (2) Paramarginal geothermal resources, recoverable at a cost between one and two times the current price of competitive energy; and
 - (3) Geothermal reserves, consisting of those identified resources recoverable at a cost that is competitive now with other commercial energy sources.

Undiscovered resources that are economically recoverable are not differentiated in this report but would be the economic equivalent of reserves.

The first sections of this assessment of geo-

thermal resources include our estimates of the total resource base, subdivided into categories of geothermal systems (table 1). The different categories are related to the fact that, although temperature generally increases with depth below the surface of the Earth, the relative rates of increase differ from place to place, depending on the local subsurface geology and hydrology. Depth below ground surface is an important factor in determining the cost of utilization, so we have arbitrarily limited our calculations of the resource base to two depth ranges: surface to 3 km (roughly the maximum depth yet drilled for geothermal energy) and from 3 to 10 km (roughly the maximum depth yet drilled in search for oil and gas).

The hydrothermal convection systems of categories 1a and 1b(1) (table 1) include all areas that are presently being utilized or explored for generation of electricity; the systems of category 1b(2) are attractive for nonelectrical space and process heating. The relatively high favorability of these systems is due to the fact that convection of water (or steam) transfers heat from the hot deep parts of a system to its near-surface parts. Thus, higher temperatures are attainable in shallower wells at lower costs than in normal temperature-gradient areas where heat is transferred dominantly, if not entirely, by conduction through solid rock. The presence of steam or water as a natural working fluid is an additional major advantage of the convection systems, but the locally available quantity may not be adequate for production on a commercial scale. Systems with assumed maximum temperatures below 90°C are omitted from our tabulations because adequate data are generally lacking, but many are listed by Waring (1965).

The hot igneous systems of category 2 provide challenges for major future utilization. Of all categories, those with molten magma at temperatures above 650°C (and in part as high as $\sim 1,200$ °C, depending on type of magma) contain the most stored heat per unit of volume or mass; however, the technological problems of utilizing this heat are the most difficult for all categories. These large young magma systems are especially attractive targets for exploration, and their existence accounts for many of the known highly favorable hydrothermal convection systems. The hot dry rocks of category 2b may not always be as hot or as dry at shallow and intermediate depths as generally envisioned because hydrothermal convection in natural fractures may be more common than is indicated from surface evidence.

Category 3 includes the conduction-dominated regions that underlie most of the United States and that constitute by far the largest part of the total resource base. The volumes of rock involved are huge, but average temperatures are low. Convection of natural fluids is a minor factor in many of these conduction-dominated areas. Of special note in this category is the geopressured environment of the gulf coast; the term "fluid resource base" denotes only the fluid part of the total geothermal resource base of the gulf coast.

The later sections of this assessment consider the parts of the resource base that may be available for recovery and utilization, depending on various physical, economic, and technological constraints. Reliable estimates of recoverability are more difficult to derive than are the estimates of the resource base because of the great uncertainties of future prices, technologies, and governmental and environmental considerations and the natural physical properties of the deep subsurface.

National parks have been given special status in this geothermal assessment. Some national parks and national monuments were created because of their young or active volcanism or be cause of their spectacular geysers and hot springs, which are the surface evidence of high-temperature convection systems (Yellowstone, Lassen, Crater Lake, Mount Rainier, Hawaii Volcanoes, and Katmai). The parks are included in estimates of the resource base (they are in the United States, and they do have much heat in the ground), but they have been excluded from all considerations of recoverability and utilization. Geothermal exploitation of Wairakei, New Zealand, and Beowawe Geysers, Nevada, has diverted the natural water supply into wells and has destroyed the hot springs and geysers. These hotwater systems clearly cannot sustain both natural activity and exploitation. The vapor-dominated systems (Larderello, Italy, and The Geysers, California) are not so immediately sensitive, but long-range destruction of the natural activity by exploitation is equally certain.

Conversion factors from the metric system of units to English units and explanations of some

Table 1.—Categories of geothermal resource base (heat in the ground at temperatures above 15° C to specified depths and without regard for recoverability)

	1.	Hydrothermal c (relatively hi at shallow dep estimated only see Renner and volume).	onvection systems gh temperatures ths; heat content to 3 km depth; others, this	Temperature <u>Characteristics</u>	Natural fluid supply
		a. Vapor-domi	nated systems	∿240°C	Available; not always adequate.
		b. Hot water	systems		
		(1) High-	temperature systems	>150°C	Available; not always adequate.
		(2) Inter	mediate-temperature sy	stems 150°C to ∿90°C	Available; not always adequate.
		(3) Low-t (not Warir	emperature systems tabulated; many in ng, 1965)	<90°C	Available; not always adequate.
	2.	Hot igneous sy hydrothermal o in (1) above; mated from 0 t Smith and Shaw	vstems (excluding convection systems heat content esti- to 10 km depth; see v, this volume).		
		a. Assumed pa	art still molten	>650°C	Inadequate.
		b. Assumed no ("hot dry	ot molten but very hot rocks")	<650°C	Generally inadequate.
	3.	Conduction-dou flow province data on heat production, a of rocks; hea 0 and 3 and 3 Diment and ot category incl pressured env fraction spec Papadopulos a	ninated areas (by heat- s, utilizing available flows, radiogenic heat nd thermal conductivity t contents estimated fo to 10 km depth; see hers, this volume. Thi udes the Gulf Coast geo ironment with its fluid ially considered by nd others, this volume.	15° to ∿300°C or s 1	Adequate in parts of sedimentary basins, generally inadequate else- where.
terms i	n th	is report are s	shown in table 2.	Hickel, W. J., 1972, G	eothermal energy; Geo Conforonco Final rei

ACKNOWLEDGMENT The work of this assessment was carried out

,

by the U.S. Geological Survey's Geothermal Research Program with encouragement and funding from the Energy Research and Development Administration. Its support made it possible to accomplish this assessment at an accelerated pace.

REFERENCES CITED

Grossling, B. F., 1972, An appraisal of the prospects of geothermal energy in the United States, *in* U.S. energy outlook: Natl. Petroleum Council, Washington, D.C., Chap. 2, p. 15–26.

- Hickel, W. J., 1972, Geothermal energy; Geothermal Resources Research Conference Final rept., Univ. of Alaska Press, 95 p.
- National Petroleum Council, 1973, U.S. energy cutlook new energy forms: Washington, D.C., U.S. Govt. Printing Office, 9 p.
- Rex, R. W., and Howell, D. J., 1973, Assessment of U.S. geothermal resources, *in* Kruger, Paul, and Otte, Carel, Geothermal energy, resources, production, stimulation: Stanford, Calif., Stanford Univ. Press, p. 59-60.

Waring, G. A., 1965, Thermal springs of the United States and other countries of the World—A summary: U.S. Geol. Survey Prof. Paper 492, 383 p.

White, D. E., 1965, Geothermal energy: U.S. Geol. Survey Circ. 519, 17 p.

Table 2.—Metric units used in this volume, conversion factors to other units, and some assumed values for physical parameters.

Length:	1 meter (m) = 3.281 ft; 1 kilometer (km) = 3,281 ft = 0.6214 mi; 1 centimeter (cm) = 0.3937 in. = 6.214×10^{-6} mi.
Area:	$1 \text{ km}^2 = 10^6 \text{m}^2 = 0.3861 \text{ mi}^2 = 247.1 \text{ acres.}$
Volume:	$1 \text{ km}^3 = 0.239 \text{ mi}^3 = 10^{12} \text{e}; 1 \text{ liter (e)} = 0.2642 \text{ gal}; 1 \text{e/} \text{min} = 5.886 \text{ x } 10^{-4} \text{ ft}^3/\text{sec.}$
Temperature:	°C = 5/9 (°F - 32); 0°C = 235.15°K.
Temperature gr	adient: $1^{\circ}C/km = 10^{-3} \cdot C/m$ rate of increase in temperature with depth: conductive gradient is directly proportional to heat flow and inversely proportional to thermal conductivity of the rocks.
Pressure:	l bar = 0.9869 atm = 1.020 kg/cm ² = 14.50 psi = 10^{6} dynes/cm ² = 0.1 meganewtons/m ² . All pressures absolute, with 1.01 bar added to gage pressure at sea level and geothermal areas at low altitudes.
Heat/power:	l cal = 4.186 joules = 3.9685×10^{-3} BTU = 0.001 kcal = 0.00116 watt h; l cal/g = 1.80 BTU/1b. 1 MW (electric)·century = 7.53 x 10 ¹⁴ cal (thermal)/e _c , where e _c is conversion efficiency.
	Coal assumed to have a potential heat content of 7.2 x 10^3 cal/c. A barrel of petroleum (42 gal) assumed to have potential heat of combustion of 1.45 x 10^9 cal = 5.8 x 10^6 BTU = 0.223 short tcrs coal. In this volume, heat contents stated in units of 10^{18} cal, with each unit equivalent in heat content of 690 million barrels of petroleum or 154 million short tons of coal.
Heat flow:	1×10^{-6} cal/cm ² sec = 4.19 x 10^{-2} W/m ² (watts per sq. meter); the world-wide average conductive heat flow is approximately 1.5 x 10^{-6} cal/cm ² sec
Thermal conduct	tivity: 1 x 10 ⁻³ cal/cm sec °C = 0.418 W/m°K.
Mass:	$1 \text{ g} = 10^{-3} \text{ kg} = 10^{-6} \text{ metric ton} = 2.20 \text{ x } 10^{-3} \text{ 1b} = 1.103 \text{ x } 10^{-6} \text{ short ton.}$
Volumetric spec	cific heat of pure water at standard temperature and pressure is 1.0 cal/cm ^{3°} C and of average rocks, assumed 0.6 cal/cm ³ /"C. Heat in granite magma at 900°C, crystallizing and cooling to \sim 15"C assumed to release \sim 300 cal/g or \sim 7 x 10 ¹⁷ cal/km ³ ; equivalent heat in molten basalt at 1,100°C is \sim 375 cal/g.

Hydrothermal Convection Systems

By J. L. Renner, D. E. White, and D. L. Williams

In hydrothermal convection systems, most of the heat is transferred by the convective circulation of water or steam rather than by thermal conduction through solid rocks. Convection occurs in rocks of adequate permeability because of the buoyancy effect of heating and consequent thermal expansion of fluids in a gravity field. The heated fluid tends to rise, and the more dense, cooler fluid tends to descend elsewhere in the system. Convection, by its nature, tends to increase temperatures at higher levels as temperatures at lower levels decrease below those that would otherwise exist.

Worldwide experience gained from geothermal exploration of hydrothermal convection systems indicates that most systems contain liquid water as the dominant pressure-controlling fluid in fractures and pores. Wells drilled into such systems normally deliver at the wellhead a mixture of liquid water and 10 to 30 percent of steam, which forms in the well bore as pressures decrease upward. In a few systems, however, such as Larderello, Italy, and The Geysers, California, wells produce saturated or even superheated steam, typically with no associated liquid. Moreover, inhole pressures measured in shut-in wells of these systems normally increase only slightly with depth within the reservoir; the increase in pressure is equivalent to that of a column of steam and associated gases and is much less than the pressure gradient in a column of water. Pressures in these relatively rare systems evidently are controlled by vapor rather than by liquid, and thus the systems are called vapor-dominated systems.

VAPOR-DOMINATED SYSTEMS

There is still divided opinion on the origin and fundamental characteristics of vapor-dominated geothermal systems and on why they differ so much in their production characteristics from the more abundant hot-water systems (Truesdell and White, 1973). All successful wells in the Gevsers field, the outstanding example of this type of system in the United States, produce saturated or slightly superheated steam containing little or no liquid water and only a small percentage of other gases. Some successful wells initially discharge some water that dries up to pure vapor with time. In-hole temperatures prior to much production tend to be close to 240°C if reservoir depths are greater than about 400 m; initial wellhead pressures are close to 34 bars (James, 1968; Ramey, 1970; White and others, 1971). These characteristics are generally accepted as typical of the deeper "virgin" parts of The Geysers. Larderello, Italy, and Matsukawa, Japan.¹

The stored heat of the reservoir rocks is probably 85 percent or more of the total heat in the vapor-dominated systems (Truesdell and White, 1973). Production of steam from a reservoir results in a decline in pressures; consequently, water in the pores boils to steam, utilizing heat stored in the reservoir rocks.

Many aspects of vapor-dominated systems are

¹Other types of vapor-dominated systems exist, such as those near Monte Amiata, Italy (lower in temperature and much higher in gases other than steam; White, 1973, p. 87, 88; Truesdell and White, 1973), and those found in shullow regimes between ground surface and the water table under local topographic highs of hot-water systems. But in this report, the term "vapor dominated" refers to high-temperature low-gas systems such as The Geysers and Larderello.

not well understood, and critical observations within and below the reservoirs either have not been made, or the data have not yet been released by the operating companies. Our interpretations, however, favor steam as the continuous pressurecontrolling fluid in the reservoir, but with liquid water being locally available in small pore spaces and on fracture surfaces. Because of surface tension, this water cannot be drained completely by gravity. Below the vapor-dominated reservoir, we envision a deep water table with underlying rocks saturated with water, probably a highchloride brine (Truesdell and White, 1973). Estimates of reserves and resources of vapor-dominated systems (Nathenson and Muffler, this circular) are based on this model.

Vapor-dominated systems are considered to develop initially from hot-water systems that have a very large supply of heat but a very low rate of recharge of new water. If the heat supply of a developing system becomes great enough to boil off more water than can be replaced by recharge, a vapor-dominated system starts to form. The fraction of discharged fluid that exceeds recharge is supplied from water previously stored in large fractures and pore spaces. Heat, supplied by condensation of rising steam, is conducted outward from the near-surface, nearly impermeable margins of the reservoir and thus accounts for the high conductive heat flows of these systems. The liquid condensate is in excess of the liquid that can be retained by surface tension; the excess drains downward under gravity to the hypothesized deep water table where it is available for recycling along with newly recharged water.

Our model requires that fluid in excess of that provided by recharging water must be discharged from the system. This feature has important consequences, if true, in that it requires identifiable vent areas. A small vapor-dominated system perhaps could discharge some steam and other gases into surrounding liquid-saturated ground with no conspicuous surface evidence for its existence, but we are skeptical that a large system with high total heat flow and high rate of discharge of steam and other gases can remain concealed without developing the prominent vent areas that characterize all known vapor-dominated systems of this type. The low-temperature, high-gas systems similar to Monte Amiata, Italy (White, 1973, p. 86–87), probably have impermeable cap rocks and little or no surface evidence. Such systems can be considered as thermal natural-gas fields that are high in CO_2 and H_2S , relatively low in temperature, and at least in part characterized by water drive.

Identified systems

The Geysers, California, is the only example of a large vapor-dominated system extensively drilled in the United States (table 3). The extent of the field is not yet known, but the drilling pattern established by more than 100 wells suggests that the commercial limits may have been attained a little northwest of the Sulphur Bank section (about 2 km northwest of the first producing wells at The Geysers). Step-out wells have shown the field to extend at least 31/2 km north and $2\frac{1}{2}$ km southwest of the first wells. Drilling is not yet complete to the southeast, but a belt 2 to 5 km wide, 15 km long, and about 70 km² in total area is our present estimate of the extent of the field. Most commercial wells are $1\frac{1}{4}$ to 21/2 km deep, ranging from about 0.2 km in some of the early wells to a present maximum near 3 km. The heat reservoir is assumed to be continuous between 1 and 3 km in depth; thus, its assumed volume is 140 km³. If the average temperature is 240°C, as we assume, then the estimated total heat content is 18.9×10^{18} cal.

The Mud Volcano system in Yellowstone Park was first recognized by its surface characteristics and geochemistry as a probable vapor-dominated system and later confirmed by a single research drill hole (White and others, 1971). The area of surface activity is about 5 km². Resistivity data (Zohdy and others, 1973) suggest that the vapordominated part extends to a depth of 1 to $1\frac{1}{2}$ km and is underlain by a better electrical conductor, presumably a deep water table. The vapor-dominated part is assumed to extend from 0.2 to 1.5 km in depth, and its calculated volume is 6.5 km³. If its average temperature is 230°C, then its estimated heat content is ~0.8 $\times 10^{18}$ cal.

Outlook for new discoveries

All recognized vapor-dominated systems of the Larderello type are characterized by prominent vent areas with bleached rocks, scanty vegetation, acid-sulfate springs, and no closely associated chloride waters. If these systems do require such vent areas, then few similar unrecognized systems exist for future discovery. The principal possibilities known to us are in Yellowstone National Park and Mount Lassen Volcanic National Park.

Yellowstone Park includes several possible systems other than the Mud Volcano system. The rather young sinter of the Mud Volcano system (White and others, 1971) indicates evolution from a hot-water system soon after the last glacial stage (about 10,000 years ago). This evidence, combined with the resistivity data that suggest a relatively small system saturated with water at depths below about 11/2 km, implies a still-evolving system. During the last glacial stage, thick glacial ice and consequent deep meltwater lakes over the thermal areas may have provided high water pressures that resulted in much recharge down the present discharge channels, thereby insuring a water-saturated system. Thus, a vapor-dominated system may become a hot-water system during glaciation. If this is so, then other systems in Yellowstone Park may also have shallow vapor-dominated reservoirs that are still developing.

The thermal activity within the boundaries of Mount Lassen Volcanic National Park has the characteristics of vapor-dominated systems, with chloride waters being completely absent. However, the Morgan Spring group, just outside of the park and about 8 km south of the thermal activity in the park, is a high-temperature chloride-water system that discharges at an altitude of $\frac{1}{2}$ to 1 km below the surface springs in the park. Morgan Springs may be draining the deep chloride part of a large vapor-dominated system within the park.

HOT-WATER SYSTEMS

General characteristics

Hot-water systems (White, 1973) are dominated by circulating liquid, which transfers most of the heat and largely controls subsurface pressures (in contrast to vapor-dominated systems). However, some vapor may be present, generally as bubbles dispersed in the water of the shallow low-pressure parts of these systems.

Most known hot-water systems are characterized by hot springs that discharge at the surface. These springs, through their chemical composition, areal distribution, and associated hydrothermal alteration, have provided very useful evidence on probable subsurface temperatures, volumes, and heat contents. However, springs cannot discharge from convection systems that are capped by impermeable rocks or that exist where the local water table is below the ground surface. Both of these exceptions exist, and many other examples are likely to be discovered.

The temperatures of hot-water systems range from slightly above ambient to about 360° C in the Salton Sea system and the nearby Cerro Prieto system of Mexico. For convenience in this assessment, hot-water convection systems are divided into three temperature ranges: (1) above 150° C (table 4 and figs. 1 and 2); these systems may be considered for generation of electricity; (2) from 90°C to 150° C (table 5 and figs. 2 and 3); these systems are attractive for space and process heating; and (3) below 90° C (not tabulated); these systems are likely to be utilized for heat only in locally favorable circumstances in the United States.

Direct temperature measurements are made either in surface springs or in wells. The temperatures of springs generally do not exceed the boiling temperature at existing air pressure (100°C at sea level to 93°C for pure water at an altitude of $\sim 2,200$ m), although some springs in Yellowstone Park and elsewhere are superheated by 1° to 2°C. At depth in wells, where pressures are much higher, the boiling temperature is also much higher. Wells that tap water initially at temperatures above surface boiling yield a mixture of water and steam ("flash" steam), with proportions depending mainly on the initial water temperature and the pressure in the steamwater separator. For example, water flashed from 300°C to a separator pressure of 4.46 bars (50 lb/in^2), near a common operating pressure, yields 33 percent steam; 200°C yields 11 percent, but 150°C (just at boiling for the pressure) yields none (Muffler, 1973, p. 255, fig. 28). Obviously the favorability of a hot-water system for generation of electricity from flashed steam increases rapidly above 150°C. Binary systems may allow utilization of somewhat lower temperatures for generation of electricity.

The waters of these systems range from very low salinity to brines of extreme salinity. The most common range is from 0.1 to 1 percent

L	ocation	Temperatures °C				
Name	Lati- tude N	Longi- tude	Sur- face	Geochemical	Sub- sur- face	
		W	<u>1</u> /	<u>2/</u> SiO ₂ Na-K-Ca	<u>3</u> /	
The Geysers, CA	38 48	122 48	101	(not applicable)	∿240	
Mt. Lassen Nat'l Park, CA	40 26	121 26	95 <u>‡</u>	(not applicable)	∿240	
Mud Volcano system Yellowstone Nat'l Park, Wyoming	44 37.5	110 26	∿90	(not applicable)	∿230	
Totals for 3 system	IS					

Table 3.-Identified vapor-dominated systems of the United States

Note: Yellowstone and Mt. Lassen National Parks permanently withdrawn from exploitation.

 $\frac{1}{Maximum}$ surface temperature reported from a spring or well. $\frac{2}{P}$ Predicted using geothermometers, assuming last equilibration in the reservoir.

 $\underline{3}$ /Average reservoir temperature based on geothermometry unless otherwise noted in comments.

Rese	rvoir As	sumptions		Comments
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸	
	km <u>5</u> /	km³ <u>6</u> ∕	ca1 <u>7</u> /	
70	2.0	140	18.9	Area may range from 50 to 100 km ² ; bottom of reservoir may extend below assumed -3 km. >100 well's drilled by early 1975. Present heat production ~80 times estimated natural heat flow.
∿ 47	1.0	47	6.3	Likely to be a vapor-dominated system but not confirmed.
5	1.3	6.5	0.8	Reservoir assumed ~0.2 to 1.5 km thickness underlain by hot-water system indicated by resistivity survey.
122		∿194	∿26	

with probable subsurface temperatures exceeding 200 °C

<u>4</u>/From surface manifestations, geophysical data, well records and geologic inference. Assume $\sim 1.5 \text{ km}^2$ if no data pertinent to size is available. <u>5</u>/Top assumed at 1.5 km of no data on depth available. Bottom assumed to be-3 km for all systems.

6/Calculated from area and thickness.

7/Calculated as product of assumed volume, volumetric specific heat of 0.6 cal/cm³°C, and temperature in degrees above mean annual surface temperature (assumed to be 15°C).

I	Temperatures °C					
Name	Lati- tude N	Longi- tude	Sur- face	Geochemical		Sub- sur- face
			1/	<u>2/</u> Si0 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>
ALASKA						
Geyser Bight	53 13	168 28	100	210	236	210
Hot Springs Cove	53 14	168 21	8 9	131	154	155
Shakes Springs	56 43	132 02	52	142	175	155
Hot Springs Bay	54 10	165 50	83	152	179	180
ARIZONA						
Power Ranch Wells	33 17.1	111 41.2				180

Table 4.-Identified hot-water convection systems

^{1/} 2/

Maximum surface temperature reported from a spring or fumarole. Predicted using chemical geothermometers, assuming last equilibration in the reservoir; assumes saturation of SiO₂ with respect to quartz, and no loss of Ca from calcite deposition. Assumed average reservoir temperature based on data presently available. From surface manifestations, geophysical data, well records and geologic inference. Assumes 1.5 km² if no data pertinent to size is available. Top assumed at depth of 1.5 km if no data available. Bottom assumed at 3 km depth for all convection systems. Calculated from assumed area and thickness. Calculated as product of assumed volume, volumetric specific heat of 0.6 cal/cm³ °C, and temperature in degrees C above 15°C.

^{3/4/5/5/7/}

Rese	rvoir As	sumptions		
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	Comments
km² <u>4/</u>	km <u>5</u> /	km³ <u>6</u> ∕	<u> </u>	
_		_	_	
4	2	8	.9	22 springs and geysers in 3 thermal areas in 2 km long zone, near Okmok Caldera; siliceous sinter deposit.
2	2	4	.3	Hot springs and geysers in area about 1 km ² near Okmok caldera.
1.5	1.5	2.25	.2	Several springs discharging ∿380 lpm; chemical data not reliable.
1.5	1.5	2.25	.2	Hot springs and fumaroles on active Akutan volcano.
2.5	(?) 1	2.5	.2	No natural springs; two wells ∿1 km apart drilled to 3 km depth with bottom-hole tem- peratures of 163°C and 184°C; discharge esti- mated 19,000 1/min. from below 2 km.

with indicated subsurface temperatures above $150 \,^{\circ}C$

. •

•

	Location					Temperatures °C				
Name	Lati- Longi- tude tude N W		Sur- face	Geochemical		Sub- sur- face				
			<u>1</u> /	<u>2/</u> S10 ₂	2/ Na-K-Ca	<u>3</u> /				
CALIFORNIA										
Surprise Valley	41 40	120 12	97	174	1 <u>5</u> 9	175				
Morgan Springs	40 23	121 31	95	190	229	210				
Sulphur Bank mine	39 01	122 39	80	181	157	185				
Calistoga	38 34.9	122:34.4		157	155	160				
Skagg's H.S.	38 41.6	123 01.5	57	150	153	155				
Long Valley	37 40	118 52	94	219	238	220				
Red's Meadow	37 37	119 04.5	49	161	130	165				
Coso H.S.	36 03	117 47	95	161	238	220				
Sespe H.S.	34 35.7	118 59.9	90	133	155	155				
Salton Sea	33 12	115 36	101			340				
Brawley	33 01	115 31				200				
Heber	32 43	115 31.7				190				
East Mesa	32 47	115 15				180				
Border	32 44	115 07.6				160				

Table 4.--Identified hot-water convection systems with

Reser	eservoir Assumptions				
Sub- sur- face area	- Thick- Vol- Heat - ness ume con- e tent a 10 ¹⁸		Heat con- tent 10 ¹⁸	Comments	
km² <u>4</u> /	km <u>5</u> /	km ³ <u>6</u> /	<u>7/</u>		
125	2	250	24	7 spring groups, in area of hydrothermal ex- plosion, 1951; minor sinter, 4 wells drilled; maximum reported 160°C, mixing models as high as 225°C.	
5	2	10	1.2	25 springs flowing 350 lpm; and considerabl€ sinter; system may be much larger, if con- nected to Lassen.	
2.5	1.5	3.75	.4	Springs discharging into water-filled open rit of large mercury deposit; 4 wells drilled, reported maximum 182°C.	
4.5	2	9	.8	4 hot springs and several flowing wells; spring discharge about 30 lpm.	
2	1.5	3	.3	3 springs, flowing 57 lpm.	
225	2	450	55	Springs and fumaroles in area of about 10 km ² . Recent caldera; about 10 wells drilled, re- ported to 181°C, extensive geology and geo- physics.	
1.5	1.5	2.25	.2	5 springs flowing 38 lpm.	
168	2	336	41	l group of hot springs; weak fumarole areas; geophysics indicates may be a very large system.	
1.5	1.5	2.25	.2	4 hot springs flowing 470 lpm.	
54	2	108	21	Many low-temperature seeps; l group to 101°C, now under Salton Sea; numerous drill holes to 2A00 m and temperatures to 360°C in hyper- saline brine.	
18	1.5	27	3	No surface discharge, reported high tempera- ture based on old oil test; size based on temperature-gradient survey.	
50	2	100	11	No surface discharge; much active explora- tion but no data released; estimated using temperature gradient data and exploration activity.	
28	2	56	5.5	No surface discharge; temperature estimated using drilling data, volume from temperature gradient data and drill-hole data.	
3	.6	1.8	0.2	No surface discharge; estimated from tempera- ture gradient data and extrapolation of East Mesa geology.	

L	Location					Temperatures °C				
Name	Lati-Long tude tude N W		Sur- face	Geoch	Sub- sur- face					
			1/	<u>2/</u> S10 ₂	<u>2/</u> Na-K-Ca	3/				
IDAHO										
Big Creek H.S.	45 18.8	114 19.2	93	160	175	175				
Sharkey H.S.	45 00.9	113 51.1	52	135	175	175				
Weiser area	44 17.9	117 02.9	77	157	142	160				
Crane Creek	44 18.3	116 44.7	92	173	166	180				
Noon Combuidan			00	110	100	100				
Near Cambridge	44 34.4	116 40.7	26	119	180	180				
Wardrop H.S.	43 23.0	114 55.9	66	120	155	155				
Murphy H.S.	42 02.2	115 32.4	51	127	160	160				
NEVADA										
Baltazor H.S.	41 55.3	118 42.7	80	165	152	170				
Pinto H.S.	41 21	118 47	93	162	176	165				
Great Boiling	40 39.7	119 21.7	86	167	205	170				
(Gerlach) Springs										
Hot Sulphur Springs	41 28.2	116 09.0	90	167	184	185				
Near Wells	41 10.9	114 59.4	61	140	181	180				
Sulphur H.S.	40 35.2	115 17.1	93	183	181	190				

Table	4.—Identified	hot-water	convection	systems	with
				-	

Rese	rvoir As	sumptions		
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸	Comments
km² 4/	km <u>5</u> /	km³ <u>6</u> ∕	<u><u>7</u>/</u>	
2	1.5	3	.3	15 springs discharging ∿280 lpm and deposit- ing travertine and sinter; mixing model sug- gests 220°C; few wells.
2	1.5	3	.3	Spring discharging ∿30 lpm; travertine and sinter(?) reported; Na-K-Ca may be inaccu- rate; mixing temperature 220°C.
35	2	70	6.1	Numerous hot springs and wells; at depth may be connected to Crane Creek. Mixing model indicates possible 228°C.
30	2	60	5.9	Springs discharging ~ 200 lpm; extensive sinter, in area of mercury mineralization; Crane Creek and Weiser may be separate in a zone from Midvale, ID to Vale, OR. Mixing model indicates possible 239°C.
1.5	1.5	2.25	.2	Flowing well; Na-K-Ca may be inaccurate.
1.5	1.5	2.25	.2	Numerous springs discharging ∿730 lpm; may be part of a larger system in Camas Prairie; mixing model suggests 160°C.
1.5	1.5	2.25	.2	2 springs discharging ∿260 lpm; mixing model suggests 200°C.
1.5	2	3	.3	Springs discharging 100 lpm; flowing well 90°C, discharging 25 lpm; the area may be large southern extension of Alvord Desert, OR. area.
5	1.5	7.5	.7	Two areas, probably interconnected; 2 springs of eastern area depositing travertine and and discharging 500 lpm; 1 well,western area, flowing 100 lpm. Na-K-Ca may be inaccurate.
10	2.5	25	2.3	2 major groups of springs and 4 others; surface discharge ${\sim}1,000$ lpm, calculated total discharge (from heat flow) ${\sim}2040$ lpm; well ${\sim}150$ m deep, ll0°C.
1.5	1.5	2.25	.2	Springs with abundant sulfur.
1.5	1.5	2.25	.2	3 springs discharging 45 lpm; may be part of a more extensive system extending for 4.8 km along the west edge of the Snake Mountairs.
4	2.5	10	1.1	Many springs and pools in an area of about .5 km²; abundant sinter.

indicated	subsurface	temperatures	above	150°	C-Continued
-----------	------------	--------------	-------	------	-------------

, t • • • •	Table	4.—Identifie	d hot-wa	ater con	vection syste	ms with
	ocation	<u> </u>		Temper	atures °C	
Name	Lati- tude N	Longi- tude w	Sur- face	Geoch	emical	Sub- sur- face
			<u>1</u> /	2/ Si0 ₂	<u>2/</u> Na-K-Ca	<u>3</u> /
NEVADA Con.						
Beowawe H.S.	40 34.2	116 34.8		226	242	240
Kyle H.S.	40 24.5	117 52.9	77	161	211	180
Leach H.S.	40 36.2	117 38.7	96	155	176	170
Hot Springs Ranch	40 45.7	117 29.5	85	150	180	180
Jersey Valley H.S.	40 10.7	117 29.4	29	143	182	185
Stillwater area	39 31.3	118 33.1	96	159	140	160
Soda Lake	39 34	118 49	90	165	161	165
Brady H.S.	39 47.2	119 00	98	179		214
Steamboat Springs	39 23.	119 45	96	207	226	210
Wabuska H.S.	39 09.7	119 11	97	145	152	155
Lee H.S.	39 12.6	118 43.4	88	173	162	175
Smith Creek Valley	39 21.4	117 32.8	86	143	157	160

indicated subsurface temperatures above 150 °C–Continued

Rese	rvoir As	sumptions		
Sub- sur- face area km ² 4/	Thick- ness km 5/	Vol- ume km ³ 6/	Heat con- tent 10 ¹⁸ cal 7/	Comments
21	2	42	5.7	Prior to exploration, about 50 springs and small geysers discharging about 400 lpm from extensive area of sinter deposits; 6 wells drilled up to 600m depth, temperatures to 212°C, 1 deep well but no data available.
1.5	1.5	2.25	.2	Several springs, largest flowing ~20 lpm depositing travertine. Na-K-Ca thermo- metry may be to high.
4	2.5	10	.9	Several hot springs discharging ${\sim}760$ lpm; calculated total flow ${\sim}900$ lpm.
1.5	1.5	2.25	.2	Several springs, largest discharging ${\sim}100$ lpm and depositing travertine so Na-K-Ca may be inaccurate.
1.5	1.5	2.25	.2	One (3) spring discharging only 20 1pm in area of sinter and travertine; surface tem- perature low because of low discharge.
10	2.5	25	2.2	No surface springs,but hot wells at least to ll5°C; calculated total discharge (from heat flow) ∿6,000 lpm.
5	2.5	12.5	1.1	No surface discharge,but small area altered by gases, and 21 km ² of anomalous heat flcw. Shallow wells show 100°C near surface; be- tween 2 recent basaltic eruptive centers.
12	2.5	30	3.6	Several former springs discharged ~200 lpm from small area of sinter; several wells; 214°C reported in 1500 m well; calculated discharge ~2,700 lpm.
6	2.7	16	1.9	About 70 springs discharging ~250 lpm from extensive sinter deposits with ages at least as much as 1 million years, calculated total discharge ~4,300 lpm; more than 20 wells fc~ research, exploration, and spa supply.
1.5	1.5	2.25	.2	Several hot springs of low natural discharge discharge; three wells drilled to maximum of \sim 670 m, up to 106° C; small area of travertine; area may be larger.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}130$ lpm from area of sinter.
1.5	1.5	2.25	.2	Several springs, minor travertine.

L	Location				Temperatures °C				
Name	Lati- tude N	Longi- tude w	Sur- face	Geochemical		Sub- sur- face			
			1/	<u>2/</u> Si0 ₂	2/ Na-K-Ca	<u>3/</u>			
NEW MEXICO Valles Caldera	35 43	106 32	87			240			
Lightning Dock area	32 08.5	108 50	99	156	169	170			
OREGON									
Mickey H.S.	42 40.5	118 20.7	73	180	207	210			
Alvord H.S.	42 32.6	118 31.6	76	148	199	200			
Hot Lake	42 20.1	118 36.0	96	165	176	180			
Vale H.S.	43 59.4	117 14.1	73	153	158	160			
Neal H.S.	44 01.4	117 27.6	87	173	181	180			
Lakeview	42 12.0	120 21.6	96	157	143	160			
Crumps Spring	42 15.0	119 53.0	78	173	144	180			
Weberg H.S.	44 00	119 38.8	46	125	170	170			

indicated	subsurface	temperatures	above	150 °	,C—Coi	ntinued

Rese	rvoir As	sumptions		
Sub- sur- face area km ² 4/	Thick- ness km 5/	Vol- ume km ³ 6/	Heat con- tent 10 ¹⁸ cal 7/	Comments
65	2	130	18	Pleistocene caldera with 1 group acid-sulfate springs (Sulphur Springs) and very extensiva hydrothermal alteration; more than 6 geother- mal wells drilled, but no detailed data avail- able; suspected as having small vapor-domin- ated cap underlain by high-chloride hot-water system with temperatures over 240°C.
1.9	5 1.5	2.25	.2	No surface springs; shallow water wells at boiling. The area may be much more extensive. Drill hole 3 km to north showed 121°C at 2 km depth. Better estimate may be avg T = 130°C, area 4 km ² , thickness 2 km, heat content .5 x 10^{18} cal.
6	2	12	1.4	Several springs discharging ${\sim}100$ 1pm and depositing sinter; surface manifestations over 0.1 $\rm km^2$.
3	1.5	4.5	.5	Several springs in area of .5 km ² discharg- ing \sim 500 lpm. If Hot Lake, Mickey, and Alvord H.S. are one large system with tempera- ture as at Mickey, the heat content would be 30 x 10 ¹⁸ cal; three separate systems is pre- ferred model.
6	2	12	1.2	Thermal springs and 1 very large pool (lake) discharging surface manifestations over 0.1 km². Small spring N.of Hot Lake, 98°C.
50	2	100	8.7	Hot springs discharging ${\sim}75$ lpm; large area indicated.
2	2	4	.4	1 spring discharging ${\sim}90$ 1pm.
8	2	16	1.4	About 16 springs including Hunter's and Bar∽y Ranch discharging ∿2,500 lpm in an area of ∿5 km²; several wells at Hunter's for heating spa.
4	2	8	.8	Spring and well (121°Cat 505 m) that thas erup- ted as a geyser; discharging 0 to 50 lpm; in small area of sinter.
1.	5 1.5	2.25	.2	Hot spring discharging 40 lpm.

L	Location					Temperatures °C			
Name	Lati- tude N	Longi- tude W	Sur- face	Geoch	nemical	Sub- sur- face			
			<u>1</u> /	$\underline{2}/$ SiO ₂	2/ Na-K-Ca	<u>3/</u>			
UTAH Roosevelt (McKean) H.S.	38 30	112 50	88	213	283	230			
Cove Fort-Sulphur- dale	38 36	112 33				200			
Thermo H.S.	38 11	113 12.2	90	144	200	200			
WASHINGTON									
Baker H.S.	48 45.9	121 40.2	42	151	162	165			
Gamma H.S.	48 10	121 02	60	161	220	165			
Kennedy H.S.	48 07	121 11.7	43	155	199	160			
Longmire H.S.	46 45.1	121 48.7	21	169	16 8	170			
Summit Creek (Soda)	46 42.2	121 29.0	13	169	161	170			
WTUMING									
Yellowstone National Park	44 36	110 30	∿ 96	250	270	250			

Table 4 - Identified	hot-water	convection	systems	with
Table 4. Identified	not-water	CONVECTION	SAPOCTTR	11 101

Totals (63 systems)

indicated subsurface temperatures above 150 °C–Continued

Sub- face area Thick- ume Vol- con- tent Heat con- tent Comments 4 2 8 1.0 Hot springs decreasing from 88°C (1908) to 55°C (1957), then ceased discharging from Si0 ₂ sealing; extensive siliceous sinter; area and volume may be much larger. 15 1.5 22.5 2.5 No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system. 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 16 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 2 spring discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow- stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indi- cate 330°C.	Rese	rvoir As	sumptions		
km² 4/ km 5/ km³ 6/ 7/ 4 2 8 1.0 Hot springs decreasing from 88°C (1908) to 55°C (1957), then ceased discharging from SiO2 sealing; extensive siliceous sinter; area and volume may be much larger. 15 1.5 22.5 2.5 No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system. 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 1 (?) spring discharging 26 lpm and possibly depositing calcite. 1.5 1.5 2.25 .2 1 (?) spring discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 30°C.	Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸	Comments
 4 2 8 1.0 Hot springs decreasing from 88°C (1908) to 55°C (1957), then ceased discharging from S10₂ sealing; extensive siliceous sinter; area and volume may be much larger. 15 1.5 22.5 2.5 No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system. 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 1 (?) spring discharging 26 lpm and possibly depositing calcite. 1.5 1.5 2.25 .2 1 (?) spring discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 4 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~180,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	km² <u>4</u> /	km <u>5</u> /	km³ <u>6</u> ∕	<u></u>	
 15 1.5 22.5 2.5 No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system. 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 1 (?) spring discharging 26 lpm and possibly depositing calcite. 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ∿185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	4	2	8	1.0	Hot springs decreasing from 88°C (1908) to 55°C (1957), then ceased discharging from SiO ₂ sealing; extensive siliceous sinter; area and volume may be much larger.
 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 1 (?) spring discharging 26 lpm and possibly depositing calcite. 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 4 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	15	1.5	22.5	2.5	No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system.
 1.5 1.5 2.25 .2 1 (?) spring discharging 26 1pm and possibly depositing calcite. 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 4 springs discharging ~110 1pm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 1pm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	1.5	1.5	2.25	.2	16 springs in 2 groups; travertine deposits.
 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 4 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	1.5	1.5	2.25	.2	l (?) spring discharging 26 lpm and possibly depositing calcite.
 1.5 1.5 2.25 .2 4 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	1.5	1.5	2.25	.2	
 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	1.5	1.5	2.25	.2	4 springs discharging ${\sim}110$ lpm, in extensive travertine deposits.
1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge 0.185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 0.1414 0.2005 0.371	1.5	1.5	2.25	.2	Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable.
375 2.5 940 133 Numerous thermal phenomena, largely in Yellow- stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indi- cate 330°C.	1.5	1.5	2.25	.2	Chemical temperatures not reliable.
01/1/ 02005 0371	375	2.5	940	133	Numerous thermal phenomena, largely in Yellow- stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indi- cate 330°C.
	∿ <mark>1414</mark>		w 2995	∿ 371	

FIGURE 1.—Location of hydrothermal convection systems in the conterminous United States with indicated subsurface temperatures above 150°C.

FIGURE 2.—Location of hydrothermal convection systems in Alaska and Hawaii with indicated subsurface temperatures above 150°C (+) and between 90° and 150°C (dots).

23

	Location		Temperatures °C				
Name	Lati- tude N	Longi- tude w	Sur- face	Geoch	nemical	Sub- sur- face	
			1/	2/ S102	2/ Na-K-Ca	<u>3</u> /	
ALASKA Okmok caldera	53 29	168 06	100	110	75	125	
Great Sitkin Is.	52 04	176 05	99			125	
Pilgrim H.S.	65 06	164 55	88	137	146	150	
Serpentine Sprs.	65 51	164 42	77	132	161	140	
Near Lava Creek	65 13	162 54	65	128	91	130	
Clear Creek	64 51	162 18	67	119	83	125	
Granite Mtn. (Sweepstakes)	65 22	161 15	49	122	75	130	
South	66 09	157 07	50	115	72	120	
Melozi H.S.	65 08	154 40	55	124		130	
Little Melozitna	65 28	153 19	38	126		130	
Kanuti	66 20	150 48	66		136	140	
Manley (Baker) H.S	. 65 00	150 38	59	115	137	140	
Tolovana	65 16	148 50	60	122	162	130	
Chena	65 03	146 03	57	129	137	140	
Circle	65 29	144 39	54	135	143	145	
E. Cold Bay	55 13	162 29	54	117	144	145	
Near Tenakee Inlet	58 13	135 55	82	147	72	150	
Hooniah H.S.	57 48	136 20	44	136		140	
Tenakee H.S.	57 47	135 13	43	111	63	115	

Table	5.—Identified	hot-water	convection	systems	with

 $\underline{\mathcal{V}}$ Maximum surface temperature reported from a spring or fumarole.

2/ Predicted using chemical geothermometers, assuming last equilibration in the reservoir; assumes saturation of SiO₂ with respect to quartz, and no loss of Ca from calcite deposition. $\frac{3}{4}$ Assumed average reservoir temperature based on data presently available.

From surface manifestations, geophysical data, well records, and geologic inference. Assumes 1.5 km² if no data pertinent to size is available.

 $\frac{5}{100}$ Top assumed at depth of 1.5 km if no data available. Bottom assumed at 3 km depth for all convection systems.

-

 $\underline{6}^{\prime}$ Calculated from assumed area and thickness.

 $\frac{1}{2}$ Calculated as product of assumed volume, volumetric specific heat of 0.6 cal/cm^{3°}C, and temperature in degrees C above 15°C.

indicated	subsurface	temperatures	from	90°	to	150°C

	Reservoir Assumptions				Comments				
	Sub- sur- face area km ² 4/	Thick- ness km 5/	Vol- ume km ³ 6/	Heat con- tent 10 ¹⁸ cal 7/					
-				**					
	3	2	6	.4	About 18 springs near 1945 eruption in Okmok caldera; may be more extensive and higher in temperatures; sinter reported.				
	1.9	5 1.5	2.25	.2	12 springs and fumaroles near recent volcanism.				
	1.9	5 1.5	2.25	.2	Several hot springs in permanently thawed area of .25 km².				
	1.9	5 1.5	2.25	.2	2 spring areas 1.3 km apart discharging \sim 100 lpm and depositing travertine; Na-K-Ca may be too high.				
	1.9	5 1.5	2.25	.2	One main spring.				
	1.9	5 1.5	2.25	.2	2 springs discharging ${\sim}1,000$ lpm.				
	1.9	5 1.5	2.25	.2	Several springs.				
	1.9	5 1.5	2.25	.1	Several springs.				
	1.9	5 1.5	2.25	.2	One main spring discharging ${\sim}500$ lpm; chemical data not reliable.				
	1.9	5 1.5	2.25	.2	Hot springs discharging ${\sim}230$ lpm.				
	1.9	5 1.5	2.25	.2	Several hot springs.				
	1.5	5 1.5	2.25	.2	Hot spring discharging ${\sim}560$ lpm.				
	1.5	5 1.5	2.25	.2	Several hot springs, "small" discharge, possibly depositing travertine.				
	1.5	5 1.5	2.25	.2	Hot springs discharging ∿840 lpm, depositing sulfur				
	1.5	5 1.5	2.25	.2	ll hot springs discharging ${\sim}500$ lpm, depositing travertine.				
	1.5	5 1.5	2.25	.2	In recent volcanic rocks.				
	1.5	5 1.5	2.25	.2	Discharging ${\sim}40$ lpm; chemical data not reliable.				
	1.9	5 1.5	2.25	.2	3 hot springs discharging ∿110 lpm; chemical data not reliable.				
	1.5	5 1.5	2.25	.1	About 12 hot springs discharging ${\sim}80$ 1pm.				

L	Temperatures °C					
Name	Lati- tude N	Longi- tude w	Sur- face	Geoch	Sub- sur- face	
			<u>1</u> /	2/ S10 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>
ALASKA Con. Near Fish Bay	57 22	135 23	47	143		150
Baranof H.S.	57 05	134 50	50	119	68	125
Goddard H.S.	56 50	135 22	67	148	147	150
Bailey H.S.	55 59	131 40	88	158		150
Bell Island H.S.	55 56	131 34	72	140		145
ARIZONA						
Verde H.S.	34 21.5	111 42.5	36	118	146	150
Castle H.S.	33 59.1	112 21.6	50	109	71	110
North of Clifton	33 04.7	109 18.2	59	138	174	140
Clifton H.S.	33 03.2	109 17.8	75	107	161	110
Eagle Creek Spring	33 02.8	109 28.6	36	114	104	115
Gillard H.S.	32 58.5	109 21.0	82	135	138	140
Mt. Graham	32 51.4	109 44.9	42	106	102	110
CALIFORNIA						
Kelley H.S.	41 27.5	120 50	96	144	85	130
Hunt H.S.	41 02.1	122 55.1	58	101	75	105
Big Bend H.S.	41 01.3	122 55.1	82	121	137	140
Salt Springs(1)	40 40.2	122 38.7	20	107	55	110
Wendel-Amedee area	40 18	120 11	95	135	129	140

Table 5.-Identified hot-water convection systems with indicated

Rese	rvoir As	sumptions		Comments				
Sub- Thick- sur- ness face area		Vol- ume	Heat con- tent 10 ¹⁸ cal					
km² <u>4</u> /	km <u>5</u> /	km³ <u>6</u> /	<u>7/</u>					
۱.	5 1.5	2.25	.2	Springs discharging ∿95 lpm; chemical data not reliable.				
1.	5 1.5	2.25	.2	Springs discharging ${\sim}300$ lpm.				
1.	5 1.5	2.25	.2	3 hot springs discharging ${\sim}50$ lpm.				
1.	5 1.5	2.25	.2	9 hot springs discharging ∿315 lpm; chem- ical data not reliable.				
۱.	5 1.5	2.25	.1	5 hot springs discharging ∿40 lpm; chem- ical data not reliable.				
1.	5 1.5	2.25	.2	Several springs; indicated temperatures may be too high.				
۱.	5 1.5	2.25	.1	Two springs.				
1.	5 1.5	2.25	.2	Two springs; may be depositing calcite				
1.	5 1.5	2.25	.1	Several springs; may be depositing calcite.				
۱.	5 1.5	2.25	.1	Two springs; indicated geochemical tempera- ture may be too high.				
۱.	5 1.5	2.25	.2	5 springs				
1.	5 1.5	2.25	.1	l hot mineral well; geochemical tempera- tures may be too high.				
۱.	52	3	.2	l spring flowing ∿1,200 lpm; 1,000 m well drilled in 1969, reported 110°C.				
۱.	5 1.5	2.25	.1	2 hot springs flowing 8 lpm				
۱.	5 1.5	2.25	.2	6 hot springs, flowing 38 lpm.				
1.	5 1.5	2.25	.1	Spring from travertine cone, flowing 20 lpm				
7	2	14	1.1	Many flowing 3,500 lpm; 4 wells, deepest 338 m, T=107°C; possibly separate systems at Wendel and Amedee.				

,

subsurface	temperatures	from	90°	to	150	°C-Continued
------------	--------------	------	-----	----	-----	--------------

L	ocation	Temperatures °C				
Name	Lati- tude N	Longi- tude W	Sur- face	Geochemical		Sub- sur- face
			<u>1</u> /	2/ Si0 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>
CALIFORNIA Con.						
Tuscan (Lick) S.	40 14.5	122 08.4	30	137	112	140
Soda Spring	39 24.8	122 58.6	17	148	158	150
Salt Spring(2)	39 25.8	122 32.3	25	157	123	150
Crabtree H.S.	39 17.4	122 49.3	41	163	133	150
Fouts (Redeye) S.	39 21.0	122 40.1	26	150	126	150
Fouts (Champagne) S	.39 20.5	122 39.4	18	117	128	130
Orr's H.S.	39 13.8	123 21.9	40	112	67	115
Vichy Springs	39 09.9	123 09.4	32	132	145	135
Cooks Springs	39 15.2	122 31.4	17	133	187	140
Saratoga Springs	39 10.5	122 58.7	16	137	46	140
Wilbur H.S. area	39 02.2	122 25.2	60	180	240	145
Deadshot Spring	39 05.1	122 27.4	26	135	204	135
Point Arena H.S.	38 52.6	123 30.6	44	105	62	105
Ornbaun Springs	38 54.7	123 18.4	16	126	122	125
Seigler Springs	38 52.5	122 41.3	52	169	188	150
Baker Soda Spring	38 53.6	122 31.9	24	124	202	130
One-Shot Mining Co.	38 50.0	122 21.4	22	135	153	150
Aetna Springs	38 39.5	122 28.7	33	135	94	135
Walter Springs	38 39.2	122 21.4	19	135	82	135
Mark West Springs	38 32.9	122 43.2	31	140	48	140

Table 5.-Identified hot-water convection systems with indicated

Reservoir Assumptions				Comments			
Sub- T sur- n face area	hick- ess	Vol- ume	Heat con- tent 10 ¹⁸				
km² <u>4</u> / ki	m <u>5/</u>	km³ <u>6</u> /	<u>7/</u>				
1.5	1.5	2.25	.2	20 Springs flowing 190 lpm.			
1.5	1.5	2.25	.2	High bicarbonate spring; geothermometry doubtful.			
1.5	1.5	2.25	.2	Note: distinct from Salt Springs, above; geothermometry doubtful.			
1.5	1.5	2.25	.2	4 springs, flowing 57 lpm; geothermometry doubtful.			
1.5	1.5	2.25	.2	4 springs, flow 7.5 lpm; geothermometry doubtful.			
1.5	1.5	2.25	.2	4 springs, geothermometry doubtful.			
1.5	1.5	2.25	.1	7 springs flowing 95 lpm.			
1.5	1.5	2.25	.2	7 springs flowing 113 lpm; Na-K-Ca may be inaccurate due to travertine deposition.			
1.5	1.5	2.25	.2	Geothermometry doubtful.			
1.5	1.5	2.25	.2	5 springs, flow 9 lpm; geothermometry doubtful			
16	2	32	2.5	l2 springs, flow 80 lpm; well drilled to l,100 m, 141°C; should be in table 4?			
1.5	1.5	2.25	.2	4 springs flowing 4 lpm; geothermometry doubtful.			
1.5	1.5	2.25	.1	2 springs flowing 19 lpm.			
1.5	1.5	2.25	.2	l spring flowing less than 1 lpm.			
2	1.5	3	.2	13 springs flowing 132 lpm; geothermometry doubtful.			
1.5	1.5	2.25	.2	Numerous springs; geothermometry doubtful.			
1.5	1.5	2.25	.2	Flow 189 lpm; sinter and travertine reported.			
1.5	1.5	2.25	.2	6 springs flowing 75 lpm; geothermometry doubtful.			
1.5	1.5	2.25	.2	Flow 6 lpm; geothermometry doubtful.			
1.5	1.5	2.25	.2	${\sim}9$ hot springs in a group flowing 113 lpm.			

L	Location					Temperatures °C					
Name	Lati- tude	Longi- tude	Sur . face	Geochemical		Su = sur- face					
	,	·	<u>1</u> /	2/ S10 ₂	<u>2/</u> Na-K-Ca	<u>3</u> /					
CALIFORNIA Con.											
Napa Soda S. Rock (Priest)	38 31.1	122 15.6	26	143	81	145					
Los Guilicos W.S.	38 23.7	122 33.0	31	129	184	135					
(Jackson's) Napa Soda Springs	38 23.4	122 16.7	16	149	60	150					
Brockway (Corne- lian) H.S.	39 13.5	120 0.4	60	119	94	121					
Grovers H.S.	38 41.9	119 51.6	63	135	126	140					
Fales H.S.	38 20	119 24	62	147	165	150					
Buckeye H.S.	38 14.3	119 19.6	64	122	138	140					
Benton H.S.	37 48	118 31.8	57	113	79	115					
Travertine H.S.	38 14.8	119 12.1	70	114	172	121					
Near Black Pt.	38 2.4	119 5	63	122	124	125					
Paoha Island	37 59.8	119 01.2	83	186		125					
Mono H.S.	37 19.5	119 01.0	44	110	80	115					
Blayney Meadows H.S	.37 14.1	118 53	43	102	57	105					
Mercey H.S.	36 42.2	120 51.6	46	122	94	125					
Randsburg area	35 23.0	117 32.2	115			125					
Arrowhead H.S. area	34 08.6	117.15.2	94	132	147	150					
Pilger Estates H.S.	33 26.0	115 41.1	82	125	145	145					
Warner H.S.	33 17.0	116 38.4	64	141	100	145					
Glamis (E. Brawley)	32 58	115 11				135					
Glamis (East)	33 59	115 04				135					
Dunes	32 49	115 01				125					
Rese	rvoir As	sumptions		Comments							
------------------------------	----------------	----------------------------	---	---	--	--	--	--			
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal								
km² <u>4</u> /	km <u>5</u> /	km ³ <u>6</u> /	<u>7/</u>								
1.9	5 1.5	2.25	.2	2 springs flowing 60-85 lpm; geothermometry doubtful.							
1.9	5 1.5	2.25	.2	3 springs flowing 75 lpm; Na-K-Ca may be inaccurate due to travertine deposition.							
1.9	5 1.5	2.25	.2	27 springs; geothermometry doubtful.							
1.9	5 1.5	2.25	.1	6 springs flowing 570 lpm.							
1.9	5 1.5	2.25	.2	12 springs flowing 378 lpm.							
1.9	5 1.5	2.25	.2	20 springs flowing 95 lpm, possibly depositing travertine.							
1.9	5 1.5	2.25	.2	l spring flowing 75 lpm.							
1.9	5 1.5	2.25	.1	2 springs flowing 1,500 lpm.							
1.9	5 1.5	2.25	.1	3 main springs flowing 38 lpm; extensive travertine.							
1.9	5 1.5	2.25	.1								
1.9	5 1.5	2.25	.1	Several springs flowing 370 lpm; non-quartz equilibration of SiO_2 likely.							
1.9	5 1.5	2.25	.1	Four springs flowing 95 lpm.							
1.9	5 1.5	2.25	.1	Eight springs flowing 150 lpm.							
1.9	5 1.5	2.25	.2	3 hot springs flowing 23 lpm.							
1.9	5 2.5	3.75	.3	l well reported 115°C at 235 m.							
2	1.5	3	.2	2 groups of hot springs flowing 190 lpm.							
1.9	5 1.5	2.25	.2	Near Salton Sea; possibly more extensive.							
1.9	5 1.5	2.25	.2	6 springs flowing 570 lpm.							
2	1.5	3	.2	Estimated using temperature gradient data; a part above 150°C?							
4	1.5	6	.4	Temperature gradient data; a part above 150°C?							
6	1.5	9	.6	Temperature gradient data: a part above 150°C?							

l	Temperatures °C						
Name	e Lati- tude		Sur- face	Geochemical		Sub- sur- face	
	N	· ·	<u>1</u> /	2/ S102	<u>2/</u> Na-K-Ca	3/	
COLORADO							
Routt H.S.	40 33.6	106 51	64	131	168	135	
Steamboat Springs	40 29.1	106 50.3	66	129	195	135	
Idaho Springs	39 44.2	105 30.2	50	109	208	115	
Glenwood Springs	39 33	107 19.3	66	137	190	140	
Avalanche Springs	39 13.9	107 13.5	57	136	125	140	
Cottonwood Springs	38 48.7	106 13.5	62	107	83	110	
Mt. Princeton S.	38 43.9	106 10.2	66	112	52	115	
Poncha H.S.	38 29.9	106 04.5	76	129	143	145	
Mineral H.S.	38 10.1	105 55.0	63	103	91	105	
Waunita H.S.	38 31.0	106 29.1	71	129	87	130	
Cebolla H.S.	38 16.5	107 05.9	46	125	233	130	
Orvis H.S.	38 08	107 44	58	109	231	110	
Wagon Wheel Gap	37 45	106 49.2	66	129	188	135	
Pagosa H.S.	37 15.5	107 00.5	70	165	278	150?	

Table	5	-Ide	entif	ĭied	hot	-water	convection	systems	with	indicated	
-------	---	------	-------	------	-----	--------	------------	---------	------	-----------	--

Reser	voir As	sumptions		Comments			
Sub- sur- face area km ² 4/	Thick- ness km <u>5</u> /	Vol- ume km ³ 6/	Heat con- tent 10 ¹⁸ cal 7/				
1.5	1.5	2.25	.2	Three hot springs; Chemical data not reliable.			
1.5	1.5	2.25	.2	Many hot springs; chemical data not reliable; some travertine.			
1.5	1.5	2.25	.1	8 springs, total discharge 190 lpm depositing travertine; probably fault- controlled; chemical data not reliable.			
1.5	1.5	2.25	.2	ll springs discharging about ll,400 lpm; chemical data not reliable; some travertine.			
1.5	1.5	2.25	.2	5 springs discharging ∿54 lpm; chemical data not reliable.			
4	1.5	6	.3	5 springs discharging ∿570 lpm; extensive zeolitization.			
5	1.5	7.5	.5	4 main springs, 30 others; extensive zeoli- tization, present deposition of opal, calcite, and phillipsite reported.			
1.5	1.5	2.25	.2	3 springs depositing travertine and discharging ∿1,900 lpm; associated with flourite deposits; Na-K-Ca temperature may be too high.			
1.5	1.5	2.25	.1	30 springs discharging \sim 190 lpm, reported with travertine and sinter (?); wells to 354 m depth and 60°C.			
1.5	1.5	2.25	.2	2 groups, more than 100 springs discharging 3785 lpm.			
1.5	1.5	2.25	.2	20 springs discharging ${\sim}380$ lpm; travertine reported; chemical data not reliable.			
1.5	1.5	2.25	.1	l spring discharging ∿1,140 lpm; chemical data not reliable.			
1.5	1.5	2.25	.2	3 springs depositing travertine and associated with flourite deposits; Na-K-Ca temperature probably too high.			
1.5	1.5	2.25	.2	Springs discharging ∿380 lpm and depositing travertine; I well for space heating; chem- ical data not reliable.			

Lo	ocation			Tempera	atures °C	
Name	Lati- tude	Longi- tude	Sur- face	Geoch	emical	Sub- sur- face
	N	w		2/	2/	
			<u>l</u> /	Sī0 ₂	Na-K-Ca	<u>3/</u>
HAWAII						
Steaming Flats (Sulphur Bank area)	19 26.5	155 16	97	No	Data	∿150?
Upper Kau area	19 23.7	155 17.3	∿22			100
1955 eruption area, East Rift	19 26.5	154 57	hot	No	Data	∿150?
Puulena area, East Rift	19 28.3	154 53	?	No	Data	∿150?
IDAHO						
Red River H.S.	45 47.3	115 08.8	55	123	80	125
Riggins H.S.	45 24.7	116 28.5	47	120	95	125
Burgdorf H.S.	45 16.7	115 55.2	45	121	57	125
Zim's (Yoghann) H.S.	.45 02.6	116 17.0	65	115	85	120
Krigbaum H.S.	44 58.1	116 11.4	43	121	96	125
Starkey H.S	44 51.2	116 25.8	56	108	70	115
White Licks H.S.	44 40.9	116 13.8	65	143	145	150
Near Cove School	44 35.0	116 37.7	70	120	78	125
Near Deer Creek	44 32.4	116 45.0	50	107	63	110
Near Midvale	44 28.3	116 43.9	28	128	243	135
Near Midvale Airprt	.44 28.2	116 45.9	28	121	51	125
Hot Creek Springs	44 38.5	116 02.7 34	34	111	62	115

Reserv	oir As	sumptions		Comments
Sub- T sur- n face area	hick- ess	Vol- ume	Heat con- tent 10 ¹⁸ cal	
 km² <u>4</u> / k	m <u>5</u> /	km³ <u>6</u> /	<u>7/</u>	
1.5	1.5	2.25	.2	Nearly constant fumarolic activity, no water discharge; area may be larger.
5	0.7	3.5	.2	Resistivity anomally drilled by N.S.F. grant to G. V. Keller, 1973; low-tempera- ture convection system identified top at water table, $\sim 80^{\circ}$ C at -490 m; bottom of convection near -1,150 m, $\sim 100^{\circ}$ C, then steep gradient to basaltic magma chamber (?).
2	2	4	.3	Steaming area; three wells drilled 1961, deepest \sim 210 m, \sim 113°C; NSF grant 1975 to University of Hawaii for deep test.
2	2	4	.3	No surface manifestations; geophysical anomalies identified.
1.5	1.5	2.25	.2	9 springs discharging ∿130 lpm; mixing model T=190°C.
1.5	1.5	2.25	.2	4 springs discharging ∿190 lpm; mixing model T=220°C.
1.5	1.5	2.25	.2	2 springs discharging ∿610 lpm.
1.5	1.5	2.25	· .1	Discharging hot well.
1.5	1.5	2.25	.2	2 springs discharging 150 lpm; mixing model T=200°C.
1.5	1.5	2.25	.1	7 hot springs discharging 490 lpm.
1.5	1.5	2.25	.2	Numerous springs discharging 113 lpm; may be part of larger system including hot springs near Cove School; mixing model T=220°C.
1.5	1.5	2.25	.2	Numerous springs discharging 1,630 lpm.
1.5	1.5	2.25	.1	Hot springs discharging 219 lpm.
1.5	1.5	2.25	.2	Flowing well; may be part of single system including Deer Creek and Midvale.
1.5	1.5	2.25	.2	Flowing well; geochemical temperatures unreliable.
1.5	1.5	2.25	.1	Springs discharging ∿3,000 lpm; mixing model suggests 195°C.

L	ocation	Temperatures °C				
Name	Lati- tude N	Longi- tude W	Sur- face	Geoch	Geochemical	
			1/	2/ S102	<u>2/</u> Na-K-Ca	3/
IDAHO Con.						
Molly's H.S.	44 38.3	115 41.6	59	130	83	135
Vulcan H.S.	44 34.1	115 41.5	87	148	135	150
Cabarton H.S.	44 25	116 01.7	71	124	99	130
Boiling Springs	44 21.9	115 51.4	86	134	89	140
Near Payette River	44 05.1	116 03	80	148	139	150
Near Grimes Pass	44 02.8	115 51.1	55	110	74	115
Kirkham_H.S.	44 04.3	115 32.6	65	118	79	120
Bonneville H.S.	44 09.5	115 18.4	85	138	142	145
Stanley H.S.	44 13.5	114 55.6	41	107	47	110
Sunbeam H.S.	44 16.1	114 44.9	76	133	130	140
Slate Creek H.S.	44 10.1	114 37.5	50	129	91	130
Roystone H.S.	43 57.2	116 18	55	148	150	150
N.E. Boise Thermal area	43 36.1	116 09.9	75	124	79	125
Neinmeyer.H.S.	43 45.5	115 34.7	76	138	126	140
Dutch Frank Springs	43 47.7	115 25.5	65	120	72	125
Paradise H.S.	43 33.2	115 16.3	56	118	72	120
Worswick H.S.	43 33.5	114 47.2	81	135	93	140

Table 5.-Identified hot-water convection systems with indicated

Rese	rvoir As	sumptions		Comments
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	
<u>km² 4/</u>	km <u>5</u> /	km ³ <u>6</u> /	7/	
1.5	1.5	2.25	.2	7 springs discharging 76 lpm; mixing model suggests 195°C.
1.5	1.5	2.25	.2	13 springs discharging ${\sim}$ 1,900 1pm; sinter reported.
1.5	1.5	2.25	.2	Numerous springs discharing ∿265 1pm; mixing model T = 165°C.
1.5	1.5	2.25	.2	Numerous vents discharging \sim 600 lpm and depositing minor zeolites, calcites, and mercury minerals.
1.5	1.5	2.25	.2	One spring discharging ∿75 lpm; mixing model suggests 200°C.
1.5	1.5	2.25	.1	Spring(s?) discharging ${\sim}260$ lpm.
1.5	1.5	2.25	.1	Numerous springs discharging ${\sim}950$ lpm.
1.5	1.5	2.25	.2	8 springs and seeps discharging \sim 1,900 lpm; mixing model suggests 175°C.
4	1.5	6	.3	6 springs discharging ~420 lpm; south- western of a possible 10-km line extend- ing NE to Sunbeam; mixing T = 180°C.
1.5	1.5	2.25	.2	Numerous vents discharging ${\sim}$ 1,700 lpm.
1.5	1.5	2.25	.2	8 springs and seeps discharging ∿700 lpm; mixing T = 210°C.
2	1.5	3	.2	5 springs discharging ${\sim}75$ lpm.
4	2	8	.5	Linear zone of springs and associated thermal wells on the NE edge of Boise; used for space heating.
1.5	1.5	2.25	.2	l3 springs discharging ∿l,300 lpm with gas, mixing model suggests 190°C.
1.5	1.5	2.25	.2	Numerous springs, gassy, discharging ~1,150 lpm.
1.5	1.5	2.25	.1	Several springs.
1.5	1.5	2.25	.2	Numerous springs discharging ${\sim}$ 1,750 lpm.

1	Location			Temper	atures °C	
Name	Lati- tude	Longi- tude	Sur- face	Geoch	emical	Sub- sur-
	N	w				Tace.
			<u>1</u> /	<u>2/</u> Si0 ₂	<u>2/</u> Na-K-Ca	<u>3</u> /
IDAHO Con.						
Guyer H.S.	43 40.5	114 24.6	71	129	88	135
Clarendon H.S.	43 33.6	114 24.9	47	125	114	130
Hailey H.S.	43 30.3	114 22.2	63	129	83	135
Near Brockie Airpt	43 32.4	113 30.1	41	107	91	110
Elk Creek H.S.	43 25.4	114 37.6	54	113	80	120
Near Punkin Corner	43 18.1	114 54.4	35	123	71	125
Barron's H.S.	43 18.1	114 54.4	71	124	91	130
Near Magic Reservoir	43 19.7	114 23.2	71	138	163	140
Near Bennett Creek	43 06.9	115 27.9	68	129	71	135
Latty H.S.	43 07.0	115 18.3	55	138	137	140
Near Ryegrass Creek	43 05.8	115 24.6	62	129	81	135
Near Radio Towers	43 02.2	115 27.5	38	129	125	130
White Arrow H.S.	43 02.9	114 57.2	65	136	113	140
Near Chalk Mine	43 02.9	114 55	47	133	98	140
Near Clover Creek	43 01.4	115 00.6	43	113	70	120
Near Gravel Pits	42 54.3	115 29.5	34	109	144	145
Bruneau-Grandview	42 56	115 56	84	138	93	145
Near Banbury	42 41.4	114 50	59	136	108	140

Table 5.-Identified hot-water convection systems with indicated

Resei	rvoir As	sumptions		Comments
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	
km² _4/	km <u>5</u> /	km ³ <u>6</u> /	<u>7/</u>	
1.5	1.5	2.25	.2	Numerous springs discharging ${\sim}3\!$
_1.5	1.5	2.25	.2	Numerous springs discharging ~380 1pm; mixing model suggest 215°C.
1.5	1.5	2.25	.2	Numerous springs discharging ~265 lpm; mixing model suggests 190°C.
1.5	1.5	2.25	.1	l well flowing ${\sim}45$ lpm.
1.5	1.5	2.25	.1	5 springs discharging ${\sim}55$ lpm.
1.5	1.5	2.25	.1	Flowing well discharging 15 lpm; may be part of extensive system underlying a large portion of the Cames Prairie, and including Elk Creek, Barrons, and Waldrop.
1.5	1.5	2.25	.2	Numerous springs discharging ${\sim}120$ lpm.
1.5	1.5	2.25	.2	One well flowing 51 lpm; mixing models indicate temperatures as high as 275°C.
1.5	1.5	2.25	.2	Flowing well discharging ${\sim}2\!\!,600$ lpm.
1.5	1.5	2.25	.2	One spring; may be part of extensive system that includes Bennett Creek and Ryegrass Creek; SiO ₂ temperature of all may be too high because of equilibration with diatomite.'
1.5	1.5	2.25	.2	Flowing well.
1.5	1.5	2.25	.2	l flowing well discharging 30 lpm.
1.5	1.5	2.25	.2	4 springs discharging ∿3,100 lpm; mixing model indicates 200°C.
1.5	1.5	2.25	.2	l flowing well.
1.5	1.5	2.25	.1	l flowing well.
1.5	1.5	2.25	.2	l flowing well discharging ∿8 lpm. Na-K-Ca temperature may be inaccurate carbonate deposition reported. May be diatomaceous earth at depth.
2250	1.5	3375	263	An extensive area with many warm and hot artesian wells; mixing model temperatures up to 275°C.
8	1.5	12.0	.9	l flowing well discharging ~225 lpm; mix- ing T =215°C; includes Miracle and 1 other spring.

L	Temperatures °C					
Name	Lati- tude N	Longi- tude w	Sur- face	Geoch	emical	Sub- sur- face
			<u>1</u> /	<u>2/</u> S10 ₂	2/ Na-K-Ca	<u>3</u> /
IDAHO Con.						
Near Cedar Hill	42 24.9	114 18.1	38	116	65	120
Near Bridger Springs	42 28.7	113 37.5	60	111	89	115
Oakley Warm Springs	42 10.4	113 51.7	47	119	92	120
Raft River thermal area	42 06.1	113 22.8	96	136	139	140
Maple Grove H.S.	42 18.2	111 42.2	76	107	236	110
Near Riverdale	42 09.9	111 50.4	45	126	170	125
Wayland H.S.	42 08.2	111 56.9	77	126	270	130
Near Newdale	43 53.2	111 35.4	36	122	84	125
Ashton Warm Springs	44 05.7	111 27.5	41	143	91	145
MONTANA						
Helena (Broadwater) Hot Spring	46 36.5	112 05	65	136	135	140
White Sulphur Springs	46 32.8	110 54.2	57	103	148	150
Alhambra H.S.	46 27	111 59	59	115	111	120
Boulder H.S.	46 12	112 05.6	76	143	135	145
Gregson (Fairmont) H.S.	46 02.6	112 48.4	74	128	126	130
Pipestone H.S.	45 53.8	112 13.9	61	115	113	120
Barkels (Silver Star) H.S.	45 41.5	112 17.2	72	143	139	145
Norris (Hapgood) H.S.	45 34.6	111 41	52	130	153	150
Jardine (Big Hole or Jackson) H.S.	45 21.8	113 24.7	58	104	148	150

Table 5.-Identified hot-water convection systems with indicated

Rese	rvoir Assumptions Comments					
Sub- sur- face area	Thick- ness	Vo1- ume	Heat con- tent 10 ¹⁸			
km² <u>4</u> /	km <u>5/</u>	km³ <u>6</u> /	<u></u>			
6	1.5	9	.6	l flowing well discharging ∿2050 lpm.		
1.5	1.5	2.25	.1	l flowing well discharging 7,900 lpm; mixing T = 150°C.		
1.5	1.5	2.25	.1	l spring discharging 38 lpm; mixing T = 195°C.		
20	1.5	30	2.3	Area of flowing hot wells recently explored by ERDA; 140°C measured at depth of 1,400 m in well flowing ~3,800 lpm.		
2	1.5	3	.2	Numerous springs discharging ∿1,300 lpm; Na-k-Ca possibly inaccurate due to deposition of carbonate.		
1.5	1.5	2.25	.2	l flowing well; Na-K-Ca possibly inaccurate from deposition of carbonate.		
5	1.5	7.5	.5	Numerous springs discharging ~3,400 lpm and depositing travertine; Na-K-Ca thermometry may be inaccurate.		
1.5	1.5	2.25	.2	Flowing well.		
1.5	1.5	2.25	.2	Springs discharging 📲 lpm from Pleistocene basalt.		
1.5	1.5	2.25	.2	2 hot springs discharging 110 lpm.		
1.5	1.5	2.25	.2	About 9 springs discharging ∿2000 lpm; mixing model suggests 150°C.		
1.5	1.5	2.25	.1	About 22 springs		
1.5	1.5	2.25	.2	Many springs in two groups; siliceous sinter; large discharge.		
1.5	1.5	2.25	.2	Several springs		
1.5	1.5	2.25	.1	Several springs.		
1.5	1.5	2.25	.2	4 springs discharging 200 lpm.		
1.5	1.5	2.25	.2	5 springs discharging 200 lpm.		
1.5	1.5	2.25	.2	About 100 springs ~5,700 lpm; mixing model indicates 150°C.		

L	ocation			Temperatures °C				
Name	Lati- tude	Longi- tude W	Sur- face	Geoch	emical	Sub- sur- face		
			<u>1</u> /	<u>2/</u> S10 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>		
NEVADA								
Bog H.S.	41 55.5	118 48.1	88	108	109	115		
Howard H.S.	41 43.3	118 30.3	56	128	81	130		
Dyke H.S.	41 34.0	118 33.7	66	129	137	140		
Near Soldier Meadow	41 21.5	119 13.2	54	113	65	115		
Double H.S.	41 03.0	119 02.8	80	140	127	145		
Near Black Rock	40 57	118 58	90	148	116	150		
Fly Ranch H.S.	40 52.0	119 20.9	80	127	154	130		
Butte Sprs.	40 46	119 07	86	129	120	130		
Mineral H.S.	41 47.3	114 43.3	60	127	129	130		
Hot Hole (Elko)	40 49.1	115 46.5	89	115	127	115		
Near Carlin	40 42.0	116 08.0	79	119	81	120		
Hot Sulphur Sprs.	41 9.4	114 59.1	90	128	191	140		
Hot Springs Point	40 24.2	116 31.0	54	116	233	125		
Walti H.S.	39 54.1	116 35.2	72	117	78	120		
Spencer H.S.	39 19	116 51	72	123	210	125		
Hot Pot	40 55.3	117 06.5	58	125	195	125		

Table 5.-Identified hot-water convection systems with indicated

Reser	rvoir As	sumptions		Comments
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	
 km² <u>4</u> /	km <u>5</u> /	km³ <u>6</u> /	<u></u>	
2	2	4	.2	2 springs discharging ${\sim}4,000$ lpm at 54°C.
1.9	5 1.5	2.25	.2	Several springs.
1.9	5 1.5	2.25	.2	1 (?) spring discharging ${\sim}100$ lpm.
6	2	12	.7	Several springs in area of ∿6 km ² dischar- ging ∿50 lpm.
10	2	20	1.6	Several springs along linear zone 20 km north from Black Rock Point; largest group discharging ~175 lpm; minor travertine.
1.	5 1.5	2.25	.2	
8	2	16	1.1	Area of large spring pools and two aban- doned wells discharging ∿500 lpm and depos- iting travertine, so Na-K-Ca may be too high.
1.9	5 1.5	2.25	.2	
1.	5 1.5	2.25	.2	Several springs and shallow wells.
2	1.5	3	.2	Several springs depositing travertine, so Na-K-Ca temperature may be high.
1.	5 1.5	2.25	.1	
1.5	5 1.5	2.25	.2	3 springs discharging ∿190 lpm; paleozoic limestone at depth; Na-K-Ca geothermometer may be inaccurate; may be part of more extensive area extending 4.8 km along west edge of Snake Mtns.
5	1.5	7.5	.5	Hot springs, discharging ∿125 lpm; depos- iting travertine; Na-K-Ca may be inaccurate.
2	1.5	3	.2	6 springs discharging 300 lpm and depos- iting travertine.
1.	5 1.5	2.25	.2	Several hot springs discharging 50 lpm and depositing travertine so Na-K-Ca thermom- etry may be inaccurate.
1.	5 1.5	2.25	.2	One spring discharging ∿270 1pm; depositing travertine; Na-K-Ca may be inaccurate.

Ĺ		Temperatures °C				
Name	Lati- tude	Longi- tude w	Sur- face	Geoch	emical	Sub- sur- face
			<u>l</u> /	2/ S10 ₂	2/ Na-K-Ca	<u>3/</u>
NEVADA Con.						
Buffalo Valley H.S.	40 22.	1 117 19.5	5 79	125	140	130
Hot Springs	41 25.	4 117 23.0) 58	107	209	110
Golconda H.S.	40 57.	7 117 29.6	5 74	116	201	125
Sou (Gilberts) H.S.	40 05.	4 117 43.5	i 93	115	99	115
Dixie H.S.	39 47.	9 118 04.0) 72	143	143	150
The Needles	40 08.	8 119 40.5	9 8	137	214	145
Walleys H.S.	38 58.	9 119 49.9) 71	109	85	110
Nevada H.S.	38 54.	0 119 24.7	61	104	86	105
Darrough H.S.	38 49.	3 117 10.8	8 97	136	127	140
Warm Springs	38 11.	3 116 22.5	61	111	192	125
Bartholomae H.S.	39 24.	3 116 20.8	8 54	129	72	130
NEW MEXICO						
Jemez (Ojos Calien- tes) H.S.	35 47	106 41	73	134	197	135
Radium H.S.	32 30	106 55.5	52	124	222	130
Lower Frisco	33 15	108 47	37	128	150	150
Gila H.S.	33 12	108 12	68	121	114	125

Table 5.-Identified hot-water convection systems with indicated

Reservoir Assumption Sub- sur- face area Thick- mess Vol- ume km² 4/ km 5/ km³ 6/ 4 2.5 10 1.5 1.5 2.25 <				Comments
Sub- sur- face area	Thick- ness	Vo1- ume	Heat con- tent 10 ¹⁸	
km² <u>4</u> /	km <u>5</u> /	km ³ <u>6</u> /	<u>7/</u>	
4	2.5	10	.7	More than 200 hot springs with largest discharging 61 lpm; in travertine area so Na-K-Ca thermometry may be inaccurate.
1.5	1.5	2.25	.1	Discharging from travertine so Na-K-Ca thermometry may be inaccurate.
1.5	1.5	2.25	.2	About 12 springs discharging 750 lpm and depositing manganiferous travertine; area may be considerably larger.
1.5	1.5	2.25	.1	Several hot springs depositing travertine.
2	1.5	3	.2	Several hot springs discharging ${\sim}200$ lpm.
2	1.5	3	.2	Two lines of springs that have deposited travertine cones in Pyramid Lake; two wells on eastern line, 116°C at 450 and 1,800 m depth; may be considerably larger system.
1.5	5 1.5	2.25	.1	Many hot springs discharging ${\sim}75$ lpm along base of recent faultscarp.
1.5	1.5	2.25	.1	Several springs in travertine area dischar- ging ∿200 lpm.
1.5	5 1.5	2.25	.2	Several springs and well discharging ~350 lpm; one well 129°C at 230 m depth discharging $\sim4,000$ lpm; area may be considerably larger.
1.5	5 1.5	2.25	.2	2 springs.
1.5	5 1.5	2.25	.2	Spring discharging ${\sim}400$ lpm.
1.5	5 1.5	2.25	.2	About 10 springs depositing travertine and discharging ~750 lpm; Na-K-Ca probably not reliable; 9.7 km SSW of Valles Caldera.
1.5	5 1.5	2.25	.2	
1.5	5 1.5	2.25	.2	Discharge ${\sim}75$ lpm; Na-K-Ca probably not reliable.
1.5	5 1.5	2.25	.2	Four hot springs discharging ∿3400 lpm; area may be somewhat larger.

L		Temperatures °C					
Name	Lati- tude	Longi- tude w	Sur- face	· Geochemical		Sub- sur- face	
	N	•	<u>1</u> /	2/ ST0 ₂	2/ Na-K-Ca	<u>3/</u>	
OREGON							
Mt. Hood	45 22.5	121 42.5	90	No	Data	125	
Carey (Austin) H.S.	45 01.2	122 00.6	86	126	118	125	
Kahneetah H.S.	44 51.9	121 12.9	52	140	103	140	
Breitenbush H.S.	44 46.9	121 58.5	92	127	149	150	
Belknap H.S.	44 11.6	122 03.2	71	135	114	140	
Klamath Falls	42 15	121 45	74	136	130	120	
Summer Lake H.S.	42 43.5	120 38.7	43	134	112	140	
Radium H.S.	44 55.8	117 56.4	58	124	108	130	
Hot Lake (2)	45 14.6	117 57.6	80	100	115	120	
Medical H.S.	45 01.1	117 37.5	60	125	125	130	
Ritter H.S.	44 53.7	119 08.6	41	119	92	125	
Fisher H.S.	42 17.9	119 46.5	68	123	165	130	
Blue Mountain H.S.	44 21.3	118 34.4	58	99	126	130	
Near Little Valley	43 53.5	117 30.0	70	145	119	150	
Beulah H.S.	43 56.7	118 08.2	60	169	86	130	
Near Riverside	43 28.0	118 11.3	63	143	138	150	
Crane H.S.	43 26.4	118 38.4	78	127	124	130	
Near Harney Lake	43 10.9	119 06.2	68	133	130	135	
Near Trout Creek	42 11.3	118 09.2	52	140	144	145	
Near McDermitt	42 04.1	117 30.0	52	120	100	120	

Table 5.—Identified	hot-water	convection	systems	with	indicated

Reserv	voir As	sumptions		Comments
Sub- sur- face area	hick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	
km² <u>4</u> / k	(m <u>5</u> /	km ³ <u>6</u> /	<u></u>	
2	2	4	.3	Many fumaroles but not water discharge; semiactive volcano; temperatures may be higher; area may be larger.
1.5	1.5	2.25	.1	Several hot springs in 0.1 km discharging ${\sim}950$ 1pm.
1.5	1.5	2.25	.2	Hot spring discharging ${\sim}200$ lpm.
1.5	1.5	2.25	.2	40 to 60 springs in 0.1 km area discharging 3,400 lpm.
1.5	1.5	2.25	.2	3 springs discharging ${\sim}300$ lpm.
240	2	480	30	Numerous springs and shallow wells dischar- ging from fault zones; largest spring ~2CO lpm; well temperatures 60° to 115°C used for domestic heating; large area indicated.
4	1.5	6.0	.4	3 springs discharging ${\sim}75$ lpm.
1.5	1.5	2.25	.2	2 flowing wells discharging ${\sim}$ 1,100 lpm.
1.5	1.5	2.25	.1	l large spring pool discharging ~1,500 lpm.
1.5	1.5	2.25	.2	2 springs discharging ${\sim}200$ lpm.
1.5	1.5	2.25	.1	l hot spring discharging ${\sim}130$ lpm.
3	1.5	4.5	.3	Hot spring discharging ${\sim}70$ lpm; some ${ m H_2S}$.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}250$ lpm.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}550$ lpm.
1.5	1.5	2.25	.2	l (?) spring discharging \sim 50 lpm from vitric tuff so SiO $_2$ temperature may not La reliable; sinter and travertine reported.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}200$ lpm.
1.5	1.5	2.25	.2	2 springs discharging ${\sim}550$ lpm.
3	1.5	4.5	.3	Spring discharging ${\sim}550$ lpm.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}200$ lpm.
2	1.5	3.0	.2	Hot spring discharging ${\sim}750$ lpm.

L	Location						
Name	Lati- tude	Longi- tude	Sur- face	Geoch	emical	Sub- sur- face	
	N	w.	<u>1</u> /	2/ S102	<u>2/</u> Na-K-Ca	<u>3/</u>	
UTAH		<u></u>					
Hooper H.S.	41 08	112 11.3	60	101	223	105	
Crystal H.S.	40 29	111 54	58	103	135	135	
Baker (Abraham, Crater) H.S.	39 36.8	112 43.9	87	118	122	125	
Meadow H.S.	38 51.8	112 30	41	100	68	105	
Monroe(Cooper) H.S.	38 38.2	112 06.4	76	110	118	120	
Joseph H.S.	38 36.7	112 11.2	64	133	141	140	
WASHINGTON							
Sol Duc H.S.	47 58.1	123 52.1	56	148	92	150	
Olympic H.S.	47 58.9	123 41.2	52	126	87	130	
Sulphur Creek H.S.	48 15.3	121 10.8	37	122	113	125	
Garland (San Juan)	47 20.5	121 53.4	38	148	185	150	
Ohanapecosh H.S.	46 44.2	121 33.6	49	126	164	130	
WYOMING							
Huckleberry H.S.	44 07	110 41	71	150	141	150	
Auburn H.S.	42 49.5	111 0	62	143	209	150	
Totals (224 Systems)						

Table 5.—Identified hot-water	convection	systems	with	indicated
-------------------------------	------------	---------	------	-----------

Reserv	voir As	sumptions		Comments
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	
km² <u>4/</u>	km <u>5</u> /	km³ <u>6</u> /	<u><u>7/</u></u>	
1.5	1.5	2.25	.1	4 saline hot springs in 2 groups 0.6 km apart; geothermometry may not be reliable.
1.5	1.5	2.25	.2	4 hot springs discharging ${\sim}230$ lpm.
1.5	1.5	2.25	.1	4 hot springs depositing travertine and M^n oxides at edge of young basalt flows.
1.5	1.5	2.25	.1	3 springs on 1.6 km trend; includes Hatton Hot Springs (Black Rock or Wiwepa) Hot Springs; analyzed spring discharges 226 lpm
5	1.5	7.5	.5	9 springs in 3 groups on 48 km trend along Sevier fault; includes Red Hill and Johnson Hot Springs; depositing travertine.
1.5	1.5	2.25	.2	Springs depositing travertine and dischar-ging ${\sim}110$ 1pm.
1.5	1.5	2.25	.2	11 springs discharging ${\sim}500$ lpm.
1.5	1.5	2.25	.2	17 springs discharging ${\sim}500$ lpm along fault zone.
1.5	1.5	2.25	.1	Springs discharging 15 lpm; minor precipi- tation (carbonate?).
1.5	1.5	2.25	.2	3 springs discharging ∿95 lpm; extensive travertine; chemical temperatures not reliable.
1.5	1.5	2.25	.2	5 springs discharging ∿225 lpm; extensive precipitation (carbonate?).
1.5	1.5	2.25	.2	2 small groups of hot springs discharginເ ∿380 lpm.
1.5	1.5	2.25	.2	More than 100 vents; discharging \sim 140 lpm and depositing travertine.
∿2938		∿4564	∿345	

FIGURE 3.—Location of hydrothermal convection systems in the conterminous United States with indicated subsurface temperatures between 90° and 150°C.

dissolved salts (1,000 to 10,000 mg/kg), but a few contain 2 to 3 percent. The Salton Sea geothermal system is especially saline, having about 26 percent dissolved salts at reservoir temperatures exceeding 340° C.

Much attention has been given recently to constituents whose contents are strongly dependent on temperature. A few of these are useful in predicting subsurface temperatures from chemical analyses of water samples from springs or shallow wells. SiO_2 (Fournier and Rowe, 1966) and Na-K-Ca relations (Fournier and Truesdell, 1973) have been especially useful in providing most of the predicted temperatures in this report.

The basic assumptions involved in chemical geothermometers need to be emphasized. The most important (Fournier and others, 1974) are: (1) temperature-dependent reactions exist between constitutents in the water and the rocks of a reservoir; (2) all constituents involved in the reactions are sufficiently abundant so that supply is not a limiting factor; (3) chemical equilibrium is attained at the reservoir temperature; (4) little or no equilibration or change in composition occurs at lower temperatures as the water flows from the reservoir to the surface; and (5) the water from the reservoir does not mix with any other water at intermediate levels. Assumptions 1, 2, and 3 commonly seem to be valid for the SiO₂ and Na-K-Ca geothermometers. Nearly all reservoir rocks contain quartz, and residence times of a few days or weeks are sufficient to saturate the water in SiO₂ with respect to quartz at temperatures much above 150°C. Also, most waters seem to attain equilibrium in Na, K, and Ca with respect to the common clay minerals and feldspars. However, some indicated temperatures of our tabulated data are not reliable, at least in part because waters high in free CO₂ may not have attained equilibrium with the rocks or because they attained equilibrium with mineral assemblages other than those assumed for the geothermometers. In order to gain internal consistency, the SiO_2 temperatures reported in the tables are based on equilibrium with quartz rather than chalcedony or amorphous forms of silica. However, some reported systems, especially those of low temperature, may have equilibrated with one of these more soluble forms of silica. The predicted temperatures of such systems will be too high. Assumption 4, that water flows to the surface

without chemical change, is probably never strictly true, but useful minimum temperatures can be predicted. Assumption 5, that no mixing occurs with cool shallow waters, may frequently be invalid. Mixing, formerly considered to be a major obstacle in predicting subsurface temperatures, has recently been utilized to advantage by Fournier and Truesdell (1974). In favorable circumstances, temperatures higher than those indicated by the SiO₂ on Na-K-Ca geothermometers can be predicted at deeper levels in a stacked series of reservoirs (Truesdell and Fournier, 1975). These mixing models are still so new that they have been applied only to a few systems. Other chemical and isotopic methods of temperature prediction are also being developed by Truesdell and others.

Experience has shown that natural geyrers and active deposition of siliceous sinter are reliable indicators of subsurface temperatures at least as high as 180°C. On the other hand, travertine deposits (CaCO₃) and opaline residues r roduced by sulfuric acid leaching (from oxidation of H₂S) are commonly identified incorrectly as siliceous sinter but actually have no reliable relation to reservoir temperature.

The origin of the heat has major importance in predicting the geothermal resources of individual convection systems. Two principal origins are considered here: (1) heat directly related to volcanic sources localized as "hotspots" in the shallow crust of the Earth (Smith and Shaw, this circular) and (2) heat related to geothermal gradient, or the general increase in temperature with depth as a consequence of conductive heat flow (Diment and others, this circular). For both types, the ultimate source of most of the heat is from deep within the Earth, probably resulting in large part from natural radioactivity. As indicated by Smith and Shaw, the basalts and andesites that form most volcanoes have probably risen rapidly from the mantle to the surface in volcanic eruption. As a result, their heat is dispersed rather than stored and does not provide useful geothermal concentrations. However, the high-silica varieties of volcanic rocks, perhaps because of their very high viscosities, commonly are associated with magma chambers at shallow levels in the crust (perhaps 2 to 10 km but most commonly about 4 km; Smith and Shaw, this circular) and can sustain high-temperature convection systems for many thousands of years. Many large geothermal systems appear to be associated with young silicic volcanic rocks. Some hotspring systems that have no direct association with young silicic volcanic systems may derive their heat from older volcanic systems or from very young igneous systems with no surface expression.

Other hot-spring systems are probably not related to silicic volcanic rocks. The heat of their systems is related to the regional geothermal gradient, which is higher in some regions such as the Great Basin than in others (Diment and others, this circular). Many hot springs of the Great Basin emerge from steeply dipping faults that may extend to depths of at least a few kilometres (Hose and Taylor, 1974; Olmsted and others, 1975). The water may be entirely of surface origin, circulating downward, being heated by thermal conduction with consequent decrease in density, and then rising and discharging from surface springs. In such systems, the normal conducted heat is being removed; temperatures immediately adjacent to the deep recharge channels are lower than those at similar depths not affected by convective heat losses. Temperatures should decline with time as rocks adjacent to channels are cooled and as new heat is supplied by conduction through increasing distances from channel walls. In our opinion, the abundant fault-controlled spring systems of low temperature throughout the Great Basin are likely to be of this origin. We suspect, however, that systems such as Beowawe, Leach, and Bradys in Nevada require volcanic heat and are not supplied only by geothermal gradient, even though located within the Battle Mountain high where conductive heat flow is considerably higher than the normal heat flow of the Great Basin (Diment and others, this circular). We, with R. L. Smith (oral commun. 1975), are skeptical that geothermal gradient alone can sustain high temperatures for the long durations of time indicated for these systems.

Identified systems

The accompanying tables are based on the scanty data available to us early in 1975. Sixty-three systems have indicated temperatures above 150° C (table 4 and figs. 1 and 2), and 224 have indicated temperatures between 90° C and 150° C

(table 5 and figs. 2 and 3). Numerous hot springs in the range of 50° to 90°C (Waring, 1965) have not been included because geochemical and other evidence is lacking to suggest reservoir temperatures greater than 90°C. As additional data become available, some of these will no doubt qualify for higher temperature categories.

The more prominent systems have wellestablished names from local usage and literature. In most instances the name appearing on the topographic map of the area or the name given by Waring (1965) is used. If more than one name is available locally or in the literature for a particular spring, the additional names are shown in parentheses in the tables. Other springs or wells without established names ε re identified by some nearby geographic feature on available maps, which also provide latitude and longitude.

Measured surface temperatures provide minimum reservoir temperatures. Where the chemical temperatures T_{si02} and $T_{Na-K-Ca}$ both indicate temperatures above about 125°C, we are confident that most subsurface temperatures will equal or exceed the predicted temperature. The user of these tables, however, should be especially skeptical of temperatures that are below 125°C, as well as temperatures that differ between the two chemical methods by more than about 20°C. Other systems whose predicted temperatures warrant skepticism are those of moderately high discharge (more than about 50 lpm from a single spring or obout 200 lpm from a system) that also have surface temperatures much below boiling (70°C or less). An indicated high subsurface temperature is credible for a cool spring of low discharge where excess heat can be lost by conduction but is much less credible for a system combining a low surface temperature and a high rate of discharge. Geochemical temperatures in most but not all cases provide minimal estimates of subsurface temperatures. Note that we have predicted some reservoir temperatures that are near the average rather than the maximum geochemical temperature. In most cases, our predicted temperature is at least as high as the preferred geochemical temperature (generally T_{8i02}); however, in some systems where subsurface temperature projections have been made (most notably by Olmsted and others, 1975), the assumed reservoir volume includes a substantial part that may be less than the indicated geochemical temperature.

The subsurface area assumed to be underlain by a reservoir of the indicated average temperature is derived from all available data. These include, as minimum, the surface area containing springs, spring deposits, and bleaching from attack by sulfuric acid derived from oxidation of H₂S. Geophysical data (Combs and Muffler, 1973), where available, provided the principal means for estimating the area and, in a few cases, the indicated depth of the reservoir, even though sufficient drilling has not yet been done to document carefully the relation between a geophysical anomaly and geothermal potential. Parts or all of some electrical resistivity anomalies may be caused by hydrothermal alteration, rocks rich in clay minerals, or saline ground waters, particularly in many areas of the Basin and Range province. Other types of geophysical surveys may also indicate anomalies that are not closely related to geothermal reservoirs. In most instances where surface expression and geology were used to indicate reservoir dimensions and geophysical data were then examined, the reservoir dimensions either remained the same or, more commonly, were significantly increased.

Although the pattern of industry exploration and drilling activity is viewed as highly significant in indicating the extent of a reservoir in several areas, in general only scanty data are available now from private industry. The lack of reliable data concerning areal extent is a serious constraint in this assessment because many estimates of the subsurface areas shown in tables 3 to 5 differ by more than three orders of magnitude; in contrast, all other parameters vary by less than one order of magnitude. Thus, the areal extent is the most critical single parameter in estimating the heat content of a system. Temperature, however, is of critical importance in determining how a system may be utilized. Systems with minimal surface evidence, such as a single spring, a restricted group of springs, or a single thermal well without other evidence, and systems for which geology or geophysics do not suggest a larger subsurface area are arbitrarily assigned a subsurface area of 1.5 km² (assumed to be $1\frac{1}{2}$ km long on the dominant structural trend, even if unknown in direction, and 0.5 km on each side of this trend). Many of the separate systems we have indicated may be interconnected at depths greater than 2 or 3 km.

The heat reservoir of all convection systems is arbitrarily assumed to extend to 3 km in depth, which is the current limit of geothermal drilling. Heat at greater depths in volcanic systems is included in the volcanic system resources (Smith and Shaw, this circular); heat below 3 km in depth in other areas is included in the resource base calculations for conduction-dominated regions (Diment and others, this circular). A convection system in the latter environment has removed heat, relative to surrounding ground, as previously noted.

The top of a convective reservoir is generally not well defined but is generally assumed to have an average depth of 1, 1 $\frac{1}{2}$, or 2 km, depending on assumed shape of the convection system and inferred similarities to drilled areas. A lthough the differences among our various depth estimates (tables 3 to 5) clearly affect drilling costs, the tables show that assumed thickness introduces much less variation in calculated volumes and heat contents than the assumed areas.

The tabulated volumes are simple multiplications of the assumed areas and thicknesses. Estimated stored heat is then calculated from reservoir temperatures (less 15°C, ambient surface temperature; for simplicity, assured constant for all of the United States), volume, and volumetric specific heat assumed as 0.6 cal/ cm^{3°}C. Volumetric specific heats are known to differ slightly by rock type, porosity, ard water content (Diment and others, this circular), but the assumption of a single volumetric specific heat introduces only slight errors relative to the great uncertainties of other parameters.

Little is known about the specific intermediatetemperature systems of table 5 and figures 2 and 3. Most of these systems are included in this category because of their chemically indicated temperatures but are listed with minimal reservoir areas, volumes, and heat contents. One notable exception is the Bruneau-Grandview area of Idaho, shown on table 5 as having an area of 2,250 km² and 263×10^{18} cal of stored heat. This large area in the southwestern part of the Snake River Plain is characterized by hot springs of modest temperature (commonly 35° to 45°C; Waring, 1965) and many shallow thermal wells that discharge at temperatures as high as 84°C. In addition to this broad distribution of thermal springs and wells, the regional heat flow is probably high to very high (Diment and others, this circular), and geophysical surveys show no sharp boundaries for the area known to be anomalous. This geothermal area is likely to be huge, and it may even extend under a large part of the Snake River Plain.

Even less is known about our low-temperature hydrothermal resources ($<90^{\circ}$ C). Many spring systems tabulated by Waring (1965) are probably in this category, and the warmer ones may be useful in space heating. For example, Iceland and Hungary make extensive use of water at temperatures below 100°C, and 80°C is actually the preferred distribution temperature in Reykjavik, Iceland (Einarsson, 1970).

Pattern of distribution of identified convection systems

Figures 1 and 3 confirm the well-known abundance of thermal systems in the Western United States and their scarcity elsewhere. Most of the high-temperature systems occur in the areas of anomalously high conductive heat flow (Diment and others, this circular, figs. 9 to 11); many of these systems also occur in or near areas of young volcanic rocks (Smith and Shaw, this circular, figs. 5 to 7).

The numerical data of tables 4 and 5 are summarized in table 6, which also divides the systems into two categories, depending on whether the predicted magnitude of their heat reservoirs exceeds the minimum assumed value.

Note that the heat contained in identified hotwater systems is about 30 times that in vapordominated systems, and total heat contained in systems with indicated temperatures above 150°C is about the same as that in systems between 90°C and 150°C. Such comparisons of systems of different types must be tempered by the extent of our knowledge of each type; for obvious reasons, much more attention has been given to the more attractive large high-temperature systems. Six of the high-temperature systems (Surprise Valley, Long Valley, Coso Hot Springs, Salton Sea, and Heber, California, and Yellowstone National Park, Wyoming) are each predicted to contain more than 10×10^{18} cal of stored heat; they total about 75 percent of the total estimated heat of all of the identified high-temperature systems. Even more striking is the dominance of a few large systems in the intermediate-temperature range. Only two identified systems are predicted

to contain more than 10×10^{18} cal each, and only seven contain more than 1×10^{18} cal. The dominance of the Bruneau-Grandview area of Idaho is especially startling; this may be more a reflection of a lack of adequate data and reliable predictive technique than of fact. However, geothermal convection systems may have the same log-normal relation between grade and frequency that metalliferous deposits and hydrocarbon reservoirs have. If this is so, relatively few systems contain most of the resources.

Undiscovered convective systems

Good reasons exist for optimism that abundant geothermal resources in hot-water convective systems are available for future discovery. Our use of the term "discovery," however, must be defined; a geothermal discovery is considered to result from any of the following:

- 1. New knowledge of the extent of an already identified system that increases its tabulated volume appreciably; the difference is considered to be the newly discovered part (but this may be offset in part by decreased estimates for individual systems).
- 2. The temperature of an identifed system is found to be higher than first estimated enough for the system to qualify for a higher temperature category and more valued potential utilization (but increases may also be offset, probably in small part, by decreases).
- 3. A previously unknown system is discovered, commonly with no obvious surface evidence for its existence.

Most of the tabulated convection systems of this report (tables 4 and 5) should be viewed as targets for future exploration and discovery.

Our reasons for being optimistic that many exploitable hot-water systems exist for future discovery are:

- 1. Many of the young silicic volcanic systems tabluated by Smith and Shaw (this circular) have no recognized convection systems.
- 2. Other young silicic systems may still be developing, with no direct evidence for their existence in the shallow crust.
- 3. With few exceptions, old, deeply eroded volcanic systems are associated with exten-

	Number	Subsurface area, km ²	Volume, km ³	Heat Content, 10 ¹⁸ cal
Vapor-dominated systems (~240°C)	3	122	_194	26
Hot-water systems, identified				
High-temperature systems (<150°C)				
Systems each with heat content >0.2 x 10 ¹⁸ cal	38	1374	2939	366
Systems each with heat content $\leq 0.2 \times 10^{18}$ cal	25	40	56	5
Total high-temperature systems	63	1414	2995	371
Intermediate-temperature systems (90°-150°C)				
Systems each with heat content >0.2 x 10 ¹⁸ cal	28	2638	4112	311
Systems each with heat content <0.2 x 10 ¹⁸ cal	196	300	452	34
Total intermediate-temperature system	224	2938	4564	345
Total identified hot-water systems	287	4352	7559	714
Total hydrothermal convection systems	290	4474	7753	740

Table 6.-Summary of identified hydrothermal convection systems

sive hydrothermal alteration. Until recently, such alteration was interpreted as the effect of magmatic fluids, perhaps much different from the large convection systems of Larderello, The Geysers, Wairakei, and the Imperial Valley fields. However, extensive isotope studies of waters and rocks of both the old and the presently active systems have shown that local waters of surface origin are generally the dominant fluid (Taylor, 1974; White, 1974); the active systems are probably the present-day equivalents of old oreforming systems. The volumes of altered rocks of the ore-forming systems are commonly many tens or hundreds of cubic kilometres. Furthermore, the isotope studies also demonstrate that each volume of altered rock commonly required the flow of 1 to 10 volumes of water through the system. The isotopic and other data also indicate that temperatures of these old systems most frequently ranged from 200° to 400° C at probable depths of 1 to 4 km below the ground surface of the time. If this analogy is correct, many active systems should have similar volumes and temperatures in their deeper parts.

- 4. Many old volcanic systems probably still sustain moderate- to high-temperature convection systems that may not have surface expression. Most of these volcanic systems are too old or poorly known to be evaluated in detail (Smith and Shaw, this circular).
- 5. Recent major progress has been made in applying several kinds of chemical, isotopic, and thermodynamic mixing models to convection systems that differ from the simple model (Fournier and Truesdell, 1974; Truesdell and Fournier, 1975). Different levels of mixing with dilute, cool meteoric waters are probably involved. With proper sampling of springs and shallow wells, evidence for high temperatures at deeper levels can be obtained; such evidence is normally lost by re-equilibration in a hot reservoir of a simple system. Reassessment of data from many of the systems of tables 4 and 5 and from

other inconspicuous systems of low surface temperature is likely to result in many new discoveries, as we have defined the term.

We are fully aware that some ertensively explored areas are better known to some others than to us, especially in light of the recent rapid rate of accumulation of proprietary data by industry. In time, some of these data will become available, and our techniques, estimates, and assumptions will improve enough to justify a new assessment.

We estimate that five times the volume and heat contents of the high- temperature (>150°C) systems of table 4 (excluding Yellowstone Park) are not presently recognized and exist as targets for future discovery. We cannot specifically justify this number other than to emphasize our previously stated reasons for optimism; a factor of 2 is almost certainly too small, and 20 is likely to be too large. We estimate that about three times the volume and heat content of the intermediatetemperature resources of table 5 are unrecognized, but this may be conservative.

ACKNOWLEDGMENTS

Many predicted reservoir temperatures are based on chemical data from R. H. Mariner, Theresa S. Presser, John Rapy, and Ivan Barnes of the U.S. Geological Survey. Essential assistance was provided by F. H. Olmstead, H. W. Young, T. P. Miller, A. H. Truesdell, and geophysicists familiar with specific systems. C. A. Brook, J. P. Calzia, J. A. Crowley, G. L. Galyardt, E. A. Johnson, Peter Cberlindacher, E. D. Patterson, G. B. Shearer, F. W. Smith, and K. E. Telleen assisted in assembling all of the data for our use.

REFERENCES CITEI

- Combs, Jim, and Muffler, L. J. P., 1973, Exploration for geothermal resources, *in* Kruger, Paul, and Otte, Carel, eds., Geothermal energy-resources, production, stimulation: Stanford, Calif., Stanford Univ. Press, p. 95–128.
- Einarsson, S. S., 1970, Utilization of low enthalpy water for space heating, industrial, agricultural and other uses: Geothermics, Special Issue 2, v. 1, p. 112–121.
- Fournier, R. O., and Rowe, J. J., 196€, Estimation of underground temperatures from the silica content of water from hot springs and wet-stream wells: Am. Jour. Sci., v. 264, p. 685–697.

Fournier, R. O., and Truesdell, A. H., 1973, An empirical Na-K-Ca geothermometer for natural waters: Geochim. et Cosmochim. Acta, v. 37, p. 1255-1275.
— 1974, Geochemical indicators of subsurface temperatures, Pt. 2, Estimation of temperature and fraction of hot water mixed with cold water: U.S.

Geol. Survey Jour. Research, v. 2, no. 3, p. 263-270. Fournier, R. O., White, D. E., and Truesdell, A. H., 1974,

- Geochemical indicators of subsurface temperatures, Pt. 1, Basic assumptions: U.S. Geol. Survey Jour. Research, v. 2, no. 3, p. 259–262.
- Hose, R. K., and Taylor, B. F., 1974, Geothermal systems of northern Nevada: U.S. Geol. Survey open-file rept. 74–271, 27 p.
- James, Russell, 1968, Wairakei and Larderello; geothermal power systems compared: New Zealand Jour. Sci. and Technology, v. 11, p. 706-719.
- Muffler, L. J. P., 1973, Geothermal resources, in United States mineral resources: U.S. Geol. Survey Prof. Paper 820, p. 251–261.
- Olmsted, F. H., Glancy, P. A., Harrill, J. R., Rush, F. E., and Van Denburgh, A. S., 1975, Preliminary hydrogeologic appraisal of selected hydrothermal systems in northern and central Nevada: U.S. Geol. Survey open-file rept. 75-56, 267 p.
- Ramey, H. J., Jr., 1970, A reservoir engineering study of The Geysers geothermal field: Evidence Reich and Reich, petitioners vs. commissioner of Internal Revenue, 1969 Tax Court of the United States, 52, T.C. No. 74, 36 p.

- Taylor, H. P., Jr., 1974, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition: Econ. Geology., v. 69, p. 843–883.
- Truesdell, A. H., and Fournier, R. O., 1975, Calculations of deep temperatures in geothermal systmes from the chemistry of boiling spring waters of mixel origin: United Nations Symposium on Geothermal Resources, 2d, Proc. (in press).
- Truesdell, A. H., and White, D. E., 1973, Production of superheated steam from vapor-dominated reservoirs: Geothermics, v. 2, p. 145–164.
- Waring, G. A., 1965, Thermal springs of the United States and other countries of the world—A summary: U.S. Geol. Survey Prof. Paper 492, 383 p.
- White, D. E., 1973, Characteristics of geothermal resources and problems of utilization, in Kruger, Paul and Otte, Carel, eds., Geothermal energy-resources, production, stimulation: Stanford, Ca., Stanford Univ. Press, p. 69–94.
- ——— 1974, Diverse origins of hydrothermal ore fluids: Econ. Geology, v. 69, p. 954–973.
- White, D. E., Muffler, L. J. P., and Truesde¹¹. A. H., 1971, Vapor-dominated hydrothermal systems compared with hot-water systems: Econ. Geology., v. 66, no. 1, p. 75–97.
- Zohdy, A. A. R., Anderson, L. A., and Muffler, L. J. P., 1973, Resistivity, self-potential, and induced polarization surveys of a vapor-dominated geothermal system: Geophysics, v. 38, p. 1130-1144.

Igneous-Related Geothermal Systems

By R. L. Smith and H. R. Shaw

This preliminary survey of the geothermal resource base associated with igneous-derived thermal anomalies in the upper 10 km of the crust is a tentative first approach to an extremely complex problem. Our results are unavoidably speculative, and they emphasize the paucity of quantitative knowledge in the field of geothermal energy. Many of the data gaps are the same ones that exist in the fields of igneous petrology and volcanology and, to some extent, in the field of igneous-related ore deposits. Relevant research in these fields can go far toward solving many geothermal problems and vice versa.

Our approach to numerical estimates of igneous-related heat contents rests on estimates of the probable volumes of high-level magma chambers ² and determinations of the radiometric ages of the youngest volcanism from those chambers combined with simple thermal calculations based on these values. In the following discussion these quantities are symbolized V_B (best volume) and Ty (last eruption), respectively, and are listed with the corresponding heat content estimates in table 7. This list contains the most important volcanic systems for which we were able to obtain data as well as many that may be of interest but for which data are lacking.

Mathematically, our thermal calculations contain two major assumptions: (1) heat transfer in rocks surrounding the magma chamber is by solid-state conduction and (2) effects of magmatic preheating and gains of magma after the time Ty are ignored.

The first assumption means that we neglect heat losses caused by mass-transfer mechanisms in surrounding rocks; specifically, we have not attempted to account for heat losses by hydrothermal convection systems. The second assumption means that, within the accuracy of V_B and Ty, our calculations of total magmatic heat yield minimal estimates because both magmatic preheating and gains of magma are additive.

Whereas the present rates of hydrothermal heat transfer are known for a few systems such as those of Long Valley, California, Steamboat Springs, Nevada, and Yellowstone National Park, Wyoming, we defend the first assumption from the standpoint that there are no uniform quantitative criteria for adjustments. The same is true of the second assumption. The net effects of the two assumptions relative to the present igneous-related resource tend to compensate one another, but the proportional amounts are not known with any confidence. Therefore, our calculations can only be used as a reference scale of heat contents on the "dry" basis that must be modified as data accrue on both the hydrothermal and magmatic histories of specific systems.

The calculations presented in this report are based almost entirely on a series of working hypotheses and a general model for volcano evolution developed by us over a period of years, which is still incomplete (Smith and Shaw, 1973, and unpub. data). In its simplest form, the rationale for our model holds that basic rocks (basalts, andesite, and comparable magmas) are formed in the mantle and/or lower crust and rise to the surface through narrow pipes and fissures; the individual magma pulses are volumetrically small, and such systems contribute little stored heat to the upper crust until magma chambers begin to form at high levels. With the exception of the large oceanic volcanoes, basic magmas do not form large high-level storage chambers out of context with derivative 3 silicic magmas (dacites, rhyolites, and comparable derivative magmas). On the other hand, we think that silicic

³We use the term "magma chamber" in the most general sense. In our thermal calculations, however, we specifically refer to the region of the crust that, at the time Ty (time-zero of our calculations), is inferred to contain molten or partly molten rock (magma).

³ The term "derivative" carries no specific connotation as to the ultimate origin of the silicic end of the magma series; that is, crustal melting is not ruled out.

EXPLANATION OF SYMBOLS

AGE = T

Ty - Last eruption

Tys - Youngest silicic eruption

- Tyb Youngest basic eruption
- Ts Age (silicic)
- Tc Age caldera eruption
- Tg Greatest known age (composition unspecified)
- Tgs Greatest age (silicic)
- Tgb Greatest age (basic)
- Tb Age (basic)

AREA = A

- Ac From caldera
- Av From vent distribution
- As From shadow
- Af From fractures
- Au From uplift
- Ag From geophysical anomaly (unspecified)
 - Agg Gravity
 - Agm Magnetic
 - Ags Seismic
 - Ago Other, see remarks
- Ao Other, see remarks

The assumed "time-zero" for calculating the present distribution of heat is underlined in the table; Tys is used wherever data exist.

¹/Volcanic systems marked by an asterisk in column 1 are known to have some associated hydrothermal activity (see Renner, White, and Williams, this volume). Heat content calculations in columns 11-13 ignore hydrothermal losses. Methods of calculation are outlined below.

Table 7.- Magnitudes and heat contents of identified volcanic systems——Continued VOLUME = V

- Vc From caldera
- Vv From vent distribution
- Vs From shadow
- Vf From fractures
- Vu From uplift
- Vg From geophysical anomaly
 - Vgg Gravity
 - Vgm Magnetic
 - Vgs Seismic
 - Vgo Other, see remarks
- Vo Other, see remarks
- Vee From extrapolation of silicic ejecta volume.
- Vb Best estimate

NOTES ON THERMAL CALCULATIONS IN TABLE 7

<u>COLUMN 11</u>, ΔQ , total calories x 10¹⁸

Assumptions: Initial temperature = 850°C

Latent heat of crystallization = 65 cal/g

Heat capacity = 0.3 cal/g /°C

Mean density of magma = 2.5 g $/cm^3$

The above values are approximate averages for the composition and temperature ranges of table 7. From these values the heat liberated between 850°C and 650°C is 125 cal/g. The total heat liberated between 850°C and 300°C is 230 cal/g.

One cubic kilometre of magma represents 2.5 x 10^{15} g. The total heat liberated per cubic kilometre is 0.575 x 10^{18} calories. This number multiplied by the volume V_B in column 9 gives the ΔQ Total of column 11.

Table 7.-Magnitudes and heat contents of identified volcanic systems----Continued

Estimates of heat content in the tables are given in units of 10^{18} calories.

COLUMN 12, ΔQ now, calories x 10^{18}

The time required for a change of the original gradient at the Earth's surface to a steady-state gradient between the surface temperature and the magma chamber temperature is given approximately by relations discussed by Jaeger (1964). For the assumed depth of cover of 4 km and a thermal diffusivity of 0.007 cm²/sec, this time is about 360,000 years. Where Ty is much younger than this time, the total heat remaining in the system now (column 12) is assumed to be about the same as the total value in column 11. Estimates of losses for older systems require detailed calculations of the disturbance of the geothermal gradient.

The value of thermal diffusivity used is an average estimate for crustal rocks. Roof rocks above large caldera systems such as Yellowstone, Idaho-Wyoming (IW-2), Valles, New Mexico (NM-1) and Long Valley, California (C-3) may have smaller values of conductive thermal diffusivity. Hydrothermal convection systems, however, can increase the effective value of thermal diffusivity by a significant amount, depending on average permeabilities of roof rocks.

<u>COLUMN 13</u>, ΔQ out, calories x 10^{18}

The total amount of heat transfer per square centimetre from a magma chamber into roof rocks is given by Carslaw and Jaeger (1959, p.61) and also is discussed by Shaw (1974). Using these relations the total heat transfer (ΔQ_{out}) in column 13 is given by

Table 7.-Magnitudes and heat contents of identified volcanic systems---Continued

$$\Delta Q_{out} = 51.6 A t^{1/2}$$
 (cal)

where A is contact area (from column 7 converted to square centimeters) and t is the time in seconds since Ty. Calculations in column 13 are approximately valid only if the time of solidification is greater than Ty in column 6. The time of solidification is approximated by lines 3 and 4 in figure 4.

If Ty is much greater than 360,000 years and the time for solidification, the calculation of heat content is ambiguous because of the increasing importance of hydrothermal losses. On the basis of conduction models, however, the total time for decay of igneous-related thermal anomalies may be very long. As an example, the time required for the central temperature in a magma chamber of horizontal slab like geometry to decay from the initial magma temperature to nearly ambient temperature is about 2 m.y. for a magma chamber 5 km thick and about 10 m.y. for a 10-km-thick chamber. Even a liberal allowance for hydrothermal losses means that the igneous-related thermal anomalies for the largest systems of table 7 probably are preserved for times of the order 10 m.y. or longer.

Queries in columns 11-13 mean that even though data exist, we are not confident that they pertain even approximately to the assumptions of the calculations. Blank spaces in the table mean that more geological and geochronological study is needed before we are willing to provide estimates.

ALASKA

1 S-S NO. *	2 NAME OF AREA	S LAT.	4 Long.	s Composition Last Eruption	AGE DATA	7 Chamber Area Kmª	CHAMBER VOLUME RANGE KM ³	CHAMBER Volume Vo	IO SOLID- IFICATION STATE °C	U TOTAL CALORIES × 10 ⁴⁴	∆Q Now CALORIES ×10 ¹⁸	LIS OUT CALORIES × 10	i9 Remarks	
1-1	BULDIR	52°23'N	176°01'E	BASIC	<2×10 ³ ?		1						>10 KN DEPTH	Π
A-2	Kiska	52°06'N	177 °36 'E	BASIC	ACTIVE								>10 Km DEPTH	
A-3	SEGULA	52°01'N	178°08'E	BASIC SILICIC ?	<10*?								NEED BETTER DATA ON COMPOSITION AND AGE	
A.4	DAVIDOF	51°58'N	178°20'E	NO DATA	< 10*?	5 Ac	12.5-50 Vc	12.5	>650°	7	7			П
A-5	LITTLE SITKIN	51°57'N	178°32'E	BASIC	ACTIVE	17.3 Ac	45-180 Vc	75	>850°	43	43			
A-6	SEMISOPOCHNOI (CERBERUS)	5/°56'N	179°35'E	BASIC	ACTIVE	42.4 Ac	106- 4 24 V _C	150	>850*	86	86			
A-7	SUGARLOAF	51°54'N	179°38'E	BASIC	0* ?</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>>10 Km DEPTH</td> <td></td>								>10 Km DEPTH	
A-8	GARELOI	51°48'N	178°48'W	BASIC	ACTIVE								>IO KM DEPTH	
A-9	TANAGA	5/°53'N	178°07'W	BASIC ?	ACTIVE	85.9 Ac	215-860Vc	400	>850°	230	230		· · · · · · · · · · · · · · · · · · ·	
A-10	Ta KAWANGHA	51°52'N	178°00'W	BASIC ?	<104	8.9 Ac	22.5-90Vc	>22.5	> 6 50°	13	13			
A-//	BOBROF	51°55'N	177°27'W	BASIC ?	<104 ?								>10 KM DEPTH ?	
A-12	KANAGA	5/°55'N	177°10'W	BAS/C ?	ACTIVE	230 Ac	57.5-230Vc	75	>850°	43	43			\vdash
A-13	MOFFET	51°56'N	176°45'W	BASIC	<104?						•		>IOKM DEPTH	┝──┤
A-14	ADAGDAK	51°59'N	176°36'W	BASIC	~10* ?								>10 Km DEPTH	
A-15 *	GREAT SITKIN	52°04'N	176°07'W	BASIC	ACTIVE	1.8 Ac	4.5-18 Vc	>5	>850°	3	3			
A-16	KASATOCHI	52°11'N	175°30'W	BAS/C?	ACTIVE ?								>10 Km DEPTH ?	Π
A-11	AONIUJI	52299	1.5 39	Basic ?	AC 11-12 ?		1		 				> 1) • 4 DEPTH ?	
A-18	SERGIEF	52°19'N	174°23'W	NO DATA	No Data								NEED COMPOSITION AND AGE DATA	

1 5-5 Na *	2 NAME OF AREA	J LAT.	4 Long	S Composition Last Eruption	Age Data	7 Chamber Area Km²	CHAMBER VOLUME RANGE KM ³	Ch umber Volume Vo	SOLID- IFICATION STATE	AQ TOTAL CALORIES × 10 [®]	A Q Now Calories × 10**	AQ OUT CALORIES × 10	H Remarks	
A-19	KOROVIN	52°23'N	174°10'W	BASIC	ACTIVE								>10 Km DEPTH	Π
A-20	KLIUCHEF	52°/9'N	174°09'W	NO DATA	NO DATA	28.6 Ac	70-280 Vc	>100		58			NEED COMPOSITION AND AGE DATA	П
A-2/	SARICHEF	52°/9'W	174°03'W	BASIC ?	ACTIVE?								> IO KM DEPTH	
A-22	SEGUAM	52°/9'N	172°23'W	NO DATA	ACTIVE	20(z) A _C	100-100Vc	200	>850	115	115		APPEARS TO BE A DOUBLE CALDERA, NOT REPORTED	
A-23	AMUKTA	52°30'N	171°1.6'W	BASIC !	ACTIVE								>10 Km DEPTH ?	
A-24	Chagulak	52°35'N	171°09'W	BASIC ?	< 104 ?								>10 Km DEPTH ?	
A-25	YUNASKA	52*39'N	170°39W	NO DATA BASIC ?	ACTIVE	12.1 Ac	30-/20 Vc	40	>850	23	23			$\left - \right $
A-26	HERBERT	52°45'N	170°07'W	BASIC?	< 104 ?								>10 Km DEPTH ?	
A-27	CARLISLE	52*54'N	<i>170°04</i> ₩	BASIC !	ACTIVE								>10 Km DEPTH ?	
A-2'8	CLEVELAND	52°49'N	169 °5 8'W	BASIC ?	ACTIVE								>10 KM DEPTH ?	\mathbf{H}
A-29	ULIAGA	53°04'N	169°47'W	BASIC ?	<i>~10*?</i>								>10 Km DEPTH?	\mathbf{H}
A-30	TANA	52°50'N	169° 4 6'W	BASIC?	NO DATA								>10 Km DEPTH ?	┼╌┨
A-31	KAGAMIL	52°58'N	169° 1 4'W	BASIC ?	ACTIVE								>10 Km DEPTH ?	+
A-32	VSEVIDOF	53°08'N	168°42'W	SILICIC	ACTIVE								NEED MORE DATA	┢╶╢
A-33	RECHESCHNOI	53°09'N	168°35'W	BASIC ?	£10 \$								NEED MORE DATA	+
/ /// 	JKMOK	1001207	1.33 35 7	AS/C	ACTIVE 8×103 Tc	527.Ac	1.33-20%	لادير	لادار <	144	: 1 1	1		
A-35	TULIK	53°23'N	168°03′₩	BASIC	NG DATA								> 10 KM DEPTH	$\uparrow \uparrow$
A-36	BOGOSLOF	53°56W	168°02'W	BASIC	ACTIVE								> 10 Km DEPTH	$\uparrow \uparrow$

Table 7.-Magnitudes and heat contents of identified volcanic systems----Continued

ALASKA

ALASKA

1 S-S Na *	2 NAME OF AREA	s Lat	4 Long.	Composition Last Eruption	AGE DATA	7 Chamber Area Km²	CHAMBER Volume Range Km ³	CHWHBER Volume Vo	SOLID- IFICATION STATE	II ∆Q TOTAL CALORIES × 10 [®]	12 A Q NOW CALORIES X 10 ⁴⁸	A Q OUT CALORIES × 10	14 Remarks	
A-37	MAKUSHIN	53*52'N	168°56'W	SILICIC ?	ACTIVE	3.6 Ac	9-36 Vc	>10	>850	6	6			
A-38	TABLE TOP	53°58'N	166°40'W	BASIC	No Data								>10 Km DEPTH	
A-39	AKUTAN	54°08'N	166°00'W	BASIC ?	ACTIVE	3.5 Ac	9-36 Vc	>10	>850	6	6			
A-40	Мт. GILBERT (AKUN)	54°16'N	165°39'W	BASIC ?	NO DATA								>10 Km Depth ?	
A-#/	Pogromni	54°34'N	164°42'W	BASIC	ACTIVE								>10 Km DEPTH	
A-42	WESTDAHL	54°31'N	164°39'W	No DATA	ACTIVE								NEED MORE DATA	
A- 1 3	Fisher	54°38'N	164°25'W	Basic	Ас <i>тіче</i> ? <2×10 ³ Ту	122.6 Ac	300-1200 V _c	600	>850	345	3 45			
A- 11	Shishaldin	54°45'N	163°58'W	BASIC	ACTIVE								>10 Km Depth	
A- 1 5	ISANOTSKI	54°45'N	163°44'W	BASIC ?	Αςτινε								>10 Км DEPTH ?	
A- 16	ROUNDTOP	54°48'N	163 *3 6'W	No Data	Active ? <2×103 ?									
A- 4 7	Амак	55°25'N	163°09'W	BASIC ?	NG DATA								>10 Км Дертн ?	
A- 1 8	FROSTY	55°04'N	162°51'W	SILICIC ? BASIC ?	No Data									
A-49	WALRUS (Morzhovoi)	55*00'N	162°50'W	Basic	No Data >104 ?								>10 Km DEPTH	
A-50	<i><i>DUTTON</i></i>	55°11'N	162°16'W	BASIC	No Data								>10 Km DEPTH	
A-5/	EMMONS	55°20'N	162°04'W	BASIC	Αςτινε	117.3 Å _C	300-1200 Vc	600	> 650	345	345			
A-52	HAGUE	55*22'N	161°59'W	BASIC	ACTIVE									
.1-37	DOUDLE CRATER	55°23'N	161-57"5	3ASIC	ACTIVE ?									
A-54	PAVLOF	55°25'N	161°54'W	BASIC	Αςτινε		•						>10 Км Дертн	

S-S NO. *	2 NAME OF AREA	J LAT.	LONG.	s Composition Last Eruption	AGE DATA	7 Chamber Area Km²	B CHAMBER VOLUME RANGE KM ³	CHAMBER Volume Vb Km³	SOLID- IFICATION STATE C	LI △Q TOTAL CALORIES × 10 ¹⁰	12 △ Q NOW CALORIES × 10 ¹⁸	LS A Q OUT CALORIES × 10 [®]	14 Remarks	
A-55	PAVLOF SISTER	55°27'N	16/°5/'W	BASIC	ACTIVE								>IOKM DEPTH	-
A-56	DANA	55°37'N	161°12'W	SILICIC	NO DATA <104?	1.6 Ac	4-16 Vc	>5		>3			NEED MORE DATA	
A-57	KUPREANOF	56°01'N	159°48'W	NODATA BASIC?	ACTIVE								NEED MORE DATA	
A-58	VENIAMINOF	56°10'N	159°23'W	BASIC	АстічЕ 3.7 x 10 ³ Тс	504 Ac	125-500 Vc	200	>850	//5	115			
A-59	BLACK (Purple)	56°32'N	158°37'W	SILICIC	<u>< 104 ?</u>	6.9 Ac	17.5-70 Vc	>20		12	12	6	NEED MORE DATA	
A-60	Аліакснак	56°53'N	158°10'W	SILICIC	Астіче 3.6 x 10 ³ Тс	55.6 Ac	140-560 Vc	225	>850	129	129			
A-6/	CHIGINIGAK	57°08'N	157°00'W	BASIC ? SILICIC ?	ACTIVE								NEED MORE DATA	
A-62	KIALAGVIK	57°12'N	156°42'W	No DATA	No DATA								NO DATA	
A-63	PEULIK	57°45'N	156°21'W	BASIC ? SILICIC	ACTIVE ?	10.5 Ac	25-100 Vc	>30		17	17		SILICIC IN FOCUS OF BOTH CALDERA (MT PEULIN; PERHAPS YOUNG BASIC ERUPTION ON N FLANK PEULIK. NOFO AGE DATA	
A-64	MARTIN	5'8°09'N	155°24'W	BASIC ?	ACTIVE							·	> 10 Km DEPTH ?	
A-65	MAGEIK	53°12'N	155°15'W	?	ACTIVE		 	1			-		SILICIC DOMES ? NEED MORE DATA	
A-66	Novarupta	59°17'N	155°10'W	SILICIÇ	ACTIVE	8.1 Ac	20-80 Ve	50	>850	29	29			
A-67	Mt. Griggs (Knife Peak)	5.9°20W	155°08'W	BASIC ?	ACTIVE		 						>10 Km DEPTH ?	
A-68	TRIDENT	58°14'N	155°07'W	BASIC	ACTIVE	<u> </u>	<u> </u>		<u> </u>				>10 KM DEPTH ?	
A-69	KATMAI	58°16'N	154°59'W	BASIC	ACTIVE	8.1 Ac	20-80 Vc	>20	>850	12	12			
A-70	SNOWY	58°20'N	15 40 AI'W	NO PATA	NO PATA		<u> </u>						NO DATA	
A-7/	DENISON	58°25'N	15 4° 27'W	NO DATA	NO DATA	<u> </u>			<u>+</u>	<u> </u>			NO DATA	
A-72	STELLER	58°26'N	154°24'W	NO DATA	NO DATA								NO DATA	

Table 7.-Magnitudes and heat contents of identified volcanic systems-Continued

ALASKA

.
ALASKA

S-S NO. *	2 NAME OF AREA	J LAT	t Long	s Composition Last Eruption	AGE DATA	7 Chamber Area Km²	B Chamber Volume Range Km ³	9 Chamber Volume Vb Km ³	IO SOLID- IFICATION STATE C	LI	12 A Q NOW CALORIES × 10 ¹⁰	A CI OUT CALORIES × 10 ⁴⁰	ia Remarks	
A-73	Кикак	58°27'N	154°21'W	No DATA	ACTIVE ?								No data	
A-74	DEVILS DESK	58°29'N	154°17'W	NO DATA	NO DATA								NO DATA	
A-75	КАБИЧАК	58°37'N	154°05W	SILICIC	2104?	4/ A _c	10-40 Vc	>/5		9	9	3	NEED AGE DATA	
A-76	FOURPEAKED	58°47'N	153°42'W	NO DATA	< 10+ ?								NO DATA	
A-77	DOUGLAS	58°52'N	/5 3°3 3′W	NO DATA	ACTIVE?				†	· · · · · ·			No data	
A-78	AUGUSTINE	59°22'N	153°25'W	SILICIC	ACTIVE			<u> </u>					NEED GEOPHYSICAL DATA ?	
A-79	ILIAMNA	60°02'N	153°06'W	BASIC	ACTIVE				<u> </u>				> 10 Км ДЕРТН	
A-80	REDOUBT	60°28'N	152°45'W	BASIC	ACTIVE								>10 KM DEPTH	
A-8/	DOUBLE	60°44'N	152°35'W	NO DATA	NO DATA				1				NO DATA	
A-82	BLACK	60°51'N	152°25'W	NO DATA	No Data								NO DATA	
A-83	SPURR	61°/8'N	152°15 W	BASIC	ACTIVE			1					CALDERA ? NEED MORE DATA	
A-84	DRUM	62°07'N	144°38'W	SILICIC	8×10<sup 5 Tys 1.8×10 ⁵ Ts 5×10 ⁵ Te	140 Av	350-1400 V _V	400		230	~200	>100		
A-85	SANFORD	62°13'N	144°07'W	NO DATA	<35×105 TB								NEED DATA ON PARASITIC VENTS HIGH ON FLANKS OF SANFORD (WACCESSIBLE ?)	
A-86	WRANGELL	62°00'N	144°01'W	BASIC ?	ACT/VE >17x/0 ³ Tc	15 A _c	37.5-150 Vc	50	>850	29	29			
A-87	White River	61°27'N	141°28'W	SILICIC	1.5 × 103		80 V _{EE}	80	> 8 50	46	46			
A-88	EDGECUMBE	57°01'N	135°46'W	BASIC ' SILICIC	ACTIVE? < 9 × 10 ³ <u>9 × 10³</u> Ts	74 A _v	185-740 V _V	250		144	144	60	Silicic IN FOCUS BASIC ON FLANKS	
		<u> </u>												

٠

Table 7.--Magnitudes and heat contents of identified volcanic systems ----- Continued

ARIZONA

1 S-S Na *	2 NAME OF AREA	s Lat,	4 Long.	s Composition Last Eruption	ÁGE DATA	7 Chamber Area Km²	CHAMBER Volume Range Km³	Chamber Volume V Km	IO SOLID- IFICATION STATE	U TOTAL CALORIES × 10®	12 A Q Now CALORIES × 10 ¹¹⁸	AQ OUT CALORIES × 10	14 Remarks	
AZ-I	SAN FRANCISCO NOUNTAINS	35°21'N	*41'W	BASALT RHYALTE	8×10° TY8 <u>2×10°</u> Tys <3×10° Tys	250 As	625 - 2500 _{Vs}	1250	> 65D°	719	719	316	SHADOW AREA AND VOLUMES SO DE RIVED HIGALY SPECULATIVE SEE DISCUSSION IN S-S MPER MISCUSSION IN S-S TEM	
AZ-2	KENDRICK PEAK	35°24'N	111°51' W	SILICIC	1.9 × 104 75				< 6 <i>5</i> 0°				NEED MORE DATA	
AZ-3	SITGREAVES PEAK	35°21'N	112°00W	RAYOUTE	2.6 × 10 ⁴ Tys 2.7 × 10 ⁴ Ts 2.8 × 10 ⁴ Tes				<650°			1	YOUNGEST AGE ON GOVERN- MENT MOUNTAIN	
AZ-4	BILL WILLIAMS MTN	35°12'N	/12°12'W	SILICIC	3.5×104 [3 4.1 × 104 [3				< 650°				NEED MORE DATA PROBABLY TOO OLD FOR SIZE	

CALIFORNIA

1 S-S Na X	2 NAME OF AREA	J LAT.	tong.	S Composition Last Enuption	AGE DATA	7 Chamber Area Kint	Chamber Volume Range Khi ²	CHWHBER Volume Va Kim ^o	BOLID- IFICATION STATE	A Q TOTAL CALORIES × 10 [®]	A Q NOW CALORIES X 10 ⁴⁶	A Q OUT CALORIES × 10	10 Remarks
C /	LASSEN PR	40°29'N	/2/*30W	R'HYODICA	58 YRS Tys	80 Ar	200 . 800 Vy	1 00	>650°	230	230	2	
C Z *	CLEAR LAKE	38°53'N	122°45 W	BASIC ?	2 × 10° Too 9 × 10° Too -70° Too	256 Av 560 Au	2560 V, 1370- 54 80 Vac	1500	7650°	863	863	490	NOT COMPECTED FOR PENETRATION OF SANDOW (AV) 144 (- 35 BOUGER CONTOUR)
C 3 *	LONG VALLEY	37°42'N	118°54'W	RHYALTE	105 Tys TX105 Te 9 X 105 Tes	480 Ac	1200 - 4800 Ve	2400	>650°	1380	1380	430	CONSIDERED NERE AS A SYSTEM INCE- DENDENT OF THE NOND- ZNYO CONES, ESCEPT AND SALENDA TONS TO STATE AND MAY BE IN PLEASED BY MAAT IN ANT PLAN THE BE IN PLEASED BY MAAT IN ANT PLAN THE BE IN PLEASED BY MAAT IN ANT PLAN
C 4	SALTON SEA	33° 10' N	115° 38' W	IT NY QUITE	<u>1.6 X 10</u> 4 7 5.5 X 104 Tys	50 Av	125. 500 Vy	200	>6 <i>5</i> 0°	115	115	.18	Mate AND BETTER AGE DATA NEEDED
C 5 *	COSO MTS	36°0ZN	117°49'W	BASALT	3×10+ Tye 4×10+Tys 9×10+Tys	110 Av	275- 1100 Vy	650	>650°	314	314	65	32 RHYOLITE DOMES < 9 X10 ⁵ Yrs
C 6	MONO DOMES	37°53'N	119°00'n	I. WYOLITE	< <u>10</u> 7755 <tx10+tes< td=""><td>130 Ave</td><td>325- 1300Vm</td><td>650</td><td>>650°</td><td>374</td><td>374</td><td>12</td><td>NOND-LANG VALLEY SYSTEMS COMP. LICATED BY INVO DONE CHAM NINEM INTERSECTS BOTH AND IS BEST MUREMER REPUMALS TORE ASST</td></tx10+tes<>	130 Ave	325- 1300Vm	650	>650°	374	374	12	NOND-LANG VALLEY SYSTEMS COMP. LICATED BY INVO DONE CHAM NINEM INTERSECTS BOTH AND IS BEST MUREMER REPUMALS TORE ASST
C7	MEDICINE LAKE	4/°35'N	121°37'W	RHYOLITE	≤ <u>10³</u> T _¥ s	64 Ac 74 Av	160- 640 % 185- 740 %	300	>6 <i>5</i> 0°	173	173	7	
C 8	SHASTA	41°25'N	122°12 w	DACITE	(<u>5-9.5);;10</u> * ? 7 _{1/5}	50 A040	125 - 500 Voya	300	> 650°	173	173	10	BY ANALOGY TO CRATER LAKE AND LARGE GRAVITY
69	SUTTER BUTTES	39°12'N	121°47 W	Basic ?	1.5 X. 7 Typ <u>1.6 X 10⁴ Typ</u> 1.9 X 10 ⁴ Typ	40 A.	100- 400 Vy	100	< 650.	58	< 10	50 !	TWO OF SILICIC YONTS
C 10 *	MORGAN MIN DOMES	40°25' N	121°30'W	DACINE ?	NO DATA PLEIST.?								NEEDS INVESTIGATION
C // *	WARNER MINS Doyd CREEK - SUGAR HILL DOMES (SURPRISE VALLEY)	41° 13' N	/20°11'W	RHYOLITE	7.1 X10 ⁶ Tys 7.7 X10 ⁶ Ts								NEEDS INVESTIGATION MAY BE FRAT OF LARGE SUBJACENT PLUTON SEE COVER PEAR OPERAV(SAME ME)

CALIFORNIA-CON.

1 S-S NQ *	2 NAME OF AREA	s Lat.	LONG.	s Composition Last Eruption	AGE DATA	7 Chamber Area Km²	CHAMBER VOLUME RANGE KM ³	Chamber Volume Vs Km²	HO SOLID- IFICATION STATE °C	U TOTAL CALORIES × 10®	12 A Q Now CALORIES X 10 ¹⁰	AQ OUT CALORIES × 10	14 Remarks	
C /2 *	BRIDGEPORT-BODIE VOLCANIC COMPLEX CALIF-NEVADA	38°15' N \$ 10'	/19°00'W ± 10'	BASIC	2.5× 10° Tys 1. 1 × 10° Te 2.5× 10° Tes								NEEDS INVESTIGATION NAY DE LARGE LOW GRADE RESOURTE	
C13 *	LAVA MOUNTAINS	35°86'N	117°51'W	SILICIC	No DATA PLEIST.? PLIO.		120 Vec	>120	< 650°	769			NEEDS INVESTIGATION AS LOW GRAPE RESOURCE. VOLIME PROBABLY GREATER BY 5-10 THES	
CH	BIG PINE	37°03' N	118° M'W	ANNOLI IZ	<u>9.8×10</u> 57ys	42 As	105- 120 Vs	100	< 650°	58	< 20	30?	NIGHLY SPECULATIVE (V ₆) EIAPSED TIME SINCE LAST EQUIPTION SEDIS TOO GREAT FOR THIS TO BE A VIAULE SYSTEM	
C 15	OLANCHA DOMES	36°19'N	/17°52'W	RNYOLITE	NO OATA								NEED AGE DATA	
C16	JACKSON BUTTES	38°20'N	120° 43' W	OACITE?	No DATA P2.10?								NEED AGE DATA	
C 17 *	PAOHA ISLAND, MONO LAKE	38°00 W	119°03'W	SILICIC	85 Yrs? DATA NOT DEFINITIVE								NEED MORE DATA. ACTIVE FUMAR - OLES; CONSIDERED AS SEPARATE SYSTEM FROM MONO DOMES	

HAWAII

- S-S NQ *	2 NAME OF AREA	JAT.	4 Long.	s Composition Last Eruption	AGE DATA	7 Chamber Area Km²	CHAMBER Volume Range Km ²	Ciwinder Volume Vo	SOLID- IFICATION STATE C	L TOTAL CALORIES × 10 [®]	iz ∆Q NOW CALORIES × 10 ¹¹⁰	A O C A C A C A C A C A C A C A C A C T C A C T C A C T C A C T C A C T C C T C A C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C	14 Remarks	
H-/ *	KILAUEA	19°26'N	155°18'W	BASALT	ACTIVE Tre	12.5 Au	37.5-50 V _{UBS}	40	>850	23	23		CHANGER PROMILY A PLEXUS OF SILLS & DIKES MITH < 5 %, OF HOT ROCH VOLUME, MOLTAN AT ANY ONE TIME	
H-2	Mauna Loa	19°29'N	155°37'W	OLIVINE BASALT	25 YRS ACTIVE Tro								>5 Km Depth	
H-3	HUALALAI	19°42'N	155°52'W	OLIVINE BASALT	1.74 x 10² Tys								POTENTIALLY ACTIVE. >5 Km DEPTH	
H- 1	MAUNA KEA	19°49'N	155°28'W	HAWAIITE	Post- GLACIAL Tra								POTENTIALLY ACTIVE ? NO HISTORIC ERUPTIONS. > 5 KM DEPTH	
H-5	HALEAKALA	20°43'N	156°15'W	MAFIC OL. BASALT	2.25×10²? Tre								POTENTIALLY ACTIVE. >5 Km DEPTH	
			1											

S-S NQ *	2 NAME OF AREA	s Lat,	+ Long.	s Composition Last Eruption	AGE DATA	7 Chamber Area Km²	B Chamber Volume Range Km ³	Chamber Volume Vb Km³	IO SOLID- IFICATION STATE	LI ∆Q TOTAL CALORIES × 10 ¹⁰	12 A Q NOW CALORIES X 10 ¹⁸	A Q OUT CALORIES × 10	14 Remarks	
IWI	ISLAND PARK- HUCKLEBERRY RIDGE SYSTEM	44° 17' N	/1/º19'W	BASIC IN WEST	<10° T <u>2</u> 1 <u>2×10</u> ° Tys 2×10° Tc	3900 Ac	10000 - 40000 Vc	30000	≤ 650°	17250	7456 4026- WEST PART	12264	COMPOUND SYSTEM WITH VELLOWSTONE CALIFER TREATED WARE ASSINGLE SYSTEM. NEST PART GENERATED BY BASALT AT 2X10° YES	
ZWZ	YELLOWSTONE CALPERA SYSTEM	44° 44' N	110°30'W	RHYOLITE	<u>6.9×10</u> *Tys 6×10 ⁵ 2	2.500 Ac	6250- 25000 Ve	15000	7650°	8625	8625	1900	YELLOWS TONE CALDERA TREATED AS INDERENDENT FROM CLOER SYSTEM	
ZW3	BLACKFOOT DOMES	42°48'N	/11°36'W	SILICIC?	4× 10 4 Ts 8×10 + Ts	25 Av	60- 240 Vy	100	2650°	-58	58	14	NEED GRAVITY SURVEY	
zw4	BIG SOUTHERN BUTTE	13°18'N	:13°00'W	SILICIC	3×10 575	NO DATA	100 Vec	100	2650°	58	< 58		NEED GRAVITY SURVEY AND DATA ON AREA	

IDAHO - WYOMING

Table 7.-Magnitudes and heat contents of identified volcanic systems----Continued

NEVADA

S-S NO. *	2 NAME OF AREA	s Lat.	+ Long.	S Composition Last Eruption	AGE DATA	7 Chamber Area Km²	B Chamber Volume Range Km ³	CHWMBER Volume Vs Kim ^s	BOLID- IFICATION STATE	H ∆Q TOTAL CALORIES × 10 [®]	12 A Q Now CALORIES × 10 ¹⁸	A OUT CALORIES × 10	i n Remarks	
NI *	STEAMBOAT SPRINGS	39°23'N	119°45"N	RHYØL ITE	1.2×106 Tys	18 A.	45. 180 V.	90	<650°	52	?	?	FAULT-CONTROLLED SYSTEM POSSIBLY RELATED TO CHAMBER MUCH LARGER THAN INDICATED	
NZ	SILVER PEAK	37°45" N	117°51'W	BASIC	4.8×1067,0 6.1×1067,5	40 Ac	100 - 400 Ve	200	<650°	115	?		RECENT BASALT CINDER CONE ON LOWER FLANKS	

New Mexico

S-S No. *	RAME OF AREA	s Lat.	↓ Long.	S Composition Last Eruption	AGE DATA	7 Chamber Area Km²	B Chamber Volume Range Khi ³	Chamber Volume V	IO SOLID- IFICATION STATE C	LI TOTAL CALORIES × 10 ¹⁶	A Q Now CALORIES X 10 ¹⁰	G OUT CALORIES × 10 ¹¹	r Remarks
NM-1 *	VALLES CALDERA	35°5ZN	106° 34 W	RHYOLTE	~ 10 5 Tys	400 Ac	1000 - 4000 Ve	3500	> 650" ?	2013	20/3	~ 400	> 20 ANYOUTIC ERMATIONS (1.1818 YES Vec SUBJECT TO REVISION, PREADLY CLOSE TO SOLIAUS TEMPERATURE
NN-2	MT TAYLOR	35° 14' N	107°36'W	BASALT ?	2.74×106 Tys		1						NEED NORE DATA
N#1-3	NO AGUA DOMES	36°45'N	105°58W	RNYOLITE	PLIOCENE"								NEED NORE DATA

Oregon

5-5 M2 #	2 NAME OF AREA	s Lat.	4 Long.	B Composition Last Eruption	AGE DATA	7 Chamber Area Km²	Chamber Volume Range Km ²	CHWHBER VOLIME Vo	SOLID- IFICATION STATE	A Q TOTAL CALORIES × 10 [®]	A Q Now CALORIES X 10 ¹⁰	AQ OUT CALORNES × 10	REMARKS	
0-1	CRATER LAKE	42°56'N	122°09'W	SUICIC ?	> <u>7x10²</u> ? 6.6x10 ² Tc	50 Ac	125-500 Vc	>320	>650	>/84	>/84	4		
0-2	Newberry	43°43'N	21°19'W	RHYOLITE	<u>4 x 10°</u> Tys >46 x 10° Tc	32 Ac	80-320 Vc	100	>650	58	58	2		
0-3	SOUTH SISTER	41°06'N	121°46'W	RHYOLITE	< <u>2×10</u> 37rs	30 A, 40 A,	75-300 V,	100	> 650	58	58	5		
04	Мт Носо	45°22'N	121°42'W	ANDESITE	ACTIVE								>10 Km DEPTH ?	
0-5	MT McLoughlin	42°27'N	122°19'W	ANDESITE	ACTIVE?								>10 Km DEPTH	
0-6 *	MT JEFFERSON DOMES (BREITENBUSH ?)	44°45'N	121° 49' W	SILICIC	NO DATA PLEIST.								NEED AGE DATA	
0-7	MELVIN - THREE CREEKS BUTTES	44°09'N	121*35W	DACITE	NG DATA PLEIST.								NEED AGE DATA	
0-8	CAPPY-BURN BUTTE AREA	43°/9'N	121°59'W	DACITE	NO DATA PLEIST.								NEED AGE DATA	
0-9	ODELL BUTTE	43°28'N	121°52'W	DACITE	NO DATA PLEIST.								NEED AGE DATA	
0-10	Black Butte	44°24'N	121°38'W	DACITE	NO DATA PLEIST.								Need age data	
0-11	RUSTLER PEAK	42°37'N	122°21'W	DACITE ?	NO DATA PLEIST.								Need age data	
0-12	CHINA HAT AND EAST BUTTE	43°41'N 43°40'N	121°02'W 120°00'W	RHYOLITE	7.6 x /0 ⁵ T _{YS} 8.5 X/0 ⁵ T _{YS}		85 V _{EE}	85	<650	4 9			See quartz mountain	
0-13	Quartz Mountain	43°35'N	120 °48 'W	RHYOLITE	<1.0 × 10 ⁶ 1.1 × 10 ⁶		36 V _{EE}	36	<650	21			Need Geophysical Data. If 12 4 13 ARE PART OF SAME HIGH SYSTEM THE CHAMBER COULD BE >103 KM3	
0-14	GLASS BUTTES	43°43'N	120°04'W	RHYOLITE	<u>≤ 4.9×10</u> *		330 V _{EE}	330	<650	190	< 10?	180?	NEEDS INVESTIGATION ?	
0-15	Cougar Mountain	43°25'N	120*53'W	RHYOLITE	<u>4.3 × 10°</u>		7 Vee	>7	< 650	>4	0?	>4?		
0-16	Cougar Peak Area	<i>42°19'N</i> ±30'	/20°38'W ±20'	RHYOLITE ?	7.1-7.7×10° Ts				< 650				NEEDS MORE DETAILED INVESTIGATION INCLU- DING GRAVITY DATA. MAY BE UNDERLAIN DI PLUTON, SEE CALIF, C-11, SAME AGE.	
0-17 *	HARNEY-MALHEUR	43°15'N ?	119°08'W ?	RWYOLITE ?	€ 6.0×10° 9 × 10°		2500 V _{EE}	2500	-650	/438	?	ĺ	EEDS MORE DETAILED INVESTIGATION ESPE- CALLY MORE ACCURATE LOCATION OF CHAIM- DER AREA. PROBADLY IS LADGE LOW COME INS.	

UTAH

S-S Na. *	2 NAME OF AREA	s Lat.	4 Long.	s Composition Last Eruption	AGE DATA	7 Chamber Area Km²	CHAMBER VOLUME RANGE KM ³	CHAMBER Volume Vb Km³	SOLID- IFICATION STATE	LI A Q TOTAL CALORIES × 10 ¹⁰	12 △Q Now CALORIES × 10 ¹⁸	LIS OUT CALORIES × 10	i n Remarks	
U1 *	MINERAL MTS.	38°26'N	112°48'W	RHYOLITE	PLEIST.?	> 10		>50		> 2.9	?		NEED MORE DATA PROBABLY VIABLE GEO - THERMAL SYSTEM	
U2 *	COVE CREEK DOMES	38° 1 5'N	/12°44'W	BASALT	PLEIST. T. PLIO. T.	94 A.	235 - 940 VV	400		230	?		NEED AGE DATA	
U3	WHITE MTN RHYOLITE	38°55'N	/12°30 W	BASALT	< 10° TYB < 10° Tys	NO DATA							NEED AGE DATA	
U4	TUSHAR MOUNTAINS	38°25'N	112°25W	RH YOLTTE	2 X 107 Ts	NO OATA							NEED MORE DETAILED DATA PROBABLY A LARGE CHAMAER AND COMPLEX SYSTEM	
U5	TOPAZ MOUNTAIN	39°42'N	113°08W	RHYOUTE	6 X 10 ⁶ Tys 1.6 X 107 Ts	NO DATA							NEED MORE DATA	
U6	SMELTER KNOLL	39 °25 'N	112°53W	RHYOLITE	3.4× 1047s	No Дата							NEED MORE DATA	

WASHINGTON

S-S Na *	2 NAME OF AREA	s Lat.	4 Long.	s Composition Last Eruption	AGE DATA	7 Chamber Area Km²	CHAMBER VOLUME RANGE KM ³	Chamber Volume Vs	IFICATION SJATE	H A Q TOTAL CALORIES × 10 ¹⁰	12	LS Q OUT CALORIES × 10	14 Remarks
W /	MT BAKER	48°47'N	121°49'W	ANDESITE	ACTIVE								> 10 km DEPTH
W 2 *	GLACIER PEAK	48°07'N	vzrot w	RH YOONCITZ	<u>1.2×10</u> 47 ₁₇ 5 <7×10 ⁵ 76	5±5A.	12.5- 50 Vo	12.5 \$ 12.5		8?	8?	4?	VOLUME BY ANALOGY TO ST. HELEN'S AND OTHER CASCADE VOLCANDES
W3	MT RAINIER	46°51' N	121°45'W	ANDESITE	ACTIVE					Ì			> 10 Km DEPTH
W4	MT ST HELENS	46°12' N	122° ' W	ANDESITE	ACTIVE 1.19×10= TYO 1.15×10= TYO	5 A.	12.5. 50 Vy	>12.5	>850	>8	>8		
W5	MT ADAMS	46°12' N	121°29'W	ANDESITE?	ACTIVE ?								NEED MORE DATA > 10 Km DEPTH ?

magmas are always erupted from high-level storage chambers, probably in the upper 10 km of the crust.

This reasoning suggests to us that purely basic volcanic systems (most common on a world basis) rarely form thermal anomalies of economic interest, whereas silicic volcanic systems probably always do if they are large enough. In making this statement we are specifically excluding possible economic development of certain oceanic volcanic systems. In some oceanic systems there is the admitted possibility of the existence of high-level basic magma chambers.

The estimates given in table 7 are based on those volcanic systems showing evidence from the presence of silicic eruptives that a high-level magma chamber formed in the recent past or is forming at the present time. In table 7 we have tried to give conservative estimates for those silicic volcanic systems that we think have contributed the greatest original and present heat to the upper 10 km of crust.

The problem of the thermal estimates is many faceted, but our major concern is in estimating the volume of the magma chamber for a time when it is known to have contained magma. The range of volumes of silicic magma chambers of interest spans four orders of magnitude or more, and the volumes of most silicic volcanic systems can be approximated within an order of magnitude by inspection of a geologic map or by analogy with kindred volcanoes that are better known. For well-documented volcanic areas, other constraints allow estimates of chamber volumes that are probably within a factor of 2 or 3 of their true volumes. The age of the last known eruption of magma is taken as evidence for a magma chamber that was then at least partly molten; cooling from the time of that eruption is assumed to take place in a closed system. Because many silicic volcanic systems are not closed but continue to receive subchamber heating, this procedure gives minimum cooling times and heat contents for most systems. Cooling by hydrothermal convection tends to offset continued heating, but in our opinion the rate of supply of magma from deep crustal or mantle sources is the dominant heat supply for both high-level magmatic and hydrothermal systems.

For most systems the value of Ty used for thermal calculations is the age of the youngest

silicic extrusive rocks (*Tys* in table 7). ^{TV}e also give estimates for heat contents of systems lacking known silicic extrusive rocks, but it should be recognized that the controlling concepts and assumptions are less applicable for those systems.

Our scheme for evaluating volcanic areas for their geothermal potential was conceived and developed as a guide for exploration rather than as a rigorous method for quantitative estimation of resources. As more and better data on geothermal areas become available, we hope that the scheme might ultimately evolve into a quantitative method for characterizing both developing and declining thermal anomalies associated with high-level igneous systems. The method as applied in this summary of igneous-related geothermal resources does not permit discussion of the many qualifiers that should accompany any detailed consideration of a given geothermal area. The estimates in table 7 should be viewed as first and incomplete approximations of an igneousrelated resource about which little is known with any degree of certainty. If nothing else, however, the table gives a list of areas that may be of geothermal interest and gives some idea of the relative magnitudes of igneous-related heat contents that may exist in these areas. Figure 4 illustrates the criteria that we used to gage the present probable thermal state of a magmatic system.

Some of the fundamental data, from which all estimates are made, are shown in table 7. The basis of specific numbers in columns 6-? is indicated by symbols as explained in the legend of table 7. Column 7 is based on various surface manifestations of volcanism, volcano-tectonics, geophysics, and silicic ejecta volumes. The volume range (column 8) is calculated by assuming that the thickness of the magma chamber ranges from 2.5 to 10 km. This volume range is reduced in column 9 to a single best estimate to simplify the thermal calculations for columns 11-13. In general we assume that the smaller the area, the smaller the thickness of the chamber. On an order of magnitude basis, this assumption must generally be correct.

Column 10 indicates our best guess on the present thermal state of a magma chamber and, thus, whether or not we think that magma exists in the system now. Many entries are shown as greater

FIGURE 4.—Graph of theoretical cooling time versus volume for magma bodies. Points represent yourgest ages (Ty) and estimated volumes (V_B) for the best known magmatic systems of table 7. See text for explanation of lines 1-6.

than or less than 650° C, which is the approximate minimum temperature of solidification of granitic melts. The assumed approximate liquidus (all liquid, no crystals) temperature for most silicic magmatic systems is about 850° C. Where the value >850^{\circ}C is given, as in many of the active Alaskan systems, present ejecta compositions indicate that the chambers contain andesites or dacites of higher liquidus temperatures than rhyolites.

Column 11, designated ΔQ_{total} , is computed directly from column 9 and assumes that the entire heat content of the high-level storage chamber is contained in a fixed volume of magma. This assumption is clearly incorrect if a continuous convective supply of magma from deeper sources has been important in the origin and present state of high-level systems, as we maintain. The assumption leads to a minimum value for the total heat transfer in the upper crust derived from any given volcanic system. However, ΔQ_{total} is the only quantity that can be defended as having existed in the chamber at one time. All of these systems have histories involving preheating, and evaluation of the true total will require much more data on volumes, compositions, depths, shapes, rates of magma convection, differentiation, etc., than are available today; geochronological data are imperative in this context.

The total heat content of column 11 is the "initial" heat content of the magma chamber of volume V_B at the time Ty assumed in the calculations and is based on the total heat that would be liberated if the total chamber volume, assumed to be closed to additional inputs of magma, cooled from an initial average temperature of 850°C to a final average temperature of 300°C. The calculation includes the latent heat of crystallization and the heat capacity integrated over the temperature interval (see table 7, footnote). The lower cutoff is an arbitrary approximation of the average preexisting ambient temperature within the depth zone occupied by magma. In some cases, 850°C is either too low or too high an initial temperature. This uncertainty and the uncertainties of thermal properties mean that some of the listed values may be as much as 50 percent too high or too low. These uncertainties, however, tend to compensate because of the ranges of magma types and also because of the uncertainties of magmatic preheating and continued additions of magma. On this basis we believe that column 11 generally represents minimal estimates of the total igneous-related heat source. Hydrothermal convection does not affect this number because it is determined solely by the data on magma volumes and temperatures.

Column 12 is our estimate of that part of the heat content of column 11 that still remains in the ground, both within and around the original magma chamber. The estimate is based on a calculation of the time that would be required for the geothermal gradient at the Earth's surface to be significantly increased by conductive heat transfer in dry rocks over its original value if a magma chamber was suddenly emplaced with its top at a depth of 4 km. The calculation is sensitive to the assumed depth of the roof and the properties of roof rocks. If the time since the last eruption, Ty, when the total heat content existed mainly in the environs of the magma chamber, is much less than 300,000 years, then little of that initial heat has been lost at the Earth's surface unless there has been active hydrothermal convection in roof rocks for much of that time. In most places there is no way to evaluate this possibility so we have reported heat contents only on the basis of conductive models. Yellowstone is an obvious exception, but the magmatichydrothermal heat balances there are not discussed in this brief report.

In detail, the calculation leading to column 12 is very complicated and is strongly subject to all factors influencing heat-transfer mechanisms. More important uncertainties, however, are caused by the longevity of magmatic injection in the same vicinity both before and after the assumed value Ty. Again, we believe this to imply that the estimates of magma-related heat remaining in the ground are underestimates, probably grossly low, for systems with long histories of magmatic injection that have not had comparable hydrothermal losses.

Column 13 (ΔQ_{out}) gives the heat transferred from the magma chamber into the roof rocks between Ty and the present, calculated by the usual methods of conduction theory. This heat flow is a minimal estimate of the total amount of magmatic heat available throughout the life of the igneous event for the support of past and present hydrothermal systems within the assumed 4 km of roof rock. Numerous complications attend this calculation: magmatic heating prior to Ty will greatly increase the estimates, whereas hydrothermal convection losses decrease the estimates. Systems that have been volcanologically active over a significant time span and are still active clearly do not fit the primary assumption of the calculation, namely, that a single pulse of magma was emplaced instantaneously. Accordingly, we are unable to make any estimates of ΔQ_{out} for volcanoes labeled "active" in column 6. Generally speaking, the realistic magnitudes of heat transfer into roof rocks must be far greater than we can calculate from our simple assumptions.

Column 11, ΔQ_{total} is the sum of the heat now in the intrusion, the anomalous heat now in the roof rocks, and the anomalous heat lost to the atmosphere through the life of the igneous anomaly. Column 12 (ΔQ_{now}) is the sum of the heat now in the intrusion and the heat now in the roof rocks, whereas column 13 (ΔQ_{out}) is the sum of the heat in the roof rocks and the heat lost to the atmosphere. For igneous systems younger than about 300,000 years, the heat lost to the atmosphere is assumed to be small from the standpoint of conduction models, and ΔQ_{out} is equal to the anomalous heat now in the roof rocks. For systems older than 300,000 years, there has been significant escape of heat to the atmosphere, so that ΔQ_{now} is less than ΔQ_{total} , and ΔQ_{out} is greater than the heat now stored in the roof rocks. It should be noted that table 7 includes only a few of the many existing volcanic systems old enough for atmospheric losses to be significant. The amount of residual heat in these additional systems and the longevity of igneous intrusion and subchamber heating in all systems could increase our estimates of igneous-related heat contents by at least 2 and possibly up to 10 times. This problem, however, converges with the more general problems of regional heat flow that are not considered here (see Diment, this circular).

The total for the ΔQ_{now} of all magma-related systems of column 12 in the conterminous United States is roughly 23,000×10¹⁸ cal or about 30 times the total estimated heat content of all tabulated hydrothermal systems (Renner and others, this volume). Of this total, about half (or $11,000 \times 10^{18}$ cal) probably exists as molten or partially molten magma. The total for molten magma in Alaska represents about $2,000 \times 10^{18}$ cal, which is nearly equal to its total "present heat content" of column 12. The total magmatic heat released to and presumably still contained by roof rocks in the conterminous United States is more than $6,000 \times 10^{18}$ cal (column 13 adjusted for surface losses). In some systems, part of this heat has been dissipated by hydrothermal activity. The real total, because of the residual effects of preheating, probably exceeds the estimates of hydrothermal systems by at least an order of magnitude.

The estimates given in table 7 include nearly all of the high-level systems in the United States known or inferred to contain magma, plus a few postmagmatic systems for which we have enough data to make a tentative estimate. The data on igneous-related heat contents presented in this tentative assessment, however, cannot be considered exhaustive. In table 7, for many of the silicic systems, column 12 indicates that virtually all of the original heat content remains in the ground on the basis of the simplified conduction models for dry rocks. The reason for this is that our reconnaissance was aimed at discovering the youngest silicic systems that may still contain magma, and usually these systems have the best surface exposures and are the most completely documented. Calculations of present heat content (ΔQ_{now}) for post magmatic systems are fewer because of the paucity of data. An exception, for example, is Sutter Buttes, California, for which good volcanological data exist but which is probably too old to represent an important thermal resource, as is indicated by the low present heat content of column 12.

There are undoubtedly systems in the transitional range between those that still retain nearly all of their original heat and those that retain virtually none. These are the systems that also would plot somewhere within the transitional band between lines 1 and 6 in figure 4, between subsolidus systems that are inferred to have pluton temperatures near 300°C and systems that are inferred to have chambers still entirely molten. Some of the transitional systems are represented in table 7 among the entries lacking sufficient data for heat-content calculations, but others may be added as data become available. Inclusion of these systems would probably increase the total heat-content estimate by several times.

Additionally, there are several broad areas in and peripheral to the Basin and Range province where fault-controlled warm and hot springs seem clustered near former silicic volcanic loci. The data necessary to confirm or deny a relation between the thermal water and subjacent igneous bodies are inadequate. We think, however, that estimates of the low-grade geothermal resources found to be related to silicic ignoous systems eventually will be revised upward and that old and very large silicic plutons may retain some heat not accounted for by currently proposed thermal models. Deep faulting superimposed on these older plutons allows deep perstration and circulation of ground waters. Three of these areas are listed in table 7 as examples of the kind of systems we have in mind (O17, Harney-Malheur basin, Oregon; C12, Bridgeport-Bodie area, California; O16-C11, Cougar Peak-Surprise Valley area, Oregon-California).

In figure 4 the age-volume (Ty, V_B) data for 54 volcanic systems are plotted to show the approximate present position of each system in relation to its probable solidification state and to the 300°C isotherm. This plot is the essence of our scheme for reconnaissance evaluation of silicic volcanic areas (Smith and Shaw, 1973).

Pairs of lines in figure 4 are drawn to represent a spectrum of cooling models that identify igneous systems that are now approaching ambient temperatures (points above lines 5 or 6), systems that may now just be approaching the postmagmatic stage (points between lines 3 and 4), and systems that probably still have magma chambers with a large molten fraction (points below lines 1 or 2). The pairs of lines represent

FIGURE 5.-Identified volcanic systems in the conterminous United States. Numbers are the same as in table 7.

the effect of shapes ranging from slablike to equant for each of the different cooling models.

Lines 1 and 2 assume that cooling takes place by internal convection of the magma chamber until solidification is nearly complete. Lines 3 and 4 assume that cooling is entirely by conduction, both inside and outside the magma chamber, until solidification is complete. Even in the presence of convection inside the magma chamber, however, lines 3 and 4 come closest to representing the range of true solidification times for most chambers because magmatic convection tends to stagnate long before solidification is complete (Shaw, 1974). Lines 5 and 6 represent an estimate of the time required before the central temperature of the solidified pluton has fallen to about 300°C. Hydrothermal activity will cause these lines to shift toward lines 3 and 4, respectively, but it is our opinion that in most cases the shift is not large and the positions are fairly realistic.

The points plotted in figure 4 can be compared with the lines only on the assumption that the plotted volume V_B was instantaneously emplaced and cooled from the time represented by the youngest age Ty. This assumption is usually questionable, so that the relation of each point to the cooling models must be individually examined in detail. The effects of magmatic preheating and continued supply of magma, of course, tend to shift points lower on the diagram relative to models of instantaneous emplacement of magma chambers that cool as closed systems.

Basic (or basaltic) volcanic systems, except for the special case of Kilauea, Hawaii, are given little emphasis in this resource estimate because they probably do not contain a significant highlevel thermal anomaly and because we do not yet have the data necessary to evaluate them even if they did.

Young basic volcanoes, however, are indicators of magma source regions in the mantle and under some conditions are potential indicators of buried high-level silicic bodies with no obvious surface manifestations. Future investigations may reveal these hidden silicic bodies by geophysical studies, studies of xenoliths in the basic rocks, or by other means. The common association of silicic domes and lavas with basaltic lava fields shows that basaltic systems should not be automatically rejected for geothermal exploration. However, completely hidden silicic magma bodies associated with basaltic lava fields at the present time probably are few and small. Exceptions to this generalization may exist, such as the "Lassen-Shasta rectangle" of table 8, but in those the possibility is also indicated by abundant volcanological evidence. Figures 5, 6, and 7 illustrate the geographic distributions of the silicic and basaltic systems of tables 7 and 8 for the United States.

Table 8 contains a partial list of known basic lava fields and cinder cones known or inferred to be less than about 10,000 years old. Whereas table 7 identifies systems by principal eruptive centers, table 8 identifies broader regions of distributed basaltic volcanism. Ultimately these distributed basaltic systems, and perhaps older ones not listed in table 8, may form some small part of the resource base, but they cannot be evaluated in the present context.

A similar line of reasoning applies to a large number of simple andesitic stratovolcanoes of Alaska and the Cascade Mountains that is, the ones for which no volume estimates are given in table 7. These are listed because they are active or potentially active volcanoes and clearly reflect viable thermal sources. In our opinion, however, the significant thermal anomaly for most of these volcanoes lies below 10 km and is so indicated in the table. Future studies may show that some of these volcanoes have evolved or are evolving higher level storage chambers, but we think that few of them will contribute greatly to the total resource base above the 10km level, though they may be important locally.

We wish to thank R. G. Luedke for help in the final drafting of table 7 and figure 4 and Manuel Nathenson for preparations of figures 5, 6, and 7. We also thank T. P. Miller for reviewing table 7 for errors of fact for the Alaskan volcanic systems. Time and space do not permit listing source references for tables 7 and 8.

REFERENCES CITED

- Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of heat in solids: Oxford, Clarendon Press, 510 p.
- Jaeger, J. C., 1964, Thermal effects of intrusions: Rev. Geophysics, v. 2, p. 443-466.
- Shaw, H. R., 1974, Diffusion of H₂O in granitic liquids: Part I Experimental data; Part II Mass transfer in magma chambers, *in* Hofmann, A. W. Giletti, B. J., Yoder, H. S., and Yund, R. A., eds. Geochemical transport and kinetics: Carnegie Inst. Washington Pub. 634, p. 139–170.
- Smith, R. L., and Shaw, H. R., 1973, Volcanic rocks as geologic guides to geothermal exploration and evaluation: E⊕S, Amer. Geophys. Union Trans., v. 54, p. 1213.

FIGURE 6.-Identified volcanic systems (small dots) and basaltic lava fields (+) known to be less than 10,000 years old in Alaska and Hawaii.

79

FIGURE 7.-Basaltic lava fields known to be less than 10,000 years old in the conterminous United States.

	Lat N	Long W
ALASKA		
Devil Mountain field	66°18'	165°31′
Imuruk Lake field	65°32'	163°30'
Kookooligit Mountains (St. Lawrence I) 63°36'	170°24'
St. Michaels "	63°28'	162°10'
Ingakslugwat Hills "	61°23'	164°00'
Nunivak Island "	60°05'	166°30'
St. Paul Island "	57°11′	170°18'
WASHINGTON		
Red Mountain-Big Lava Bed area	45°56'	121°49'
OREGON		
North Cinder Peak	44°37'	121°48'
Nash Crater	44°25'	121°57'
Sand Crater	44°23'	121°56
Belknap Craters	44°17'	121°50'
North Sisters area	44°11'	121°47'
Leconte Crater	44°03'	121°48'
Cayuse Cone	44°04'	121°40'
Bachelor Butte	43°59'	121°41'
Lava Butte	43°55′	121°21'
Newberry Shield (lower flank)	43°43'	121°14'
Davis Lake to Black Rock Butte	43°33'	121°49'
Brown Mountain	42°22'	122°16'
Diamond Craters	43°06'	118°42'
Jordan Craters	43°02'	117°25'

Table 8.—Basic volcanic fields probably less than 10,000 years old—Continued							
	Lat N	Long W					
IDAHO							
Craters of the Moon	43°24'	11 3°30'					
NEVADA							
Lunar Crater field (?)	38°29'	115°58'					
ARIZONA							
Unikaret	36°23'	113°08'					
Sunset	35°22'	111°30'					
UTAH							
Ice Springs field	38°58'	1⊺2°30'					
Crescent, Miter, Terrace							
Santa Clara	37°15'	1^3°38'					
Crater Hill	37°13'	113°06'					
Markagunt field	37°34'	112°42'					
NEW MEXICO							
Carrizozo	33°47'	10 <u>5</u> °56'					
McCartys	34°48'	108°00'					
Capulin	36°47'	103°58'					
COLORADO							
Dotsero	39°40'	107°02'					
CALIFORNIA							
Copco Lake a rea	41°59'	122°20'					
Goosenest	41°43'	122°13'					
Lassen-Shasta rectangle							
An area approximately cornered by Lass	en-Shàsta-Medicir	ne Late-					
Eagle Lake is about 40 x 80 miles (3200 sq. mi.). This area							

۰,

82

Table 8.-Basic volcanic fields probably less than 10,000 years old-Continued

contains many Holocene cones and basic lava flows and must represent a profound thermal anomaly in the mantle. Future volcanic activity may be expected in any part of this area at any time. The possibility of hidden shallow silicic reservoirs should be considered, and the entire area should be investigated in detail. Cinder Cone (1851), Hat Creek Lava flow, Burnt Lava flow and many other recent events are located in this area. 37°01' 117°27' Ubehebe Craters Cima field 35°15' 115°45' 34°33' 115°47' Amboy-Pisgah field

Temperatures and Heat Contents Based on Conductive Transport of Heat

By W. H. Diment, T. C. Urban, J. H. Sass, B. V. Marshall, R. J. Munroe, and A. H. Lachenbruch

Our objectives here are (1) to describe the heatflow provinces of the United States as they are presently known, (2) to present estimates of temperatures to a depth of 10 km in these provinces and of the range of temperature that might be expected within each province, (3) to summarize the physical data and assumptions that constrain these estimates, and (4) to integrate the temperature distributions with area and depth so as to give an estimate of the sensible heat stored in the Earth to a depth of 10 km. This quantity represents an upper (and quite unapproachable) limit to the thermal energy that can be extracted from the top 10 km of the solid earth.

Various facets of these objectives have been addressed before, often with a rigor beyond the scope of this summary. However, a new summary seems warranted because (1) additional data are available and notions regarding their interpretation are evolving, (2) existing data occasionally have been distorted to achieve an unrealistically favorable view of the potential of geothermal energy, and (3) the data base upon which all estimates are based remains poor, and a summary of this sort is an opportunity to point out how it could be improved.

In the petroleum-producing provinces, temperatures are reasonably well known from measurements of temperature along, or at the bottom of, holes drilled for petroleum. In some provinces, such as the gulf coast, the information extends to depths of 7 km or more. A principal source for this information is the "Geothermal Survey of North America" (for example, Kehle and

others, 1970), a project recently completed under the aegis of the American Association of Petroleum Geologists. The products of this survey include: (1) A data bank (tape or cards) containing bottom-hole temperatures for more than 25,-000 wells along with appropriate mean annual surface temperatures; (2) two maps of North America at a scale of 1:5,000,000; the first is the Geothermal Gradient Map of North America (Am. Assoc. Petroleum Geologists-U.S. Geol. Survey, 1975); the second shows the depths to the 70°, 100°, and 150°C isotherms in those areas where sufficient information is available; and (3) a series of computer-drawn temperature gradient maps at a scale of 1:1,000,000. Reports of compilation procedures and interpretation are available now only in abstract form (Gould, 1974; Kehle and Schoepel, 1974; Shelton and others, 1974).

Deep holes are scarce outside of the petroleumproducing provinces. However, temperatures at depth may be estimated from a knowledge of the near-surface heat flow and the thermal properties of rocks.

Birch, Roy, and Decker (1968) measured heat flow q in holes drilled into plutonic rocks at various sites in the northeastern United States. They also measured the radioactive heat generation Aof the rocks at each site and found a linear relation between q and A:

$$q = q^* + DA$$
.

In a general way the term DA is the component of heat flow due to the radioactive heat production of the upper crust, and the q^* or "reduced heat flow" is the component that originates from the lower crust and mantle. Subsequent measurements in plutonic rocks of the Basin and Range (Roy and others, 1968b) and the Sierra Nevada (Lachenbruch, 1968; Roy and others, 1968b) also showed a linear relation. The parameters for the three provinces, in which extensive q-A studies have been made, are shown in the following table:

Region	q* (HFU)	D (km)	DA _{max} (HFU)
Eastern United States	0.8	7.5	~1.5
Basin and Range province	1.4	10	~1
Sierra Nevada section	.4	10	~1

1 heat-flow unit (HFU) = 1×10^6 cal/cm² s.

The slope (D) varies little among the regions, but differences among the intercept values (q^*) are large.

These observations lead to the notion that continents can be divided into heat-flow provinces, each typified mainly by its own q^* , and that the variation of heat flow within a province is a consequence of the variation of the heat generation of upper crustal rocks. Indeed, q-A points from Australia (Jaeger, 1970) and the Precambrian shield areas of the world (see summary by Rao and Jessup, 1975) seem to fall close to either the Northeastern United States or the Basin and Range lines. Moreover, the regions of high q^* are those of recent tectonism, and those of low q^* are those of either ancient tectonism (Northeastern United States and the Precambrian shields) or regions where a cold slab subducted into the mantle appears to give rise to anomalously low q^* , as in the Sierra Nevada (Lachenbruch, 1968; Roy and others, 1968b, 1972; Blackwell, 1971).

These observations have also been taken to mean (Roy and others, 1968b, 1972; Blackwell, 1971) that: (1) q^* for the Eastern United States may be typical of all stable continental regions older than a few hundred million years, and (2) q^* for the Basin and Range province is close to the maximum that might be found over broad regions of the continental crust, the rationale being that the base of the crust is near melting and further increase of temperature would lead to melting that would buffer additional heat input into the crust. Both of these generalizations are attractive. They form a framework from which to view the many anomalies that are now becoming apparent.

It is also evident from the preceding table that the second term DA in the equation can be a large fraction of the observed heat flow. Consequently, a detailed map of heat flow (were the data available) within a heat-flow province would be both highly variable and highly intricate because of rapid lateral variations in heat production. This is best illustrated by the studies in New England (Birch and others, 1968; Roy and others, 1968b; Roy and others, 1972), where a comparatively large number of heat-flow measurements have been made in a variety of basement rock types and a large amount of heat production information is available both from measurements on cores and from surveys of gamma activity. It is also evident from the relatively detailed investigations in the Sierra Nevada (Lachenbruch, 1968).

TEMPERATURE CALCULATIONS

Types of models

The q-A relation provides a basis for calculation of temperature T at depth z, assuming that the variation with depth of heat production Aand thermal conductivity K are reasonably well known. The two most commonly used models for the decrease in A with depth are: (1) A is constant to the depth H, and (2) A decreases exponentially with depth $A = A_o \exp(-(z/D))$ where D is a constant and A_o is the radioactive heat generation at the surface.

Assuming the conductivity is constant, the temperatures at depth for the two models are (for example, Jaeger, 1965; Lachenbruch, 1968):

$$T = T_o + \frac{AH^2}{2K} \left[\frac{2z}{H} - \left(\frac{z^2}{H} \right) \right] + \frac{q^*z}{K} ,$$

$$T = T_o + \frac{A_o D^2}{K} \left(1 - e^{\frac{-z}{D}} \right) + \frac{q^*z}{K} ,$$

where T_o is the mean surface temperature and hereafter is taken as zero because we are interested primarily in temperature above mean surface temperature.

If the two models are to yield equal heat flow at the surface, D must equal H. If D is about 10 km, as suggested by the q-A relation, A will decrease to A_o/e or $0.37A_o$ at 10 km and to $0.05A_o$ at 30 km (roughly the thickness of the crust). In a general way, then, the first model (constant A) represents the case where crustal radioactivity is concentrated near the surface, and the second model (exponential A) represents the case where it decreases with depth throughout the crust. Consequently, q^* can be thought of as the heat coming from the lower crust and mantle in the first case and as the heat coming from the mantle in the second.

For the same q the temperatures at depth for the exponential model are somewhat higher than for the constant A model. However, at 3 km the difference is about 1°, and at 10 km it does not exceed a few tens of degrees even for the highest values of heat generation. For purposes of the present discussion, the difference between the models is unimportant.

Thermal conductivity

A constant conductivity of 6 mcal/cm s°C was chosen for the models because it is appropriate for igneous rock of felsic to intermediate composition, gneisses, and schists, which typify the major part of the metamorphosed and plutonized basement. Because the thermal conductivity of typical basement rocks decreases with temperature, a value of 6.5 to 7.5 mcal/cm s°C might be more appropriate for the lower temperature region and 5 to 6 for the higher temperature regions.

The conductivities of most igneous and metamorphic rocks are reasonably well known (Birch and Clark, 1940; Clark, 1966), as are the conductivities of their constituent minerals (see also Horai and Simmons, 1969).

The dependence of conductivity upon temperature is also generally known for igneous and metamorphic rocks and some of the rock-forming minerals (Birch and Clark, 1940). It is important to recognize that, although the conductivities of most rock-forming minerals decrease with temperature, the conductivity of the feldspars (the principal constituents of rocks within the crust) increases slightly with temperature. Consequently, it is difficult to envision an average conductivity of a large volume of rock much less than 5 (see, for example, Birch and Clark, 1940, figs. 4 and 5) even at the higher temperature levels.

Conductivities of individual rock types may differ widely from the average value assumed. Some of these types may occur in sufficient thickness that they result in temperature distributions significantly different than the ones given. On the high-conductivity side we have dolomite (~ 12), quartzose sandstone (10-16, depending on porosity), salt (12), and dunite-peridotite-pyroxenite-eclogite (10-14), and, on the low side, anorthosite (4.5), gabbro-basalt-diabase (\sim 5), serpentinite (\sim 5), and shale (2.5-4, depending on water content).

Water $(K \sim 1.5 \text{ at } 30^{\circ}\text{C})$ is an important constituent of many sediments. Thus, recently deposited muds may have conductivities less than 2 that increase on compaction to 3-4 as the mud is transformed into a shale. Some volcanic rocks, such as ash-flow tuffs, may have porosities approaching 50 percent and conductivities less than 3. Bituminous materials such as corl, oil, and oil shale (Clark, 1966) have very low conductivities but rarely are thick enough to cause large distortions in the thermal regime.

Clearly, if a region is blanketed by low-conductivity sediments, the temperatures at depth will be higher than those in our models, which assume a uniform conductivity of 6. Let us assume a conductivity of 3 for the "thermal blanket," which is about the minimum permissible conductivity for a substantial thickness of sediment. The difference in temperature ΔT below the blanket as compared with the K=6 model will be:

$$\Delta T = q[(6-3)/(6\times 3)]z$$

where the numerical values are the conductivities and z is thickness of the low-conductivity blanket. The excess temperatures are given in table 9.

The effect of the "blanket" is evidently small for low heat flow and thin blankets. It is substantial, however, for a thick blanket and a high heat flow. The upper limit ($z=\Omega$ km, q=3.0, $\Delta T=100$) is difficult to envision but might be possible in some localities.

If the conductivities are significantly higher than the 6 assumed in the models, the gradients will be lower and the temperatures below the higher conductivity zone will be lower. Following the table above, and assuming ε conductivity of 9, we have:

$\Delta T = q \left[\left(6 - 9 \right) / \left(6 \times 9 \right) \right] z$

and the effect of the high-conductivity layer is given in table 10.

Evidently, the assumption of a high-conductivity layer, such as might be represented by a thick section of dolomite and quartzose sandstone along with accompanying interbeds of shale, produces a small distortion of the tempera-

	۵.	T(°C) rela	tive to K=0	5 models		
Thickness (z) of Low conductivity	q=0.5	q=1.0	q=1.5	q=2.0	q=2.5	q=3.0
Layer (km)						
0.5	4	8	13	17	21	25
1.0	8	16	25	33	42	50
2.0	16	33	50	67	84	100

ture distribution as represented by K=6, except for the highest q's and the greatest thicknesses.

Radioactive heat generation

The mean value of radioactive heat generation due to radioactive decay of uranium, thorium, and potassium for upper crustal rocks is probably close to 5.0 HGU (heat-generation units; see for an example Birch, 1954; Clark, 1966; Roy and others, 1968b; Blackwell, 1971). The range for rocks exposed at the surface is considerable: much less than 1 HGU for most ultramafic rocks and anorthosites, about 1 HGU for mafic rocks, and from 2 to 20 HGU for felsic and intermediate plutonic rocks, gneisses, and schists. The last group comprises the bulk of the basement rock of the upper crust and is the one that is of primary interest here.

In figure 8 all A values obtained in connection with q-A studies in the United States are plotted as a histogram. The range of A is large, and it is real. The lowest values represent such rocks as the Precambrian anorthosites of the Adirondack Mountains of New York, and the highest represent the rocks of the Mesozoic White Mountain Plutonic Series of New Hampshire. The large number of relatively low values for the Basin and Range, northern Rocky Mountain, and San Andreas provinces represent Mesozoic plutonic rocks of intermediate composition such as granodiorite, quartz diorite, and diorite.

This histogram reveals little about the average distribution of heat generation of near-surface crustal rocks; metasedimentary rocks, and gneisses are poorly known and are not represented. However, it indicates the extremes to be expected, and it suggests that large volumes of rock of A > 10 are probably rare, at least in some geologic provinces.

Average temperature distributions and heat contents by province

In order to estimate the heat stored in the crust, we resort to some rather sweeping assumptions:

1. Three provinces are selected as "typical" of all provinces in the United States. Each physiographic province is assigned a parameter set $(q^*, A, D, \text{ and } K)$ of one of the three "typical" provinces. For some provinces there is sufficient information for such assignment; for others it is based upon somewhat arbitrary judgements. Moreover, we do not know whether provinces having characteristics intermediate between the "typical" provinces are present, or whether extremes are represented by the "typical" provinces.

	$\Delta T(^{\circ}C)$ relative to K=6 models							
	q=0.5	q=1.0	q=1.5	q=2.0	q=2.5	q=3.0		
Thickness of							1	
high-conductivity								
layer (km)								
0.5	-1	-3	-4	6	-7	-8		
1.0	-3	-6	-8	-11	-14	-17		
2.0	-6	-11	-17	-22	-28	-33		
3.0	-9	-18	-24	-33	-28	-54		
4.0	-12	-22	-34	-44	-56	-66		
5.0	-15	-30	-40	-55	-70	-85		

Table 10.-Deficit of temperature below a high-conductivity layer

- 2. An average A of 5 HGU has been assumed for all provinces, although regions of large lateral extent are known for which significantly higher or lower values would be appropriate. The significance of this assumption can be judged from tables 11 and 12 and figure 8.
- 3. An exponential model for decreases of heat generation has been adopted. This model gives somewhat higher temperatures than the constant A model at depth (see tables 11-14).

The heat contents per unit area (\overline{Q}) of the two depth intervals (0-3 and 3-10 km) are calculated for the typical provinces (table 12). The total heat content of the intervals in each province (table 13) is then obtained by multiplying by the appropriate area (S). The sum (table 13) for the two intervals (over the whole of the conterminous United States) is designated the basic calculation. In table 14 we show the effect of varying some of the parameters used to construct the models from the basic calculations.

One of these (increase all q^* 's by 0.2 HFU) requires an explanatory note. Birch (1948) showed that a gradient correction for Pleistocene climatic effects of about 3°C/km might be appropriate for holes of shallow depths (~ 300 m). Diment, Urban, and Revetta (1972) suggested that application of such a correction would help reduce differences of heat-flow measurements made in high- and low-conductivity rocks in the Eastern United States and that q^* in the Eastern United States might be raised by about 0.2 HFU. This view is not universally held (for example, Sass, Lachenbruch, and Jessop, 1971; Slack, 1974), particularly with respect to its applicability to all regions. This detail illustrates the type of uncertainty that may arise in the measurement of heat flow in shallow holes.

FIGURE 9.—Histogram of heat-generation values obtained in connection with 2-4 investigations. Data are given by State. From Henyey (1968), Lechenbruch (1968), Lachenbruch and Bunker (1971), Roy and others (1968b, 1972), Blackwell (1969, 1971, 1974b), and U.S. Geological Survey unpublished data.

	Exponential A					Constant A				
	A=0	A=5	A=10	A=15	A=20	A=0	A=5	A=10	A=15	A=20
q*=0.4 HFU	÷ _,									
D=10 km										
T ₃ =	20	42	63	85	106	20	41	63	84	105
T ₁₀ =	67	119	172	225	277	67	108	150	192	233
T ₃₀ =	200	279	358	438	517	200	241	283	325	366
q*=0.8 HFU										
D=7.5 km										
T ₃ =	40	55	71	86	102	40	55	70	85	100
T ₁₀ =	133	168	202	237	271	133	154	175	196	217
T ₃₀ =	400	446	492	538	584	400	421	442	463	484
q*=1.4 HFU				- <u>***</u> *, <u></u>				- <u>,</u> ,		
D=10 km										
T ₃ =	70	92	113	135	156	70	91	112	134	155
T ₁₀ =	233	286	339	391	444	233	275	317	358	400
T ₃₀ =	700	779	858	937	1017	700	742	784	825	867

Table 11.—Basic calculations: temperatures Tz (above mean annual surface temperature) at depths z of 3, 10, and 30 km for various assumed values of q* and A

		Exp	onential	Α	Constant A					
	A=0	A=5	A=10	A=15	A=20	A=0	A=5	A=10	A=15	A=20
	U	<u> </u>	<u>.</u>							
D=10 km										
₫ ₀₋₃	1.8	3.8	5.9	7.9	10.0	1.8	3.8	5.9	7.9	9.9
Q ₃₋₁₀	18.2	34.6	50.9	67.3	83.6	18.2	32.8	47.5	62.1	76.8
q*=0.8 HF	U				<u> </u>					
D=7.5 km										
Q ₀₋₃	3.6	5.1	6.6	8.1	9.5	3.6	5.1	6.5	8.0	9.5
Q ₃₋₁₀	36.4	47.5	58.6	69.7	80.8	36.4	45.4	54.3	63.3	72.2
q*=1.4 HF	U					·				
D=10 km										
₫ ₀₋₃	6.3	8.3	10.4	12.4	14.5	6.3	8.3	10.4	12.4	14.4
Q ₃₋₁₀	63.7	80.5	96.4	112.8	129.1	63.7	78.3	93.0	107.6	122.3
Q ₀₋₃ Q ₃₋₁₀ 1∕	6.3 63.7 Q ₀₋₃ =c	8.3 <u>80.5</u> S T dz,	10.4 96.4 Q ₃₋₁₀ =0	12.4 112.8 10 5 Tdz,	14.5 129.1 where the	6.3 <u>63.7</u> volumetric	8.3 78.3 : specifi	10.4 93.0 ic heat (12.4 107.6 c) is ass	14 122 sumed

Table 12.-Heat stored 1 (\overline{Q} in megacal/cm²) in the depth intervals 0-3 km and 3-10 km for various assumed values of q* and A

91

Model	Province	Area (S)	S(%)	sō ₀₋₃	SQ̄ _{3−10}	sQ ₀₋₁₀
		$km^2 \times 10^6$		cal x 10 ²²	cal x 10	²² cal x 10 ²²
q*=0.4 HFU D =10 km A =5 HGU	Sierra Nevada	0.081	0.87	0.31	2.80	3.11
q*=0.8 HFU	Eastern	3.375	36.08	17.2	160.4	177.6
D = 7.5 km A = 5 HGU	Coastal Plain	1.313	14.03	6.70	62.4	69.1
	Great Plains	1.633	17.45	8.30	77.6	85.9
	Wyoming Basin	0.123	1.31	0.625	5.84	6.47
	Peninsular Ranges	0.009	0.10	0.046	0.428	0.474
	Pacific Northwest	0.092	0.98	0.468	4.37	4.84
	Klamath Mountains	0.050	0.53	0.254	2.38	2.63
	Great Valley	0.058	0.62	0.295	2.76	3.06
	Colorado Plateau	0.392	4.19	1.99	18.6	20.6
	Subtotal	7.046	75.29	35.9	334.8	370.7
q*=1.4 HFU	Basin and Range	1.045	11.16	8.72	83.7	92.4
A = 5 HGU	Northern Rocky Mountains	0.298	3.18	2.49	23.9	26.4
	Central Rocky Mountains	0.151	1.61	1.26	12.1	13.4
	Southern Rocky Mountains	0.136	1.45	1.13	10.9	12.0
	Columbia Plateaus	0.324	3.46	2.70	25.9	28.6
	Cascade Range	0.128	1.37	1.07	10.3	11.4
	San Andreas fault zone	0.151	1.61	1.26	12.1	13.4
	Subtotal	2.233	23.84	18.6	178.9	197.5
	TOTAL (Conterminous United States)	9.360	100.00	54.8	516.9	571.3
	Alaska	1.519		10.2	97.2	107.4
	Hawaii	0.017	14 47	0.141	1.37	1.5
	TOTAL (United States)	10.896		65.141	615.47	680.2

Table 13.—Heat stored beneath	provinces in dep	pth intervals 0-3 k	m and 3-10 km
-------------------------------	------------------	---------------------	---------------

Mode1	Heat content (10 ²⁴ calories)				
	są ₀₋₃	sō ₃₋₁₀	sQ _{0~10}		
<pre>l. Basic calculation (assume sets of q* D, K=6, A=5 as in table 13, fig. 10)</pre>	, 0.55	5.17	5.72		
Basic calculation (except K=5)	0.66	6.20	6.86		
Basic calculation (except K=7)	0.47	4.43	4.90		
 Basic calculation (except all q*'s increased by 0.2 HFU) 	0.63	6.01	6.64		
5. Basic calculation (except A=2.5 HGU)	0.48	4.60	5.08		
6. Basic calculation (except A=7.5 HGU)	0.63	5.74	6.37		
Best estimate (conterminous United States)	0.7 <u>+</u> 0.1	6 <u>+</u> 1	7 <u>+</u> 1		
Best estimate (United States)	0.8 <u>+</u> 0.1	7 <u>+</u> 1	8 <u>+</u> 1		

Table 14.—Heat content above mean annual surface temperature of the continental crust of the contermino's United States in the depth intervals 0-3 km and 3-10 km

The heat content of the crust as represented by the basic calculation (table 14) is probably too low for several reasons:

- 1. The thermal blanket of low-conductivity sediments of the coastal plain and other areas of recent sedimentation have not been taken into account. However, depression of the thermal gradient by subsidence would tend to offset the effect of the lowconductivity sediments (Grossling, 1956; Jaeger, 1965).
- 2. The geopressured region of the gulf coast (Papadopulos and others, this circular) exhibits anomalously high temperatures.
- 3. Several provinces have rather arbitrarily been assigned to the normal or eastern category. The Great Plains, Colorado Plateau, and Cascades (Smith and Shaw, this circular) may well exhibit temperatures intermediate between the eastern and Basin and Range types.
- 4. Much of the observed high heat flow in the California Coast Ranges may be due to

mechanical generation of heat in the upper 10 to 15 km of the crust (Lachenbruch and Sass, 1973) also resulting in temperatures intermediate between the eastern and Basin and Range types.

- 5. The hot spots discussed in other reports in this circular have not been added. However, their volumes, as presently estimated, are so small that their cortribution to the value represented by the basic calculation is not significant.
- 6. The possible existence of regions of anomalously high heat flow (with respect to the Basin and Range models) has no⁺ been taken into account (see subsequent discussion).

Hawaii and Alaska have been listed separately in table 13 because so little is known of their thermal regimes. We have rather arbitrarily assigned Hawaii and half of Alaska to the Basin and Range (hot) type and the other half of Alaska to the eastern (normal) type.

FIGURE 9.—Observed heat-flow (q) measurements in the United States. Measurements obtained in holes less than 150 m deep (indicated by dots) are not considered reliable as a group and therefore are not coded as to value. References to earlier data may be found in a compilation by Lee and Uyeda (1965). References for later data are the same as those in figure 8 plus those cited in references and U.S. Geological Survey unpublished data.

FIGURE 9.—Continued.

FIGURE 10.—Reduced heat-flow (q^*) measurements in the United States. References are the same as those in figure 8.

FIGURE 10.—Continued

FIGURE 11.—Map showing probable extent of hot (stippled), normal (white), and cold (dotted) crustal regions of the United States based on data in figures 9 and 10. Physiographic provinces (largely generalized from Fenneman (1946)) do not necessarily represent heat-flow provinces.

FIGURE 11.—Continued

DISCUSSION

The maps of observed heat flow (fig. 9) and reduced heat flow (fig. 10) are the basis for construction of the map (fig. 11) showing the location of the hot, normal, and cold crustal regions of the United States. Clearly, the data are not sufficiently numerous to define accurately the limits of the regions. Moreover, many of the observations themselves are weak in that they are based on assumed conductivities or on temperatures obtained under less than ideal conditions. Undue reliance should not be placed on individual values without reference to the original sources.

Temperature profiles (fig. 12) based on the exponential model with K=6 illustrate the range of temperatures that might be expected within each type of province. If one wishes to adjust the temperatures for slightly different parameters, it is useful to recall that: (1) Temperatures are inversely proportional to conductivity (K=6) for a given heat flow and that a temperature corresponding to a different conductivity K can be obtained by multiplying by 6/K, and (2) an increase of 0.1 HFU in q^* results in an increase in temperature of 1.67°C per km of depth.

The temperature profiles (fig. 12 A and B) for the Sierra Nevada type (cold) and the eastern type (normal) indicate that temperatures of economic interest are deep even for regions of high radioactive heat generation (A=20), which, as previously indicated, are limited in occurrence and in areal extent. To be sure, temperatures under a thick blanket of low-conductivity sediments might be 50°C or so higher, but the geographical extent of such regions is small. With current drilling technology, provinces of the cold or normal type hold little promise for geothermal exploitation except conceivably in very local areas.

The temperatures at depths less than 5 km in the Basin and Range (hot) type are not particularly attractive either, at least as expressed in figure 12*C* and 12*D*, especially in view of the fact that the values of A > 10 are practically unknown in this region. However, the temperatures and heat flows are sufficiently high that the existence of a thick low-conductivity blanket in a given locality could raise the temperatures to levels of economic interest.

The temperatures in figure 12C and 12D (A=5) may not represent the maxima to be expected on a regional scale in the high-heat-flow provinces.

Indeed, heat flows much higher $(q^* > 1.8, q > 2.5)$ than those used to construct the temperature profiles for A=5 have been observed (Blackwell, 1971; Sass and others, 1971; Roy and others, 1968a, 1972; Decker and Smithson, 1975; Reiter and others, 1975; Urban and Diment, 1975; USGS, unpub. data). If the thermal regime is entirely conductive, such values require partial melting near the base of the crust (~30 km) or within the lower crust, or intrusion of magma into the crust. On the other hand, the anomalously high values could result from shallow hydrologic disturbance (not evident in the interval of measurement ~300 m) or from deep hydrothermal convection.

Recent and more detailed investigations in northern Nevada and southern Idaho strengthen the notion that the Battle Mountain heat-flow high, as originally proposed by Sass and others (1971), is indeed a region of anomalously high heat flow and not merely a consequence of aberrations involving local hydrothermal activity. Perhaps some anomalously high heat flows observed in other regions are also indicative of high temperatures (with respect to fig. 12C and 12D on a regional scale. The data are not adequate to prove or disprove such speculation.

REFERENCES CITEI

- Am. Assoc. Petroleum Geologists—U.S. Geol. Survey, 1975, Geothermal gradient map of North America: U.S. Geol. Survey, scale 1:5,000,000. (in press)
- Birch, F., 1948, The effects of Pleistocene climatic variations upon geothermal gradients: Am. Jour. Sci., v. 246, p. 729–760.
- 1954, Heat from radioactivity, in Faul, H., ed. Nuclear geology: New York, John Wiley and Sons, p. 148–174.
- Birch, F., and Clark, H., 1940, The thermal conductivity of rocks and its dependence upon temperature and composition, Parts I and II: Amer. Jour. Science, v. 238, p. 529-558 and 614-635.
- Birch, F., Roy, R. F., and Decker, E. R., 1968, Heat flows and thermal history in New England and New York, *in* Zen, E. White, W. S., Hødley, J. B., and Thompson, J. B., Jr., eds., Studies of Appalachian geology: northern and maritime: New York, Interscience, p. 437–451.
- Blackwell, D. D., 1969, Heat flow in the northwestern United States: Jour. Geophys. Research, v. 74, p. 992-1007.

FIGURE 12.—Temperature profiles for various types of provinces in the United States based on an exponential decrease of radioactive heat generation (A) with depth and uniform conductivity (K=6 mcal/cm s°C). Units of q and q* are HFU (1 HFU=1×10⁻⁶ cal/cm² s), and units of A are HGU (1 HGU=1×10⁻¹³ cal/cm³ s).

— 1974a, Terrestrial heat flow and its implications on the location of geothermal reservoirs in Washington, *in* Energy resources of Washington: Wash. Div. Mines and Geol. Inf. Circ. No. 50, p. 21–33.

- Blackwell, D. D., and Baag, C. G., 1973, Heat flow in a "blind" geothermal area near Marysville, Montana: Geophysics, v. 38, p. 941–956.
- Blackwell, D. D., and Robertson, E. C., 1973, Thermal studies of the Boulder batholith and vicinity, Montana, *in* Miller, R. N., ed., Guidebook, Butte field meeting: Soc. Econ. Geologists, 18–21, p. D–1—D–8.
- Bowen, R. G., 1973, Geothermal activity in 1972: The Ore Bin, v. 35, p. 4–7.
- Clark, S. P., Jr., 1966, Thermal conductivity, in Clark, S. P., Jr., ed., Handbook of physical constants revised edition: Geol. Soc. America Mem. 97, p. 459–482.
- Costain, J. K., and Wright, P. M., 1973, Heat flow at Spor Mountain, Jordan Valley, Bingham, and La Sal, Utah: Jour. Geophys. Research. v. 78, p. 8687– 8698.
- ------ 1974, Basic heat-flow data from Spor Mountain, Jordan Valley, and La Sal, Utah, *in* Sass, J. H., and Munroe, R. J., eds., Basic heat-flow data from the United States: U.S. Geol. Survey open-file, rept. 74-9, p. 4-1 to 4-16.
- Combs, J., and Simmons, G., 1973, Terrestrial heat flow determinations in the north central United States: Jour. Geophys. Research., v. 78, p. 441-461.
- Decker, E. R., 1969, Heat flow in Colorado and New Mexico: Jour. Geophys. Research, v. 75, p. 550–559.
- Decker, E. R., and Birch, F., 1974, Basic heat-flow from Colorado, Minnesota, New Mexico and Texas, *in* Sass, J. H., and Munroe, R. J., eds., Basic heat-flow data from the United States: U.S. Geol. Survey openfile rept. 74-9, p. 5-1 to 5-89.
- Decker, E. R., and Smithson, S. B., 1975, Heat flow and and gravity interpretation across the Rio Grande rift in southern New Mexico and west Texas: Jour. Geophys. Research, v. 80, p. 2542–2552.
- Diment, W. H., Urban, T. C., and Revetta, F. A., 1972, Some geophysical anomalies in the eastern United States, *in* Robertson, E. C., ed., The nature of the solid earth: New York, McGraw-Hill, p. 544–572.
- Fenneman, N. M., 1946, Physical divisions of the United States: U.S. Geol. Survey, scale 1:7,000,000.
- Gould, H. R., 1974, History of the AAPG Geothermal survey of North America: Am. Assoc. Petroleum Geol., Ann. Mtg. Abstracts, v. 1, p. 40.
- Grossling, B. F., 1956, Temperature variations due to the formation of a geosyncline : Geol. Soc. America Bull., v. 70, p. 1253–1281.
- Henyey, T. L., 1968, Heat flow near major strike-slip faults in central and southern California Inst. Technology, Pasadena, Ph.D. thesis.

- Henyey, T. L., and Wasserburg, G. J., 1971, Heat flow near major strike-slip faults in California: Jour. Geophys. Research, v. 76, p. 7924–7946.
- Horai, K., and Simmons, M. G., 1969, Thermal conductivity of rock forming minerals: Earth and Planetary Sci. Letters, v. 6, p. 359–368.
- Jaeger, J. C., 1965, Application of the theory of heat conduction to geothermal measurements, in Lee, W H. K., ed., Terrestrial heat flow: Am. Geophys. Union Geophys. Mon. 8, p. 7–23.
- 1970, Heat flow and radioactivity in Australia: Earth and Planetary Sci. Letters, v. 81, p. 285–292.
- Kehle, R. O., and Schoepel, R. J., 1974, Temperature data analysis, AAPG geothermal survey of North America: Am. Assoc. Petroleum Geol., Ann. Mtg. Abstracts, v. 1, p. 53.
- Kehle, R. O., Schoepel, R. J., and Deford, R. K., 1970, The AAPG geothermal survey of North America: Geothermics, Special Issue 2, v. 2, pt. 2, p. 338–367.
- King, W., and Simmons, G., 1972, Heat flow near Orlando, Florida, and Uralde, Texas, determined from well cuttings: Geothermics, v. 1, p. 133–139.
- Lachenbruch, A. H., 1968, Preliminary geothermal model for the Sierra Nevada: Jour. Geophys. Research, v. 73, p. 6977-6989.
- 1970, Crustal temperature and leat production: implication of the linear heat flow relation: Jour. Geophys. Research, v. 75, p. 3291–€300.
- Lachenbruch, A. H., and Bunker, C. M., 1971, Vertical gradients of heat production in the continental crust—2. Some estimates from borehole data: Jour. Geophys. Research, v. 76, p. 3852–3860.
- Lachenbruch, A. H., and Sass, J. H., 1973, thermomechanical aspects of the Sun Andreas fault system, *in* Kovach, R. L., and Nur, A., eds., Tectonic problems of the San Andreas fault system: Stanford Univ. Pubs. Geol. Sci., v. 13, p. 192–205.
- Lachenbruch, A. H., Sass, J. H., Munroe, R. J., Sorey, M. L., and Lewis, R. E., 1975, Surficial thermal regime inside Long Valley caldera: Jour. Geophys. Research, v. 80. (in press)
- Lee, W. H. K., and Uyeda, S., 1965, Review of heat flow data; in Lee, W. H. K., ed., Terrestrial heat flow: Am. Geopys. Union Geophys. Mon. 8, p. 87–190.
- Munroe, R. J., and Sass, J. H., 1974, Basic heat-flow data from Western United States, in Sass, J. H., and Munroe, R. J., eds., Basic heat-flow data from the United States: U.S. Geol. Survey open-file rept. 74–9, p. 3–1––3–184.
- Rao, R. U. M., and Jessop, A. M., 1975, A comparison of the thermal characters of shields: Canadian Jour. Earth Sci., v. 12, p. 347–360.
- Reiter, M. A., and Costain, J. K., 1973, Heat flow in southwestern Virginia: Jour. Geophys. Research, v. 78, p. 1323–1333.
- Reiter, M., Edwards, C. L., Hartman, H., and Weidman, C., 1975, Terrestrial heat flow along the Rio Grande rift, New Mexico and southern Colorado: Geol. Soc. America Bull., v. 86, p. 811–818.
- Roy, R. F., Blackwell, D. D., and Decker, E. R., 1972, Continental heat flow, in Robertson, E. C., ed., The nature of the solid earth: New York, McGraw-Hill, p. 506-544.
- Roy, R. F., Decker, E. R., Blackwell, D. D., and Birch, F., 1968a, Heat flow in the United States: Jour. Geophys. Research, v. 72, p. 5207–5221.
- Roy, R. F., Decker, E. R., and Blackwell, D. D., 1968b, Heat generation of plutonic rocks and continental heat flow provinces: Earth and Planetary Sci. Letters, v. 5, 1–12.
- Sass, J. H., Lachenbruch, A. H., and Jessop, A. M., 1971, Uniform heat flow in a deep hole in the Canadian shield and its paleoclimatic implications: Jour. Geophys. Research, v. 76, p. 8586–8596.
- Sass, J. H., Lachenbruch, A. H., Munroe, R. J. Greene, G. W., and Moses, T. H., 1971, Heat flow in the western United States: Jour. Geophys. Research, v. 76, p. 6376–6413.
- Sass, J. H., and Munroe, R. J., 1974, Basic heat-flow data

from the United States: U.S. Geol. Survey open-file rept. 74-9, 450 p.

- Shelton, J. W., Horn, M K., and Lossley, R. H., 1974, Relation of geothermal patterns to major geologic features in U.S.: Am. Assoc. Petroleum Geol., Ann. Mtg. Abstracts, v. 1, p. 82.
- Slack, P. B., 1974, Variance of terrestrial heat flow between the North American craton and the Canadian shield: Geol. Soc. America Bull. v. 85, p. 519–522.
- Urban, T. C., and Diment, W. H., 1975, Heat flow on the south flank of the Snake River rift: Gool. Soc. America Abs. with Programs, v. 7, p. 648.
- Urban, T. C., Diment, W. H., and Baldwin, A. L., 1974, Basic heat-flow data from eastern United States, in Sass, J. H., and Munroe, R. J., eds., Basic heat-flow data from the United States: U.S. Geol. Survey open-file rept., 74-9, p. 6-1 to 6-66.
- Warren, A. E., Sclater, J. C., Vacquier, V., and Roy, R. F., 1969, A comparison of terrestrial heat flow and transient geomagnetic fluctuations in southwestern United States: Geophysics, v. 34, p. 463–478.

Assessment of Geothermal Resources of the United States-1975

Geothermal Resources in Hydrothermal Convection Systems and Conduction-Dominated Areas

By Manuel Nathenson and L. J. P. Muffler

Reported here are estimates of the parts of the resource base of heat in hydrothermal convection systems and conduction-dominated areas that can be considered as resources or reserves. These estimates involve analysis of physical recoverability, conversion or utilization efficiency, and economics.

The definition of terms used in this report and elsewhere in this circular deserves emphasis and reiteration here. The *geothermal resource base* is all of the stored heat above 15°C to a 10-km depth (Muffler, 1973). *Geothermal resources* are defined as stored heat, both identified and undiscovered, that is recoverable by using current or nearcurrent technology, regardless of cost. Geothermal resources are further divided into three categories based on cost of recovery:

- 1. Submarginal geothermal resources, recoverable only at a cost that is more than two times the current price of competitive energy systems,
- 2. Paramarginal geothermal resources, recoverable at a cost between one and two times the current price of competitive energy, and
- 3. Geothermal reserves, those identified resources recoverable at a cost that is competitive now with other commercial energy resources.

Undiscovered resources that are economically recoverable are not differentiated in this report but would be the economic equivalent of reserves.

This report considers only hydrothermal convection systems and conduction-dominated areas. Recoverability of geopressured resources is considered by Papadopulos and others (this circular), and recoverability of magma resources is treated by Peck (this circular).

HIGH-TEMPERATURE HYDROTHERMAL CONVECTION SYSTEMS

Renner, White, and Williams (this circular) have calculated that the heat stored in identified high-temperature (>150°C) hot-water convection systems outside of national parks is 238×10¹⁸ cal and that perhaps five times as much heat occurs in undiscovered hot-water convection systems, again excluding national parks. The sum of these two numbers, $1,400 \times 10^{18}$ cal, is the geothermal energy from hot-water convection systems potentially available for utilization. In the following discussion, we apply generalized recoverability factors and conversion efficiencies presented by Nathenson (1975b) to estimate the potential for electrical generation from various types and grades of hydrothermal convection systems. An economic analysis defines the variables that most strongly affect power production and emphasizes the sensitivity of economics to flow rates from individual wells.

Recoverable electrical energy

The calculation of recoverable electrical energy from a high-temperature hydrothermal convection system involves three major steps:

- 1. Estimation of what part of the lydrothermal convection system is porous and permeable rock,
- 2. Estimation of the fraction of stored heat in the porous and permeable volume that can be recovered at the surface,

3. Calculation of the efficiency with which thermal energy at the wellhead can be converted to electrical energy in the power plant.

The recoverability factors used for hydrothermal convection systems are based on techniques for extracting energy from porous, permeable rock. The volumes tabulated by Renner, White, and Williams (this circular), however, are the volumes of the heat reservoirs. The porous, permeable parts of the heat reservoir can range from only a small fraction to nearly all of the heat reservoir. In the resource calculations presented here, we assume that on the average only 50 percent of the heat reservoir is porous and permeable.

Our calculation of hydrothermal convection resources is based entirely on extracting the stored heat from a volume of porous and permeable rock, neglecting recharge of heat by either conduction or movement of water. The potential for heat recharge by conduction is neglected because it is very small compared to expected rates of production from any volume of rock greater than a few cubic kilometres. Likewise, for most of the hotwater systems of the United States, the natural discharge of thermal waters is low compared to reasonable production rates, and, accordingly, the potential for heat recharge by upflow of hot water to most reservoirs is probably low and can be neglected. The validity of this assumption can be assessed only after extensive production histories have been obtained for a reservoir. In those systems in which heat recharge by upflow of hot water is shown to be important, our resource estimate will have to be raised accordingly. Although the recharge potential of heat is neglected in our resource calculations, the potential and, in fact, the need for cold water recharge are not.

We have analyzed two possible methods for extracting energy from a liquid-filled volume of porous and permeable rocks. The first method assumes that the porous, permeable volume is virtually closed to inflow of water and is produced by boiling to steam by using the energy in the rock. The second method assumes that natural and artifical recharge of cold water is used to recover much of the heat from the reservoir by means of a sweep process.

The fraction of stored energy recovered in the process of boiling the water in a porous volume of rock depends on the amount and pressure of the produced steam, which in turn are determined by the porosity and the initial temperature of the system. The pressure of the produced steam must be high enough to drive the steam through the porous medium and up the well at a significant rate; a reasonable assumption is that the pressure of the steam must be at least 8 bars (Nathenson, 1975b). At a given reservoir temperature, this restriction constrains the range of porosity for which boiling is a viable recovery scheme. At 200°C, the upper limit for the porosity is about 0.05, and the fraction of stored energy obtained is about 0.2. At 250°C, the upper limit for the porosity is about 0.12, and the fraction of stored energy obtained is about 0.4. At porosities below this limit the fraction of stored energy obtained decreases with decreasing porosity in a nearly linear fashion. This production scheme is severely limited if there is significant recharge of water to the reservoir; recovery by boiling is then possible only if steam in the dried zone and water in the recharge zone are produced simultaneously in order to keep the zone of boiling moving into new regions of the reservoir. In summary, the restricted range of porosity, temperature, and the recharge over which the boiling method will work limits its application to rather special circumstances, in particular to vapor-dominated systems (see below).

The second production scheme involves the use of natural and/or artificial recharge of cold water to drive hot water in a reservoir to the producing wells. As the water sweeps through the hot rock, its temperature is raised by removing energy from the rock. The influence of heat conduction on this process takes place on two length scales. On the microscale of pores filled with water in a rock matrix, conduction makes the temperature of the rock and the pores come to equilibrium in a matter of a few minutes. On the scale of a volume of rock several hundred metres on a side having one zone of cold water and rock and a second zone of hot water and rock, conduction with no fluid movement spreads out an initially sharp change in temperature to a smooth transition of only 60 m thickness in a period of a decade (Nathenson, 1975b). As cold water sweeps into a hot reservoir, conduction may be analyzed to a first approximation by superposition onto the movement of the temperature front, resulting in the premature breakthrough of cooler water into

the hot zone. Another factor in the sweep process is the rotation of an initially vertical interface between cold water and hot water in a porous medium, owing to the difference in hydrostatic pressure on the two sides of the interface. Although this rotation is retarded by the energy stored in the rock, it also tends to cause premature breakthrough of cold water into the hot zone. These processes cannot be evaluated rigorously but can be combined qualitatively to yield an estimate that one-half of the energy stored in a reservoir of porous, permeable rock in a hot-water system can be recovered. Taking into account that only one-half of the heat reservoir is likely to be porous and permeable, the fraction of the resource base estimates of Renner, White, and Williams (this circular) that can be recovered as thermal energy at the surface is 0.25.

Vapor-dominated reservoirs are assumed to contain steam as the pressure-controlling phase, with liquid water immobilized in the pores by surface forces (Truesdell and White, 1973). Production results primarily from the boiling of this pore water to steam, although in later stages there may be some boiling from an inferred deep water table. Because the liquid fraction in a vapordominated reservoir is small, the pressure and temperature of steam produced in the boiling process are generally close enough to the initial values for the system that ample pressure remains to drive the steam to and up the well. The fraction of stored energy that may be recovered, calculated by considering an energy balance for the boiling process, is critically dependent on the average liquid saturation, as indicated by the values in table 15.

Efficiencies for converting thermal energies to electrical energies for a number of different surface technologies have been calculated by Nathenson (1975b). The choice of the optimum cycle is dependent on resource temperature, efficiency of conversion, cost, and special reservoir problems such as high dissolved solids, high gas contents, deposition of scale, and environmental factors. Current technology for hot-water systems consists of a single-stage flash to a steam-water mixture, separation of the steam and water, and use of the steam in a condensing turbine. A two-stage flash plant is being installed at the Hatchobaru system in Japan (Aikawa and Soda, 1975), and other technologies are in development. The choice and

availability of a particular technology may determine whether a given system is economically viable or not, but this choice requires detailed knowledge of the reservoir characteristics of the system and of the economics of alternative conversion technologies. Since detailed reservoir knowledge is generally unavailable and the development of conversion technologies is in a rapid state of flux, no attempt is made here to analyze individual systems. Instead, for hot-water systems we use the the representative conversion efficiencies given in table 15 for the fraction of heat above 15°C converted to electricity (Nathenson, 1975b). Vapor-dominated systems tend to produce steam in the range of 180° to 240°C temperature; the conversion efficiency corresponding to this temperature range is approximately 0.2 (Nathenson, 1975b).

Defining Q as the heat stored above 15°C and e_r as the recovery factor, the electrical energy produced is

$$E = Qe_r \tag{1}$$

(for Q in multiples of 10^{18} cal, E in megawatts electrical times centuries (MWe · cent) is 1,327 Qe_r). The recovery factors given in table 15 are used to convert stored heat into potential electrical energy for all identified convective hydrothermal systems with temperatures above 150°C outside of the national parks (table 16). Only those with sufficient data to give an estimated volume greater than the minimum volume used by Renner and others (this circular) appear by name in table 16. This minimum volume corresponds to a stored heat of about 0.2×10^{18} cal. The total electrical energy from the identified convective systems in table 16 is 8,000 MWe cent, or 27,000 MWe for 30 years.* The locations of the systems identified by name in table 16 are plotted on maps of the United States (fig. 13) as large dots.

The Geysers is the only vapor-dominated system in table 16, and it also contains the only measured geothermal reserves for electrical energy. Since the recoverable energy of a vapordominated system depends so critically on the average water content (which can only be roughly estimated from the limited public data), a reserve estimate cannot be determined reliably. Average

^{*/}The conversion to a 30 year period assumes that each MW·cent of electricity can be produced at a rate of 3.33 MW for 30 years. This assumption applies to all similar conversions throughout this circular.

Table 15.—Recovery factors (e_r) for electric power generation

Vapor-dominated systems (above 200°C)							
Water content as fraction of total volume	0.01	0.02	0.03	0.05			
Fraction of stored energy recovered as heat*	0.020	0.039	0.059	0.097			
e _r = recovery factor = fraction of stored energy recoverable as electrical energy at a conversion efficiency of 0.2*	0.004	0.008	0.012	0.019			

*Volume of porous, permeable part assumed to be one-half of heat reservoir.

Hot-water systems							
Temperature range °C	150-200	200-250	250-300				
Conversion efficiency	0.08	0.10	0.12				
e = recovery factor = fraction of stored energy recoverable as electrical energy**	0.02	0.025	0.03				

**Volume of porous, permeable part assumed to be one-half of heat reservoir. One-half of the thermal energy in the porous, permeable part assumed recoverable for a net recovery of 25% of the thermal energy.

	Subsurface Temperature °C	Volume km ³	Stored Heat 10 ¹⁸ cal	Recovery Factor ^e r	Electrical Potential MW e •cent
Alaska			-		
Gevser Bight	210	8	0.9	0.025	30
Hot Springs Cove	155	4	0.3	0.02	8
California					
The Gevsers	240	140	18.9	0.019	477
Surprise Valley	175	250	24	0.02	637
Morgan Springs	210	10	12	0.025	40
Sulphur Bank mine	185	3 75	0.4	0.02	11
Calistona	160	0	0.4	0.02	21
	100	2	0.0	0.02	0
Skagg's H.S.	155	3	0.3	0.02	0
Long Valley	220	450	55	0.025	1825
Coso H.S.	220	336	41	0.025	1360
Salton Sea	340	108	21	0.03	836
Brawley	200	27	3	0.025	100
Heber	190	100	11	0.02	292
East Mesa	180	56	5.5	0.02	146
Idaho					
Big Creek H.S.	175	3	0.3	0.02	8
Sharkey H.S.	175	3	0.3	0.02	8
Weiser area	160	70	6.1	0.02	162
Crane Creek	180	60	5.9	0.02	157

Table 16.—Estimated potential electric energy from identified high-temperature hydrothermal convection system, each with estimated stored heat equal to or greater than 0.3 x 10¹⁸ cal (from Renner and others, this circular)

	Subsurface		Stored	Recovery	Electrical
	Temperature	Volume	Heat	Factor	Potential
	°C	km ³	10 ¹⁸ cal	^e r	MW e ∙cent
Nevada					
Baltazor H.S.	170	3	0.3	0.02	8
Pinto H.S.	165	7.5	0.7	0.02	1 9
Great Boiling (Gerlach)	S. 170	25	2.3	0.02	61
Sulphur H.S.	190	10	1.1	0.02	2.9
Beowawe H.S.	240	42	5.7	0.025	189
Leach H.S.	170	10	0.9	0.02	2.4
Stillwater area	160	25	2.2	0.02	58
Soda Lake	165	12.5	1.1	0.02	29
Brady H.S.	214	30	3.6	0.025	119
Steamboat Springs	210	16	1.9	0.025	63
New Mexico					
Valles caldera	240	130	18	0.025	597
Oregon					
Mickey H.S.	210	12	1.4	0.025	46
Alvord H.S.	200	4.5	0.5	0.025	17
Hot Lake	180	12	1.2	0.02	32
Vale H.S.	160	100	8.7	0.02	231
Neal H.S.	180	4	0.4	0.02	11
Lakeview	160	16	1.4	0.02	37
Crumps Spring	180	8	0.8	0.02	21

Table 16.—Estimated potential electric energy from identified high-temperature hydrothermal convection systems, each with estimated stored heat equal to or greater than 0.3×10^{18} cal (from Renner and others, this circular) —Continued

	Subsurface		Stored	Recovery	Electrical
	Temperature	Volume	Heat	Factor	Potential
	°C	km ³	10 ¹⁸ cal	e _r	MW e ∙cent
<u>Utah</u>					
Roosevelt (McKean) H.S.	230	8	1.0	0.025	33
Cove Fort-Sulphurdale	200	22.5	2.5	0.025	83
<u>Total</u> :			252 x 10	¹⁸ cal	7833 MW∙cent
Other systems estimated					
to have minimum volur	ne		5 x 10	¹⁸ .cal	<u>133</u> MW•cent
Identified Resources:			257 x 10	¹⁸ cal	796€ MW∙cent

Table 16.—Estimated potential electric energy from identified high-temperature hydrotherma' convection systems, each with estimated stored heat equal to or greater than $0.3 \ge 10^{18}$ cal (from Renner and others, this circular) —Continued

water content at Larderello, Italy, appears to be about 1 percent of total volume for a reservoir 2 km thick (Nathenson, 1975a). Assuming this value for The Geysers, equation 1 with the value for 1 percent (table 15) yields a reserve estimate of only 100 MWe cent or 333 MWe for 30 years. On thermodynamic grounds, Truesdell and White (1973) maintain that the average water content at The Geysers is considerably greater than that at Larderello and may be as much as 9 percent. More complete calculations for the conductive heat losses from the steam in the well to the surrounding rocks using the method of Nathenson (1975a) show that the water content estimated from the theory of Truesdell and White (1973) is closer to 5 percent than 9 percent. Using the value of 5 percent, the potential of The Geysers is 477 MWe cent or 1,590 MWe for 30 years. and this value appears in table 16.

Using an alternate method, wells at The Geysers initially produce an average of about 150,000 lb/hr (19 kg/s); 2×10^6 lb/hr (252 kg/s) are needed to generate 110 MWe (Finney, 1973). Initial well spacings are on the order of 40 acres (0.16 km²) with infill wells drilled as needed to maintain declining flows. Renner and others (this circular) estimate the reservoir area to be 70 km². Assuming that a 40-acre spacing for new zones can be maintained, the potential of The Geysers is 3,570 MWe for a 30-year life or 1,070 MWe cent, which is more than double the figure if a 5-percent water content is assumed. The assumptions in this second calculation are such that 1,070 MWe cent seems likely to be in error on the high side. Accordingly, we have chosen to use the results of the first calculation (477 MWecent) in table 16. The resolution of this discrepancy may lie in such factors as a reservoir extending below the arbitrary bottom at a 3-km depth (Renner and others, this circular), a water content higher than 5 percent, a ratio of volume of porous and permeable parts to volume of heat reservoir that is higher than 0.5, well spacing that should be larger than the assumed 40 acres, or steam production that results partly from boiling from a deep brine zone.

The high-temperature hydrothermal convection systems are technologically exploitable, and therefore their recoverable heat conterts are a resource. If the heat of a given system cannot be recovered because there is not a porcus, permeable reservoir, then that system is considered to be part of the resource base rather than a resource until a recovery technology is available.

Economic constraints

The cost of geothermal power con be broken down into various components: exploration costs, land-acquisition costs, costs of production wells, cost of fluid-transmission facilities, plant costs, fluid-disposal costs, and cost of morey. Although the cost of production wells is a small fraction of the total cost, it is the cost factor that has the

FIGURE 134.—Locations of hydrothermal convection systems with temperatures above 90°C and stored heat greater than or equal to 0.3×10^{18} cal.

FIGURE 13B.—Locations of hydrothermal convection systems with temperatures above 90°C and stored heat greater than or equal to 0.3×10^{18} cal.

greatest range and the most uncertainty and that is therefore critical in determining whether development of a given field is likely to be economically feasible. Although each production well can be assigned an average cost, the total cost of production wells is a direct function of the number of wells that need to be drilled to supply sufficient steam for the generating plant under consideration. This number in turn depends on the reservoir temperature and the average well productivity. Although the minimum reservoir temperature commonly can be estimated prior to drilling by using chemical geothermometers, average well productivity can be determined only after extensive investment in drilling and testing. Accordingly, the uncertainty in average well productivity is a major financial uncertainty in any geothermal development. Inasmuch as the division of geothermal resources into reserves, paramarginal resources, and submarginal resources is based on economics, these uncertainties impact any attempt to evaluate geothermal resources.

The following analysis indicates the degree to which the cost attributable to production wells is sensitive to well productivity. Consider a well of average mass flow M that is productive for a time T and costs C dollars to drill and case. This well can produce a certain amount of electricity per kilogram of produced fluids $[w_{act}]$. Representative values for w_{act} for vapor-dominated and hot-water systems are given in table 17. The rate of energy flow (power) produced by the well is

$$\dot{E} = M w_{\text{act.}} \tag{2}$$

The part of the power cost in mils per kilowatthour (mils/kWh) that pays for the well is called c. Assuming that the well flow is constant and produces revenue evenly over the period T, then the original cost of the well must be escalated by a factor $1 + \epsilon$ to allow for the cost of money. The value of the produced energy needed to pay for the well is then $\dot{E}Tc$, and the escalated cost of the well is $C(1+\epsilon)$. Equating value and cost and rearranging, we obtain

$$c = \frac{C(1+\epsilon)}{\dot{E}T}.$$
 (3)

Some estimates of drilling cost C as a function of depth are given in table 18 where the values for 2 and 3 km are based on recent geothermal experience (C. H. Bloomster, oral commun., 1975), and the other values are based on estimates made for crystalline rocks (Shoemaker, 1975). Taking the well life T as 20 years and the interest rate as 10 percent, the cost-of-money factor $1+\epsilon$ is 20/8.514=2.349. The cost-of-money factor together with the data in tables 17 and 18 has been used to prepare figure 14.

Figure 14A shows the electric power production per well as a function of mass flow for several reservoir temperatures and for vapor-dominated and hot-water systems, using the data of table 17 and equation 2. Points are shown for Wairakei from the values of Axtmann (1975) and for units 5 and 6 of The Geysers from the data of Finney (1973). The 250°C line for hotwater systems was calculated by assuming a twostage flash system. The Wairakei point plots below this line because its efficiency is low owing to its single-flash system. Figure 14B shows the electric power per well as a function of the value of the energy needed to pay for the well for several well costs from the data in table 4 and equation 3. The electric power per well for The Geysers and Wairakei are the same as in figure 14A. The value needed to pay for the well at Wairakei was caluculated on the basis of 20-year life and \$150,000 drilling cost for depths of about 1 km. The value needed to pay for a well at The Geysers was calculated on the basis of a 15-year life and \$500,000 drilling cost for wells drilled to near 3 km depth. This shorter lifetime was assumed because of the decline in rate of flow at The Geysers.

Two points should be made about the calculations for The Geysers and Wairakei. First, although they are very different systems, the return needed to pay for a well works out to be close to the same (0.7 and 0.85 mils/kWh, respectively). Second, the total cost of power involves many additional costs above the value needed to pay for a well. Calculations by Clarence Bloomster of Battelle Pacific Northwest Laboratories, discussed in Lucking (1975), show total power cost for a system like The Geysers to be 10 4.7 being the cost of producing mils/kWh steam from the reservoir, of which only 0.7 is needed to pay for an individual well by equation 3. Calculations for an analog of Wairakei single flash but with reinjection) yield a total power cost of 20 mils/kWh, with 13 due to costs of producing steam from the reservoir, of which only 0.85 is needed to pay for an individual well by equation 3.

Hot water								
Temperature °C	150	200	250	300				
w_{act} in $\frac{kW \cdot s}{kg}$	33	70	120	177				
	Vapor-dominated,	saturated ste	am					
Temperature °C	150	200	250					
^w act ⁱⁿ <u>k₩·s</u> kg	430	550	620					

Table 17.—Typical values for electric energy produced per kilogram of reservoir fluid (w_{act}) as a function of source temperatures

Although the calculated values in figure 14 are only a part of the total, an important trend is shown by the diagrams. Since geothermal power must compete with many other power sources, the total value of the power is fixed by market forces at a particular time and place. If we assume that only a certain number of mils per kilowatt-hour is available to pay for the well, then we can use figure 14 to estimate the minimum flow needed to make a particular resource competitive. Taking the value needed to pay for a well of 1.5 mils/kWh in figure 14B and projecting it vertically to a \$300,000 well cost, the power level needed from each well is about 2.7 MWe as determined by horizontal projection. The same horizontal projection may then be extended into figure 14A to show how the required mass flow from each well varies with temperature and resource type. Required flows in the vapordominated systems are relatively low. Because of this, more expensive wells can be drilled, but still at a profit. For the hot-water systems, the required minimum flows become very large at the lower temperatures. As the value needed to pay for a well and the cost of the well vary with time and specific circumstances, figure 14 may be used to estimate required well flows. For high well costs such as \$1 to \$5 million, the value needed to pay for a well must be increased if the minimum well flow for economic operation is not to be unreasonably large. Note that the use of figure 14 is only semiquantitative. Specific systems and technology should be evaluated by making a detailed cost study such as the program of Bloomster and others (1975).

Depth km	1	2	3	5	10
Average cost per metre	\$150	\$150	\$167	\$200	\$500
Drilling time days	15-25	30-50	75-150	150-250	750-1100
Cost (10 ³)	\$150	\$300	\$500	\$1000	\$5000

Table 18.-Drilling cost model

The interpretation of figure 14A requires consideration of the factors influencing the flow of a well produced by flashing discharge (Nathenson, 1974). For flash eruptions, a limit is imposed by the frictional pressure drop in the well at very high rates of flow. At 200° to 250°C in a 25-cmdiameter well, flowing friction limits the rate to about 200 to 250 kg/s. From figure 14, a constant value of 1.5 mils/kWh needed to pay for a well at these assumed rates of flow yields possible total well costs of \$1.5 to \$2.5 million. In many cases, however, flows are limited not by flowing friction in the well but by the available permeability and permissible pressure drop in the reservoir, resulting in a much lower value of well flow for a field. For example, before it was perforated at a higher level, Mesa 6-1 well had a flow of approximately 14 kg/s with a flashing level at about 1,300 m below ground level. Thus, a pressure drop of 110 bars could yield only 14 kg/s from the formation because of restricted permeability. On the other end of the spectrum, because of very high permeabilities, flows in some wells at Wairakei are 130 kg/s in only a 20-cm casing. At temperatures close to 150°C, and in some hightemperature fields, downhole pumps are likely to be used to provide additional drive and to maintain pressures that prevent the boiling of water and deposition of scale. The pumps are likely to provide on the order of 10 bars increased pressure (Mathews and McBee, 1974), which could be of great assistance in low-temperature systems where it may be desirable to keep the fluid all liquid. However, this would not greatly improve a high-temperature flashing well in rocks of low permeability where stimulation may be more advantageous.

Reserves and resources

To determine where each of the systems listed in table 16 fits into reserves, paramarginal resources, and submarginal resources, the next step is to apply figure 14 to each system. Although the temperature is known for each of these systems at least by geochemical methods, the average well flows are known for only a few of these systems. In lieu of an objective analysis, subjective decisions were made as to the most likely divisions between the various categories. The most important single factor is temperature; reservoirs above 200°C are most likely to contain reserves. Other data that are utilized to yield the division shown in table 19 of the resources of hydrothermal convection systems for the generation of electricity are significant size and lack of severe problems such as high salinity or fluid supply suspected to be inadequate. The reserves (known and inferred) are about equal to the paramarginal resources. The submarginal resources are smaller than either of the higher categories because the 150° C lower limit assumed by Renner, White, and Williams (this circular) removes many systems that would be submarginal if included. Also, the exploration of the systems at temperatures above but near to 150° C has not been as systematic as at the higher temperatures.

The undiscovered resources given in table 19 have been estimated on the basis that one times the identified resources of vapor-dominated systems will be found in the United States outside of the national parks and that five times the identified resources of hot-water systems will be found (Renner and others, this circular).

INTERMEDIATE-TEMPERATUF E HYDROTHERMAL CONVECTION SY. TEMS

The identified hydrothermal convection systems with predicted temperatures from 90° to 150°C have been discussed and their estimated heat contents tabulated by Renner, Wlite, and Williams (this circular). The factors affecting physical recoverability are much the same as those for the high-temperature systems except that boiling in the reservoir is unlikely to be important. Accordingly, the previous estimate of one-fourth of the stored energy recoverable as thermal energy at the surface from high-temperature systems should also apply to the systems of intermediate temperature. Table 20 shows the identified hydrothermal convection systems of intermediate temperature, those above the minimum volume of Renner, White, and Williams (this circular) being listed by name. The data on size of most of these systems are very limited, and many may be significantly larger than the minimum estimates. The sum of the heat stored in the identified systems in table 20 is 345×10^{18} cal, of which 263×10^{18} is predicted for Fruneau-Grandview, Idaho, and 30×10^{18} cal for J'lamath Falls, Oregon. If the estimates of volume and temperature by Renner, White, and Williams

FIGURE 14A.—Electric power per well as a function of mass flow for various temperatures of hotwater and vapor-dominated systems.

(this circular) for Bruneau-Grandview are confirmed by drilling, this system is indeed immense. Until a specific use is chosen for such systems, the fraction of the energy that can be applied to beneficial use cannot be specified. As discussed in Nathenson(1975b), energy equivalent to a temperature drop of 10° to 20° C can readily be extracted for direct use; this energy is more than can be obtained from 150° C water in converting thermal energy into electricity.

In order to obtain some perspective on the predicted 345×10^{18} cal of stored heat in the identified systems in table 20, the amount of beneficial heat may be calculated. The term beneficial heat as used in this report is thermal energy that can be applied directly to its intended non-

electrical use; beneficial heat plus waste heat equals initial available heat. Assuming that onefourth of the stored energy is recoverable at the surface and that the efficiency of utilization is 0.24 (20°C temperature drop at 107°C, 32°C at 150°C), the recovery factor is $(0.24) \times (0.25) =$ 0.06, and the beneficial heat is (0.06) (345×10^{18}) cal= 20.7×10^{18} cal. If this usable heat were to be supplied by electrical energy, it would require (20.7) (1327) = 27,000 MW cent. Thus, if the institutional problems can be resolved, this resource has significant potential.

The economics of process heating present several complications. The first of these is that the value per calorie depends on the temperature of the resource. As the resource temperature becomes

lower, various end uses are no longer possible because some minimum temperature is needed, and the market is thus diminished. Hot water can only be transmitted a few tens of kilometres, so a user must either be available at the site or be induced to move to the site. If no potential user is already in the area, one must be located and persuaded to come to the area (in electricity production, the local power company is always the potential customer). The exploitation of geothermal resources for direct heating is similar to electricity production in that exploration and development of the field can only be done by an organization designed for high-risk operations, such as a resource exploration company or an oil company.

Assuming that these organizational problems are solved as potential direct uses become attractive, the chances for improved economics are high. The costs of this kind of exploitation involve exploration, field development, and construction of transmission system. If the transmission costs can be kept low by near-site use, the lack of an expensive power plant permits a relatively low investment per energy unit.

Because of the limited knowledge in this country of the economics of using geothermal energy for direct heating, the division of the resource into reserves and paramarginal and submarginal resources is not feasible. The sum of the identified systems in table 20 is reported as a total identified resource of 20.7×10^{18} cal. The undiscovered reTable 19.—Resources of hydrothermal convection systems for the generation of electrical power in megawatt centuries (not including national parks)

Identified

Reserves (Measured and inferred)

3500 MW.cent

Paramarginal Resources

3500 MW.cent

Submarginal Resources

>1000* MW.cent

Undiscovered

Resources

38000 MW.cent

^{*}The small amount of submarginal as compared to paramarginal resources results from the 150°C lower temperature limit assumed by Renner and others (this volume); this lower limit removes many systems which would be submarginal if included. Also, exploration of systems at temperature above but near to 150°C has not been as systematic as of systems at the higher temperatures.

-felere etter ander andere etter alle en er fill en en er fill die er fille fille fille fille etter etter etter	Subsurface temperature °C	Volume km ³	Stored heat 10 ¹⁸ cal
ALASKA	······		
Okmok caldera	125	6	0.4
CALIFORNIA			
Wendel-Amedee area	140	14	1.1
Wilbur H.S. area	145	32	2.5
Randsburg Steam Well	125	3.75	0.3
Glamis`(East)	135	6	0.4
Dunes	135	9	0.6
COLORADO			
Cottonwood Springs	110	6	0.3
Mt. Princeton Springs	115	7.5	0.5
HAWAII			
1955 Eruption area, East Rift	150?	4	0.3
Puulena area, East Rift	150?	4	0.3
IDAHO			
Stanley Hot Spring	110	6	0.3
N.E. Boise Thermal Area	125	8	0.5
Bruneau-Grandview	145	3375	263
Near Banbury	140	12	0.9
Near Cedar Hill	120	9	0.6
Raft River Thermal Area	140	30	2.3
Wayland Hot Spring	130	7.5	0.5
NEVADA			
Near Soldier Meadow	115	12	0.7
Double Hot Spring	145	20	1.6
Fly Ranch Hot Spring	130	16	
Hot Springs Point	125	/.5	0.5
Buffalo Valley Hot Spring	130	10	0.7
OREGON	105		0.0
Mt. Hood	125	4	0.3
Klamath Falls	120	480	30
Summer Lake Hot Spring	140	0	0.4
Fisher Hot Spring	130	4.5	0.3
Near narney Lake	155	4.5	0.5
UTAH Monroe (Cooper) Het Spring	120	75	05
TOTAL .	120	1.5	$\frac{0.3}{311 \times 10^{18} \text{ cal}}$
IVIAL:	wa minimum waluma		3/ v 1018 cal
uther systems estimated to ha	ive minimum volume		<u> </u>
Total, all systems:			345 x 10 ¹⁸ cal

Table 20.—Intermediate-temperature hydrothermal convection systems with stored heat greater than or equal to $0.3 \ge 10^{18}$ cal (from Renner and others, this circular)

sources are estimated to be three times the known resources (Renner and others, [this] circular) or 62.1×10^{18} cal. If these predicted quantities are confirmed in future investigations, they are likely to become increasingly attractive for a variety of uses as alternative sources of energy become more expensive and unreliable.

SOLIDIFIED IGNEOUS SYSTEMS

The resource base in igneous systems has been discussed and their estimated heat contents and solidification states tabulated by Smith and Shaw (this circular). The problems and possibilities of obtaining energy from the molten parts of igneous systems are discussed by Peck (this circular). With current technology, the heat stored in the molten parts is not recoverable, and this large quanity of heat represents an attractive target for research. Much heat is also stored on the margins of the molten systems and in the nowsolidified systems. Some of these systems without associated hydrothermal convection systems may still have temperatures significantly above the temperatures indicated by regional heat flow. These areas constitute the most favorable targets for recovery using hydraulic fractures to produce circulation loops in a body of low-permeability rock (the "hot dry rock" of Smith and others (1973). Inasmuch as many problems need to be solved before this is a proven concept, the stored heat cannot be considered a resource until the technology has been proven.

The basic scheme for recovering energy from hot dry rock involves drilling a hole several kilometres into hot rock, creating a large hydraulic fracture about 1 km in diameter, and casing the hole nearly to its bottom. A second hole is then drilled to intersect the top of the fracture. Cold fluid is injected into the deep hole as hot fluid is produced from the shallow hole. Assuming that such a circulation loop can be created, the power output is strongly dependent on the behavior of the circulation loop. Harlow and Pracht (1972) suggest that permeability and porosity will grow from cracking due to stress caused by thermal contraction. If this happens, the volume of rock through which the water is flowing will grow with time, and nearly constant power levels can be maintained. The fraction of stored energy so obtained at the surface is likely to be similar to that for hydrothermal convection system. Well

flows in this case are determined by crack thickness and length and available pressure drive due to buoyancy and any pumping. It is also possible that porosity will not be created. In this case, heat transfer from the rock to the water flowing in the crack is by conduction. As shown by Nathenson (1975b), the fraction of stored energy obtained at the surface is then likely to be one-half of the value for hydrothermal convection systems. The temperature of produced fluids declines with time, and most utilization schemes do not tolerate much variation in temperature. The well flows in this case are determined by crack size and the chosen values for abandonment time and temperature. Answers to the various questions about this technique should be provided by research programs currently underway.

CONDUCTION-DOMINATED AREAS

The conductive thermal regime of the upper 10 km of the Earth has been discussed and heat contents tabulated by physiographic province (Diment and others, this circular). Because of the limited knowledge of radioactive heat generation and thermal conductivities, temperatures at depth cannot be specified completely, but broad limits can be put on them. The only parts of the resource base that are currently recoverable in addition to geopressured areas are the sedimentary basins of adequate permeability. Low-temperature waters for direct heating can be recovered by the sweep process discussed by Nathenson (1975b). Possible areas of higher-than-normal heat flow include parts of the Salton Trough not associated with hydrothermal convection systems, individual basins of the Basin and Range province, and the Rio Grande rift. Other basins in the normal heat-flow provinces are also possible, but temperatures do not increase rapidly unless conductivities are low, thus providing a "thermal blanket" (Diment and others, this circular). The recovery of such energy is likely to be generally submarginal, but more data are recuired.

Most of the heat stored in the conductive areas of the United States is in rocks too low in permeability to be considered recoverable. Except in unusually favorable combinations of high reduced heat flow, high radioactive heat production, and/or a low-conductivity blanket, temperatures are not high (Diment and others, this circular). If a hydrofracturing scheme is proven in the especially favorable areas associated with igneous systems, the same scheme may be applicable to other less favorable areas of the United States.

REFERENCES CITED

- Aikawa, Kentaro, and Soda, Masahiro, 1975, Advanced design in Hatchobaru geothermal power station [abs.]: United Nations Symposium on the Development and Use of Geothermal Resources, 2d. San Francisco, abs. no. VII-1.
- Axtmann, R. C., 1975, Environmental impact of a geothermal power plant: Science, v. 187, no. 4179, p. 795–803.
- Bloomster, C. H., Cohn, P. D., DeSteese, J. G., Huber,
 H. D., La Mori, P. N., Shannon, D. W., Sheff, J. R.,
 Walter, R. A., 1975, Geocost: A computer program for geothermal cost analysis: Battelle Pacific Northwest Laboratories BNWL-1888 UC-13, 46 p.
- Finney, J. P., 1973, Design and operation of the Geysers Power Plant, in Kruger, Paul and Otte, Carel, eds., Geothermal energy-resources, production, s timulation: Stanford, Calif., Stanford Univ. Press, p. 145-161.
- Harlow, F. H., and Pracht, W. E., 1972, A theoretical study of geothermal energy extraction: Jour. Geophys. Research, v. 77, no. 35, p. 7038–7048.
- Lucking, J. C., 1975, Economics of producing electric power from hydrothermal convection systems: U.S. Geological Survey open-file rept. (in prep.).

- Matthews, H. B., and McBee, W. D., 1974, Geothermal down-well pumping system: Conference on Research for the Development of Geothermal Energy **R**esources, Pasadena, Calif., Proc., p. 281-291.
- Muffler, L. J. P., 1973, Geothermal, in Probst, D. A., and Pratt, W. P., eds., United States mineral resources: U.S. Geol. Survey Prof. Paper 820, p. 251–261.
- Nathenson, Manuel, 1974, Flashing flow in hot-water geothermal wells: U.S. Geol. Survey, Jour. Research, v. 2, no.6, p. 743–751.
- Nathenson, Manuel, 1975a, Some reservoir ergineering calculations for the vapor-dominated system at Larderello, Italy: U.S. Geol. Survey open-file rept. 75-142, 47 p.
- Nathenson, Manuel, 1975b, Physical factors determining the fraction of stored energy recoverable from hydrothermal convection systems and conductiondominated areas: U.S. Geol. Survey open-file report 75-525, 38 p.
- Shoemaker, E. M., ed., 1975, Continental drilling: Carnegie Inst. Washington Pub., 65 p.
- Smith, Morton, Potter, R., Brown, D. and Amodt, R. L. 1973, Induction and growth of fractures in hot rocks, *in* Kruger, Paul and Otte, Carel, eds., Geothermal energy—resources, production, stimulation: Stanford Calif., Stanford Univ. Press, p. 251–268.
- Truesdell, A. H., and White, D. E., 1973, Production of superheated steam from vapor-dominated geothermal reservoirs: Geothermics, v. 2, p. 145-164.

Recoverability of Geothermal Energy Directly from Molten Igneous Systems

By D. L. Peck

A very large quantity of heat in molten igneous magma systems at depths less than 10 km has been identified by Smith and Shaw (this circular). On the basis of existing geological and geophysical data, they have listed 17 inferred molten bodies of silicic and intermediate composition in the conterminous United States, 24 bodies of mainly intermediate composition in Alaska, and 1 basaltic body in Hawaii. The total estimated heat energy in these systems is at least $25,000 \times$ 10¹⁸ cal, 30 or more times the estimated heat content of all hydrothermal systems in the United States at depths less than 3 km. Only a fraction of the estimated energy is in the molten bodies themselves-much of it is in the solidified margins of the bodies and the adjacent country rocks. The heat content of the molten or partly molten bodies is estimated to be $13,000 \times 10^{18}$ cal, contained in magma at temperatures between 650° and 1.200°C. The large inferred volumes and cross-sectional areas of a number of these bodies make them suitable targets for geophysical exploration.

Unfortunately, this large quantity of heat is not presently recoverable and may never be so. The tops of the inferred magma bodies lie at estimated depths that are all greater than 3 km and mostly are still deeper. Formidable technological problems will have to be solved before the resource can be tapped. The technology for drilling at these temperatures and pressures, for example, is not available at present and may not be developed for many years. The feasibility of utilizing the energy contained in magma is presently being evaluated by Sandia Laboratories under a project that was started in 1974 (Colp, 1974) with the support of the Energy Research and Development Administration. This report is based on the results of that project to date, particularly a workshop on magma (March 1975) sponsored by Sandia Laboratories and the U.S. Geological Survey.

The critical problems involved in recovering energy directly from molten igneous systems can be analyzed in terms of the three major stages in developing the energy of such a body: (1) Finding a magma body and determining its size, depth, composition, heat content, etc., by remote techniques; (2) drilling into the body and emplacing a heat-transfer device sufficiently strong and corrosion resistant to last an appreciable period; and (3) extracting energy from the body at a sufficient rate to amortize development and production costs. The critical technical problems involved in each stage are discussed in the following sections. Because the solution of several of these problems, particularly the critical problem of drilling, lies some years in the future, no attempt is made to analyze the economics of direct utilization of magma energy.

EXPLORATION

To extract energy directly from magma, we must first find magma. Because of the very large costs of drilling such a body, the location, depth, and shape of the body and the heat content and heat-transfer properties of the magma need to be determined by remote techniques. Geological and geophysical techniques provide powerful tools for these tasks and have led to the listing of the 41 inferred bodies in table 8 (Smith and Shaw, this circular). Although these methods are not unequivocal, magma bodies have been identified with considerable probability beneath Yellowstone National Park, Long Valley in California, and Kilauea Volcano in Hawaii.

A large body of data on the outer margins and internal structures of shallow intrusive bodies has been gathered in geologic study of older exhumed plutons, such as those associated with mining districts throughout the Western United States and in many other areas of the world. The depths and temperatures of intrusion can be estimated by geologic analysis, comparison of rock compositions with experimentally studied systems, and mineral geothermometers and geobarometers. The geology at the surface above a specific body, such as the structure and the composition, distribution, and age of young volcanic rocks, provides clues to the shape, depth, composition, and stage of evolution of the intrusion. Geophysical techniques-particularly seismic. electrical, gravimetric, and magnetic methodscan be used to identify the body if its characteristic dimensions are greater than half its depth.

Improvement of several of the more promising techniques would lead to a greater ability to determine the critical physical and chemical parameters of a magma body by remote methods. Exhumed magma bodies need to be reexamined with a view toward reconstructing their structure and dynamics during emplacement and early cooling. Various geophysical techniques need to be tested on known magma bodies, such as the Kilauean lava lakes and the inferred magma below Yellowstone Park. The physical properties of magma, such as compressional and shear wave velocities, electrical conductivities, and density, need to be determined as a function of temperature (650° to 1,200°C), pressure (1 to 2,000 bars), oxygen fugacity, and water content.

DEVELOPMENT

Development of the energy of a molten igneous system entails drilling into the magma, probably at depths of 3 to 6 km (pressures of 1 to 2 kb) and temperatures of 650° to $1,200^{\circ}$ C, and extracting heat. During the drilling and throughout the exploitation stage, the borehole must remain undeformed, and the materials of the heat-extraction system must resist corrosion.

Drilling technology appears at the present time to be the most critical limiting factor in the technological feasibility of direct development of magma energy. Magma, at least degassed molten basaltic lava, has been penetrated many times by drilling through the shallow crust of stagnant Hawaiian lava lakes. However, present drilling technology at the pressures of 1 to 2 kb relevant to this discussion is limited to temperatures below 250°C. Major innovations in technology will be needed to reach the magma.

A related problem is the development of equipment for in-hole sampling and measurement of in situ physical parameters at these pressures and temperatures. The eventual development of a magma body will probably require a series of successively deeper drill holes, with detailed sampling at each stage of the pore fluids for chemical analysis (particularly corrosive components) and in situ measurement of such parameters as temperature, pressure, stress, and bulk properties including permeability cation diffusivity, and density. Such measurements are essential to sharpen geophysical interpretations, to determine the strength and ductility of the rocks, and to develop drilling techniques and strategy.

The stability of the borehole during drilling, emplacement of heat-extraction devices, and energy production may be serious problems, depending on the strength and the stress field of the country rocks and solidified margin of the magma body in this hot, high-pressure environment. An experimental rock-deformation program is in progress under the Sandia project to determine the answers. The nature of the local stress field around molten bodies can be studied in general by petrofabric studies of exposed wallrock of ancient plutons, but the stress field around a specific body under development can be determined only by in situ measurements.

The performance of the heat-recovery system needs to be determined by in-hole testing of equipment before exploitation to insure that the inserted materials retain their mechanical and chemical integrity. Current knowledge about the behavior of alloys and ceramics and the chemical composition of magmas and hydrothermal fluids is sufficient for a general approach to the problem. For a specific magma body, however, a number of physical and chemical parameters of the magma and any related hydrothermal activity above the magma must be determined in order to select the proper materials and predict their reliable performance.

HEAT EXTRACTION

Development of an efficient and durable heatextraction system is, of course, fundamental for the successful development of magma energy. Essential to the economic exploitation of a specific body of magma is a favorable heat-transfer coefficient for the magma over a 10- to 30-year plant life.

Sandia Laboratories is currently investigating several heat-extraction systems. The initial concept is to use a closed system with a long, heatexchanger tube in the magma, water for steam generation as a working fluid, and a conventional turbine generator. Other techniques under consideration include the use of gas as a working fluid and solid-electrolyte fuel cells to increase the efficiency of energy extraction. Plans are to extend laboratory tests of a single heat-exchanger tube and boiler to field tests in a Hawaiian lava lake or other suitable locality.

The heat-transfer coefficient of magmas of different compositions is a significant factor in evaluating the feasibility of magma-energy utilization. Will magma in a body under development convect at a sufficient rate near the heat exchanger to increase the rate of extraction of heat significantly over the conductive rate? If not, could this increased rate be induced by the injection of aqueous solutions? If the natural or induced convection is not appreciable, then extraction of heat directly from a molten body probably would not be economically feasible. Preliminary calculations by Hardee (1974) of long-term heat-extraction rates from basaltic magma using a long tube heat exchanger with H₂O as the working fluid yielded rates of only 1 kW/m² for nonconvecting magma but rates several orders of magnitude higher for vigorously convecting magma. Most magma bodies are very probably below liquidus temperatures and consist of mixtures of melt and crystals with the possible addition of a gas

phase. Relevant critical properties that need to be determined are (1) the distribution of liquid, crystals, gas, and temperature in typical bodies; (2) the viscosity and density of crys⁺al-liquid-gas mixtures; and (3) the heat-transfer coefficients over a range of temperatures for magmas of different compositions.

CONCLUSIONS

Molten igneous systems represent a large part of our geothermal resource base, but that energy cannot be recovered directly at the present time or in the foreseeable future. Whether direct utilization is feasible is not certain. The most critical problems appear to be as follows:

- 1. Improvement of techniques and development of technology for locating, evaluating, drilling, sampling, in situ measuring of physical parameters, and extracting heat at the temperatures (650° to 1,200°C) and pressures (1 to 2 kb) in the lostile chemical environment anticipated in the vicinity of magma bodies;
- 2. Keeping drill holes at these depths and temperatures open and stable during drilling and long periods of heat extraction;
- 3. Will natural convection in the magma appreciably increase heat extraction rates over thermal conduction? If not, can convection be induced?
- 4. Can these problems be solved with sufficient assurance to justify the expenses of drilling and exploiting an inferred body?

REFERENCES CITED

- Colp, J. L., 1974, Magma Tap—the ultimate geothermal energy program: Circum-Pacific Energy and Mineral Resources Conference at Honolulu, Hawaii, Aug. 28, 1974, 19 p.
- Hardee, H. C., 1974, Natural convection in a spherical cavity with uniform internal heat generation, Sandia Laboratories SLA-74-0089, March, 1974, 20 p.

Assessment of Geothermal Resources of the United States-1975

Assessment of Onshore Geopressured-Geothermal Resources in the Northern Gulf of Mexico Basin

By S. S. Papadopulos, R. H. Wallace, Jr., J. B. Wesselman, and R. E. Taylor

Geopressured zones in the northern Gulf of Mexico basin are known to occur in Tertiary sediments beneath an area of over 278,500 km², extending from the Rio Grande in Texas northeastward to the vicinity of the mouth of the Pearl River in Louisiana and from the landward boundary of Eocene growth faulting southeastward to the edge of the Continental Shelf (see fig. 15). During the course of this study, it was found that geopressured zones occur also in unmapped Cretaceous sediments underlying the Tertiary sediments and extending further inland under an additional area of at least 52,000 km².

This study assesses in a general way the resource potential of geopressured-geothermal reservoirs within the onshore part of Tertiary sediments under an area of more than 145,000 km^2 along the Texas and Louisiana gulf coast. This assessment covers only the pore fluids of sediments that lie in the interval between the top of the geopressured zones and the maximum depth of well control, that is, a depth of 6 km in Texas and 7 km in Louisiana.

The resource potential of geopressured reservoirs within (1) onshore Tertiary sediments in the interval between the depth of maximum well control and 10 km, (2) offshore Tertiary sediments, and (3) Cretaceous sediments were not included in this assessment. It is estimated, however, that the potential of these additional geopressured reservoirs is about $1 \frac{1}{2}$ to $2 \frac{1}{2}$ times that of those assessed in this study.

The resource potential of waters in geopressured-geothermal reservoirs was first brought to public attention by Hottman (1966, 1967). Since that time, Jones (1969, 1970) and Wallace (1970) have discussed and attempted to explain subsurface physical conditions that combine to produce geopressured-geothermal reservoirs. Several analyses of the potential use of geopressuredgeothermal energy for electrical power generation and estimates of the magnitude of the resource have been presented (Parmigiano, 1973; Herrin, 1973; Wilson and others, 1974; Durham, 1974; Myers and others, 1974; Dorfman and Kehle, 1974; House and others, 1975).

Unlike other geothermal areas that are being considered for the development of energy, the energy potential of the waters in the geopressured-geothermal areas of the northern Gulf of Mexico is not limited to thermal energy. The abnormally high fluid pressures that have resulted from the compartmentalization of the sand and shale beds that contain these hot waters are a potential source for the development of mechanical (hydraulic) energy. In addition, dissolved natural gas, primarily methane, contributes significantly to the energy potential of these waters.

In contrast to geothermal areas of the Western United States, available subsurface information is abundant for the geopressured-geothermal area of the northern Gulf of Mexico basin. The area has been actively explored for oil and gas since the 1920's, and probably more than 300,000 wells have been drilled in search of petroleum deposits in the Texas and Louisiana gulf coast. A large amount of the information obtaired from these wells has been made available to the U.S. Geological Survey for use in ongoing projects

FIGURE 15.-Location map showing the extent of the assessed geopressured zones and their division into subareas (AT1, BT1, and so on).

examining the hydrogeology of the northern Gulf of Mexico basin. Of the vast quantities of data on subsurface conditions that are in the files of these projects, only a small fraction was used in this study. As noted, many promising areas were not included. The data presented here represent general conditions in the various regions outlined. Information on geologic structure, sand thickness, temperature, and pressure were adequate for the purpose of this study. On the other hand, sufficient data on porosity, permeability, and salinity were not available. Note that conditions presented here are idealized and represent best estimates based on the rather small sample of the total available data that were examined within the limited period of time available for this preliminary assessment. The basis on which various data presented in this chapter were determined, calculated, or assumed is discussed in the "Appendix" to this report.

DIVISION OF THE STUDY AREA INTO SUBAREAS

For this investigation, the study area, which encompasses 89,038 km² in Texas and 56,227 km² in Louisiana, was divided into 21 subareas (fig. 15). The boundaries of these subareas were selected on the basis of the geologic history and structure of the study area.

Since Mesozoic time, great river systems have been dumping large volumes of sand and clay along the northern Gulf of Mexico shoreline and shifting its locus gulfward. The process is continuing today. Interconnected fault trends or flexure faults developed along the gulfward margin of each sedimentary sequence as it was overridden by its successor. Compartmented sand and shale beds between these fault trends lie roughly parallel to the shoreline of the Gulf of Mexico. Age of the deposits, as well as fault trends, decreases coastward. The "A" trend (fig. 15) generally coincides with the subsurface distribution of Eocene Wilcox sediments; the "B" trend with Jackson-Yegua beds; the "C" trend with Frio-Vicksburg; the "D" trend with Frio; the "E" trend with Frio-Anahuac; and the "F" trend with Miocene and younger deposits.

These features provided the basic concept for subdivision of the study area. Structural geologic maps of excellent quality prepared for the U.S. Geological Survey by Peppard, Souders, and Associates were used to delineate faults that bound these trends and form the boundaries of the subareas along the trends. Massive shale secuences, although expected to contribute significant amounts of water to adjacent sand beds, are assumed to form the subarea boundaries perpendicular to the various trends.

1

The geopressured zone to be assessed within each subarea was assumed to extend from the average depth at which pressure exceeds hydrostatic down to the maximum depth of well control. On the basis of an examination of 5 to about 95 wells in each subarea, depending on its size, the depths of 6 km in Texas and 7 km in Louisiana were chosen as reasonable lower limits to which available well control could be extrapolated.

The areal extent of each subarea, as determined by planimetric methods, the average depth to the top of geopressure, and the average pressure, temperature, and salinity at or near the midpoint between the assumed upper and lower limits of the geopressured zone in each subarea are presented in table 21. These average values which were determined as explained in the "Appendix," are assumed to be representative of conditions in each subarea.

IDEALIZED "CONCEPTUAL RESERVOIRS"

The sediments within the geopressured zones of the study area form a very complex hydrogeologic system. They consist of interbedded sand and shale layers that range in thickness from less than 1 to more than 1,000 m. A thorough analysis of such a system requires data and an interpretation of a complexity that is beyond the scope of this study. To simplify the analysis, the geopressured zone within each subarea was idealized as a "conceptual reservoir." The effect of using these idealized conceptual reservoirs on the energy assessments that are presented in this report is discussed after each assessment.

The conceptual reservoirs were assumed to have a total thickness equal to the assumed thickness of the geopressured zone in each subarea and to consist of a single sand aquifer underlain and overlain by two single confining shale beds. Both the sand aquifer and the confining shale beds were assumed to be continuous and to exist throughout each subarea. The assumed thicknesses and properties of the sand aquifers and of the

	Areal	Average depth to top of	Average depth to	Average	Average	Averac salini	le ty
Subarea	Extent km ²	geopressure km	midpoint km	pressure MN/m ²	temperature °C	No. of samples	TDS g/1
AT	8,948	2.36	4.18	82.4	186	-	16*
ATL2	20,965	2.47	4.23	78.5	156	-	20*
۱ ^{۲۹}	13,588	1.82	3.91	74.6	170	362	30
вт ₂	5,595	2.32	4.16	81.4	150	50	38
ст	8,230	2.47	4.23	81.4	172	20	24 [†]
DT	4,861	2.92	4.46	88.3	172	95	23
DT ₂	5,155	2.68	4.34	86.3	169	2	33
dt ₃	7,425	2.41	4.20	80.4	153	67	28
DTL ₄	5,102	2.62	4.31	83.4	141	18	46
DL ₅	7,015	3.01	5.01	102.0	164	222	65**
DL ₆	3,729	3.05	5.02	104.0	160	14	55 ^{††}
ET	5,400	2.96	4.48	83.4	168	34	34 [†]
et ₂	1,938	2.63	4.32	83.4	166	24	17
ET3	7,496	2.37	4.19	80.4	146	65	27
etl ₄	3,461	2.63	4.31	87.3	140	14	52
EL ₅	8,144	3.66	5.33	106.9	165	39	90**
EL ₆	8,849	3.32	5.16	105.0	159	87	83
EL ₇	6,249	2.99	5.00	100.1	146	9	26
FT	2,269	3.11	4.55	86.3	171	5	15 [†]
FL ₂	4,707	3.76	5.38	105.0	148	46	84 ⁺⁺
FL ₃	6,139	3.88	5.44	110.8	151	11	45 ^{††}

Table 21.—Areal extent and average pressure, temperature, and salinity conditions in each sub*rea

* Estimated; samples not available.

145,265

Total

Salinity as NaCl calculated from spontaneous potential of well logs; number of samples refers to † number of well logs.
** Only few samples from deep zones are included.
th No samples from deep zones are included.

			Sand	aquifer	Upper sha	le bed	Lower shale bed		
Reservoir	Total reservoir thickness km	No. of wells	Extrapolated thickness km	Average permeability md	Average porosity %	Assumed thickness km	Assumed porosity %	Assumed thickness km	Assumed porosity %
AT	3.64	13	0.63	20	18	1.80	16	1.21	12
ATL	3.53	33	0.91	35	21	1.40	17	1.22	11
BT	4.18	9	0.56	15	18	1.89	18	1.73	12
BT2	3.68	6	0.55	20	20	1.82	17	1.31	11
ст	3.53	5	1.14	20	19	1.37	17	1.01	11
DT	3.08	9	1.22	25	19	1.19	16	0.67	11
DT ₂	3.32	4	0.54	20	20	1.74	16	1.04	11
DT3	3.59	7	0.55	25	20	1.71	16	1.33	12
DTL	3.38	8	0.41	30	21	1.75	16	1.22	11
	3.99	15	0.56	25	20	2.22	14	1.21	10
DL ₆	3.95	4	0.76	25	20	2.14	14	1.05	10
ET	3.04	4	1.50	20	19	0.88	16	0.66	11
ET2	3.37	4	0.61	30	20	1.63	16	1.13	11
ET3	3.63	12	0.74	35	21	1.63	17	1.26	11
ETL ₄	3.37	9	0.42	30	21	1.90	16	1.05	11
EL ₅	3.34	13	0.67	40	21	1.78	13	0.89	10
EL ₆	3.68	12	0.75	40	21	1.95	14	0.98	10
EL7	4.01	7	1.02	40	21	1.87	15	1.12	9
FT	2.89	4	0.93	25	20	1.18	15	0.78	11
FL ₂	3.24	6	0.90	50	22	1.49	13	0.85	10
FL ₃	3.12	9	0.66	40	22	1.73	13	0.73	9

Table 22.—Assumed thickness and properties of sand and shale beds in idealized "conceptual reservoirs"

confining shale beds for each of the idealized conceptual reservoirs are presented in table 22. Also shown on this table are the number of wells used in each subarea to extrapolate the cumulative thickness of sand beds observed in wells to the assumed 6- or 7-km bottom of the geopressured zones. The permeability of both the upper and lower shale beds in all the conceptual reservoirs was assumed to have a uniform value of 0.0001 millidarcy (md) and therefore is not given in this table. This permeability for the confining shale beds is low enough to provide an effective barrier for the maintenance of high pressures in the sand aquifers but also high enough to account for the significant amounts of water that these undercompacted shale beds are expected to contribute from storage in response to pressure declines in the sand aquifers. Other calculated aquifer parameters and water properties used in the evaluation of these idealized conceptual reservoirs are given in table 23. The storage coefficients presented in this table are based on an assumed uniform specific storage of 3.3×10^{-6} per metre for the sand aquifers. Similarly, a uniform "shortterm" specific storage of 3.3×10^{-4} per metre was assumed for the confining shale beds. For further details on the assumptions and the methods used in calculating the parameters in table 23, and on other parameters used in the analysis, the reader is referred to the "Appendix."

ASSESSMENT OF THE "FLUID RESOURCE BASE"

The term "fluid resource base" as used in this report refers to the energy contained in the waters stored in the sand and shale beds of geopressured reservoirs. These waters are hot, confined under high pressures, and assumed to contain dissolved methane. Thus, the fluid resource base consists of the thermal energy, the mechanical energy, and the methane contained in these waters. The fluid resource base as defined above was assessed for each of the 21 conceptual reservoirs in the study area. The results of this assessment are presented in table 24.

The volume of water stored in the sand and shale beds of each reservoir was calculated by using the assumed sand and shale bed thicknesses and porosities shown in table 22. The thermal energy in this volume of stored water was taken as the heat content above 15°C. "In situ" densities (see table 23)—that is, densities corrected to the average pressure, temperature, and salinity conditions given in table 21—and an average specific heat of 4,100 joules per kilogram per degree Celsius (J/kg/°C), corresponding to the average pressures and temperatures, were used to assess the thermal energy of each reservoir. The volume of dissolved methane was obtained by using the calculated methane content (see table 23), converted to thermal energy by assuming a heat equivalent of 3.77×10^7 J/standard m³ of methane.

The mechanical energy in each reservoir was calculated as the energy that could be produced by the volume of water that would be released from storage in the sand and shale beds if the hydraulic head throughout the conceptual reservoir declines to the land surface. No time limitations were placed on the decline, but it was assumed that the decline is linear with time and that, therefore, the average operating head would be equal to one-half the initial head.

To provide a basis for comparison with the thermal energy in other geothermal systems assessed in the various reports of this circular, the totals of the estimates of table 24 are summarized here in terms of their equivalent:

	Calories
Thermal energy	10,920 X 10 ⁻¹
Methane:	
Volume : 6.7×10^{14} standard m ³	
Thermal equivalent	6,030×10 ¹⁸
Mechanical energy :	
Thermal equivalent	50×10^{18}
Total thermal equivalent	17,000×1018

This preliminary assessment of the fluid resource base of geopressured-geothermal reservoirs within the onshore Tertiary sediments of the northern Gulf of Mexico basin indicates that the energy stored in the waters of these reservoirs is very large. However, this assessment is based on idealized conceptual reservoirs and on several assumptions about the physical properties of the reservoirs and of the waters stored in them. The possible effects of this idealization of the reservoirs and of the assumptions made in the assessment are discussed briefly below.

Discussion of the reliability of fluid resource base assessment

The mechanical energy component of the fluid resource base is so small compared to the other two components that any discussion of possible errors in its assessment is not warranted. There-

	Aq	uifer Parameter	`S	Water Properties			
Reservoir	Hydraulic	Transmissi-	Storage	Avera	ige Density	Methane	
	nead* (LSD)	vity	coefficient	In situ [†]	At surface**	content	
	m	$10^{-4} m^2/s$	10 ⁻³	kg/m ³	kg∕m ³	std. m^3/m^3	
AT	4,750	6.1	2.1	941	893	11.0	
ATL2	4,060	15.0	3.0	966	925	8.4	
BT	4,010	4.1	1.8	961	920	9.5	
BT ₂	4,310	5.3	1.8	980	944	7.5	
CT ₁	4,450	11.0	3.8	957	913	8.9	
DT	4,920	15.0	4.0	96.0	913	9.1	
DT ₂	4,740	5.2	1.8	969	923	9.2	
DT ₃	4,210	6.7	1.8	975	934	8.0	
DTL ₄	4,220	6.0	1.4	997	957	7.3	
DL ₅	5,360	6.8	1.8	1,003	949	8.0	
DL ₆	5,590	9.2	2.5	1,000	946	8.3	
ET	4,300	15.0	5.0	969	925	8.8	
ET ₂	4,560	8.9	2.0	9 58	914	9.4	
ET ₃	4,170	13.0	2.4	981	940	7.8	
ETL ₄	4,550	6.1	1.4	1,005	962	6.7	
EL5	5,340	13.0	2.2	1,022	964	8.0	
EL ₆	5,340	15.0	2.5	1,020	965	7.7	
EL ₇	5,330	20.0	3.4	9 88	939	8.5	
, FT1	4,590	11.0	3.1	963	908	10.2	
FL ₂	5,040	22.0	3.0	1,028	975	7.3	
FL ₃	5,830	13.0	2.2	1,003	948	8.2	

Table 23.-Calculated aquifer parameters and water properties used in this study

* Based on average pressure and in situ density.

At average pressure, temperature, and salinity.
** At saturation pressure and average temperature and salinity.
++ Based on solubility of methane at average pressure, temperature, and salinity.

	Volume		Methane	- Mechanical		
Reservoir	of water in storage	Thermal energy	Volume	Thermal eouivalent	energy	
	10 ¹² m ³	10 ²⁰ J	10^{12} std. m ³	10 ²⁰ J	10 ²⁰ ј	
AT	4.91	32.4	54.0	20.4	0.1	
ATL ₂	11.80	66.1	99.4	37.5	0.2	
вт	8.81	53.8	83.7	31.6	0.2	
BT2	3.14	17.0	23.6	8.9	0.1	
ст	4.62	28.5	41.1	15.5	0.1	
דס	2.39	14.8	21.7	8.2	0.1	
DT ₂	2.56	15.6	23.5	8.9	0.1	
DT ₃	4.04	22.3	32.3	12.2	0.1	
DTL ₄	2.55	13.1	18.6	7.0	0.1	
DL ₅	3.82	23.4	30.6	11.5	0.2	
DL ₆	2.06	12.2	17.1	6.5	0.1	
et ₁	2.69	16.3	23.7	8.9	0.1	
et ₂	0.99	5.9	9.3	3.5	0.0	
et ₃	4.28	22.6	33.4	12.6	0.1	
etl ₄	1.73	8.9	11.6	4.4	0.1	
EL ₅	3.75	23.6	30.0	11.3	0.1	
el ₆	4.61	27.7	35.5	13.4	0.2	
EL ₇	3.70	19.6	31.5	11.9	0.1	
FT1	1.02	6.3	10.4	3.9	0.0	
FL ₂	2.25	12.6	16.4	6.2	0.1	
FL ₃	2.67	14.9	21.9	8.3	0.1	
Totals:	78.39	457.6	669.3	252.6	2.3	

fore, the discussion is limited to the thermal and methane energy components. The variables directly involved in the assessment of the thermal and methane energy components of the fluid resource base are the volume of water stored in the geopressured zone and its density, specific heat, temperature, and methane content.

The volume of the stored water depends on the thickness and porosity of the sand and shale beds. The estimates of cumulative sand and shale bed thicknesses are reliable (see the "Appendix"). The fact that the sand and shale consist of several interbedded units rather than the massive single beds that are assumed for the conceptual reservoirs does not affect the volume of water stored in them. The porosities of the sand beds were estimated from data above or just below the top of the geopressured zone, and that of the shale beds from porosity/depth-of-burial relations for the gulf coast shale beds (Dickinson, 1953). The porosities given in table 22 could be in error by two or three percentage points. This would result in an error of about 20 percent in the estimated volume of stored water. The estimates of average temperature and the calculations of the in situ density and specific heat are fairly reliable, and their combined error could not be more than 5 percent. In contrast, the estimates of methane content are not very reliable. No actual measurements of the methane content of waters from the geopressured zone were available. The assumed methane content is based on the solubility of methane at the average temperature, pressure, and salinity of the reservoir waters, as deduced from the knowledge that waters in nongeopressured zones of the gulf coast contain dissolved gas, primarily methane, at or near saturation (see the "Appendix").

A lower bound for the fluid resource base assessment can be obtained by completely neglecting the mechanical energy component, conservatively assuming that the methane content is onefourth of that used in the assessment and assuming that the possible errors discussed above are all in the direction of reducing rather than increasing the energy. This lower bound is 398.3×10^{20} J (9,500×10¹⁸ cal), or about 56 percent of the estimate otherwise obtained—still a very large amount.

ASSESSMENT OF RECOVERABLE ENERGY

The recoverability of energy from geopressured reservoirs ultimately depends on the amount of water than can be produced by wells tapping these reservoirs. Therefore, to assess the recoverable energy, a development plan that specifies the production period, the desired flow rate of wells, and the allowable drawdown (or wellhead pressure) needs to be selected. The number of wells that can be placed under this plan and the total production of water are then determined.

The flow rate and the number of wells are interdependent (fig. 16). Note that for a given set of reservoir and well conditions and for a specified drawdown and production period, the flow rate varies with the well spacing and consequently with the number of wells that are placed in a reservoir. As the well spacing increases, the flow rate per well also increases until a maximum flow rate is reached. This maximum flow rate corresponds to a spacing at which interference between wells becomes negligible, and it is controlled mainly by the transmissivity of the reservoir (Papadopulos, 1975). At a smaller well spacing, well interference causes the flow rate per well to decrease. However, as the well spacing decreases, the number of wells that can be placed in a reservoir increases faster than the rate at which the flow rate per well decreases. Therefore, the total production from the reservoir, that is, the product of the number of wells and their flow rate, also increases with decreasing well spacing.

A development plan for recovering energy from geopressured reservoirs cannot be selected only on the basis of hydrogeologic factors. Economic and environmental factors also have to be considered and will probably govern the selection of the development plan. An optimum plan would be one that maximizes economic benefits and minimizes the environmental effects of the development. Distinction should be made here between a plan that is economically feasible and an optimum plan. Any plan that has a benefit-cost ratio larger than one (including tangible or intangible environmental costs) is economically feasible. Among several economically feasible plans, the one providing for the maximum net

FIGURE 16.—Variation of well spacing with the ratio of flow rate to the 20-year formation drawdown for each of the conceptual reservoirs.

135

benefits is the optimum plan. Intuitively, because of the high cost of drilling deep wells in geopressured reservoirs, a plan that develops the reservoirs with wells having the maximum possible flow rate may appear to be the most desirable. However, such a plan is the least likely to be the optimum for the development of the reservoir. For example, in the conceptual reservoir AT_1 , wells placed at a spacing of about 40 km would be producing at the maximum possible flow rate for wells in this reservoir, which is 3.3×10^{-4} m³/s per metre of drawdown (see fig. 16). One such well can be placed in every 1,600 km² of area. On the other hand, if wells are placed at one-half this spacing, that is, 20 km apart, the flow rate decreases only slightly to 3.1×10^{-4} m³/s per metre of drawdown. At this spacing, four wells can be placed in the same 1,600-km² area. Assuming that both of these development plans are economically feasible and that costs per well are nearly the same, the one-well plan would have a slightly higher benefit-cost ratio than the four-well plan. However, the net benefits from the four-well plan would be almost four times those of the one-well plan. Thus, if only these two plans were to be considered, the four-well plan would be the optimum.

Selection of an optimum plan of development obviously requires complex studies of economic and environmental factors. In the absence of such economic and environmental studies, which are beyond the scope of this report, three assumed development plans were selected to provide "order-of-magnitude"-type assessments of the energy recoverable from the conceptual reservoirs. The assumed development plans consist of a basic plan, to be referred to as Plan 1, and of two modifications of this basic plan, referred to as Plan 2 and Plan 3.

Plan 1 is the following: The conceptual reservoirs are to be developed with 0.23-m-diameter wells, each capable of sustaining a flow rate of 0.15 m³/s for a period of 20 years at a wellhead pressure that gradually declines to a minimum value of 14 meganewtons per square metre (MN/m^2), or 2,000 lb/in², at the end of the 20-year production period. This basic plan has been used in previous studies (Parmigiano, 1973; Papadopulos, 1975). However, the selection of this plan, and of its modifications discussed below, has been completely arbitrary. The data provided in

this report and figure 16 can be used to evaluate possible development plans other then those considered here. Examples illustrating the use of figure 16 for evaluating various plans are given in the "Appendix."

The results of the assessment of recoverable energy from each of the conceptual reservoirs, under the assumed Plan 1, are presented in table 25. These results are summarized here in terms of their equivalent:

Thermal energy	Calories 229.4×10^{18}
Volume: 13.8×10^{12} standard m ³	
Thermal equivalent	124.2×10^{18}
Mechanical energy :	
Thermal equivalent	9.4×10 ¹⁸
Total thermal equivalent	363.0×10^{18}

Recovery of this energy, which is about 2.1 percent of the total fluid resource base, requires 17,160 wells at a spacing ranging from 2.3 km in subarea EL_7 to 3.9 km in subarea BT_1 .

The mechanical energy component of this assessment is only 2.6 percent of the total recoverable energy. To recover this small percentage of energy, the wellhead pressure is restricted to a minimum of 14 MN/m^2 . The head equivalent of this pressure is about 1,500 m,or about one-third of the initial head in most of the conceptual reservoirs.

In Plan 2, recovery of the mechanical energy is neglected by removing this restriction on wellhead pressure and allowing the walls to use almost the entire initial head over the 20-year production period. The energy recoverable under Plan 2 consists of only thermal and methane energy. The results of this assessment are:

	Calories
Thermal energy	358.8×10 ¹⁸
Methane:	
Volume: 21.6×10 ¹² standard m ³	
Thermal equivalent	$193.6 imes 10^{18}$
 Total thermal equivalent	552.4×1018

The number of wells required to recover this energy, which is about 3.3 percent of the fluid resource base, is 25,840 with well spacings that range from 1.9 to 2.9 km.

Plans 1 and 2 do not consider any restrictions that might be imposed by environmental factors. Subsidence, for example, could pose major re-

Reservair	Available formation drawdown m	Flow rate- drawdown ratio 10 ⁻⁵ m ² /s	Well spacing km	Number of wells	Volume of water produced 10 ¹⁰ m ³	Thermal energy 10 ¹⁸ J	Methane Energy		
							Volume	Thermal equivalert 10 ¹⁸ J	Mechanical energy 10 ¹⁸ J
ATL ₂	2,410	6.2	3.1	2,180	20.64	117. 1	173.3	65.4	4.5
BT	2,370	6.3	3.9	890	8.43	52.2	80.1	30.2	1.8
BT ₂	2,690	5.6	3.5	450	4.20	23.6	32.0	12.1	1.0
ст	2,780	5.4	2.6	1,210	11.46	71.5	102.0	38.5	2.6
DT	3,250	4.6	2.4	840	7.95	49.6	72.4	27.3	1.9
DT ₂	3,090	4.9	3.2	500	4.73	29.3	43.6	16.5	1.1
DT ₃	2,580	5.8	3.5	600	5.68	31.9	45.5	17.2	1.3
DTL ₄	2,620	5.7	3.7	370	3.50	18.4	25.6	9.7	0.8
DL5	3,730	4.0	2.9	830	7.86	48.4	62.9	23.7	2.1
dl ₆	3,950	3.8	2.5	590	5.59	33.3	46.4	17.5	1.5
ET	2,640	5.7	2.4	930	8.80	54.2	77.5	29.2	2.0
ET2	2,900	5.2	3.2	190	1.80	10.8	16.9	6.4	0.4
ET3	2,550	5.9	3.2	730	6.91	37.0	53.9	20.4	1.5
ETL ₄	2.950	5.1	3.5	280	2.65	13.9	17.8	6.7	0.6
EL ₅	3,730	4.0	2.7	1,110	10.51	66.2	84.1	31.7	2.8
EL ₆	3,730	4.0	2.6	1,310	12.40	75.1	95.5	36.0	3.3
EL ₇	3.680	4.1	2.3	1,180	11.17	59.8	95.0	35.8	2.9
FT	2,920	5.1	2.7	310	2.93	18.1	29.9	11.3	0.7
FL ₂	3,430	4.4	2.5	750	7.10	40.1	51.8	19.6	1.8
FL ₃	4,180	3.6	2.5	9 80	9.28	52.0	76.1	28.7	2.6
Totals			-	17,160	162.33	961.0	1,379.2	520.4	39.3

Table 25.—Assessment of "recoverable energy" under the assumed basic development plan, Plan 1

strictions to the maximum drawdowns that can be used in developing geopressured reservoirs, especially near coastal areas of low elevation. Crude estimates, obtained by calculating the volume of water contributed from storage in the shale beds of the conceptual reservoirs (see the "Appendix") and assuming that this will result in equal compaction of the shale beds and that this compaction, in turn, will be transmitted to the land surface without reduction, indicate that average subsidence under Plan 1 could range from about 5 to over 7 m.

In Plan 3, the maximum drawdown is restricted, or the wellhead pressure increased, such that the average subsidence, calculated as described above, does not exceed 1 m. The energy recoverable under Plan 3 is:

Thermal energy	Calories 53.1×10 ¹⁸
Methane:	
Volume: 3.2×10^{12} standard m ³	
Thermal equivalent	28.8×10^{18}
Mechanical energy, thermal equivalent	3.3×10 ¹⁸
 Total thermal equivalent	85.2×10 ¹⁸

Recovery of this energy, which is about 0.5 percent of the total fluid resource base, requires about 3,970 wells placed at spacings ranging from 4.8 to 7.2 km.

These assessments consisted mainly of determining the well spacing and consequently the number of wells that can be developed in each conceptual reservoir under the assumed plans. Techniques developed in the evaluation of the energy potential of a "typical" gulf coast geopressured reservoir (Papadopulos, 1975) were used to prepare for each conceptual reservoir a plot of the variation of the flow rate per unit 20-year formation drawdown, that is, the drawdown in the aquifer just outside the well, which is equal to the drawdown in the well less the pipe friction and other losses, against well spacing for wells placed on a square grid. These plots are shown in figure 16. To prepare these plots, the transmissivity and storage coefficients for each sand aquifer (see table 23) and the assumed hydraulic properties of the confining shale beds (see the "Appendix") were used in well-flow equations that take into account the effects of leakage from storage in the shale beds (Hantush, 1960). For reservoirs where the hydraulic properties of the sand aquifers were the same or very similar,

as for example BT_2 and DT_2 , only one plot was prepared.

The 20-year available formation drawdown for each reservoir was calculated by subtracting from the initial hydraulic head of the reservoir the assumed maximum drawdown, or the head corresponding to the assumed minimum wellhead pressure, and the pipe friction losses (see the "Appendix") for the assumed well diameter and flow rate. The ratio of the flow rate to the available drawdown was then used to determine well spacing from figure 16. The area of infuence of each well was assumed to be equal to the square of the well spacing. The areal extent of each reservoir (see table 21) was then divided by this area of influence to determine the number of wells that can be placed in a conceptual reservoir under the assumed development plan.

The thermal and methane energy in the volume of water produced over the 20-year production period were calculated in a manner similar to that used in the assessment of the fluid resource base, except that density at saturation pressure (see table 23) and an average saturation pressure specific heat of $4,350 \text{ J/kg/}^{\circ}\text{C}$ (see the "Appendix") were used in the thermal energy calculations.

On the basis of previous studies of the timedrawdown behavior of wells in idealized geopressured reservoirs having similar properties (Papadopulos, 1975), the "average operating head" for the production of mechanical energy over the 20-year period was assured to be the initial head less the pipe friction losses and less two-thirds of the 20-year formation drawdown.

The recoverable energy assessments presented above are only energy at the wellhead. Although the methane is a resource that can be directly marketed, thermal and mechanical energy probably will have to be converted to a more readily usable form of energy such as electrical energy. Additional large energy losses will result from this conversion. The efficiency of converting thermal energy at the wellhead to electrical energy has been estimated to be 8 percent by Nathenson and Muffler (this circular). The efficiency of converting mechanical energy to electrical energy is assumed to be 80 percent, although efficiencies as high as 90 percent have been used by House and others (1975). Applying these conversion efficiencies to the thermal and mechanical energy
components of the recoverable energy assessments results in the following estimates of electrical energy in megawatt centuries and of electrical power in megawatts for the 20-year period:

Development plan and energy resource	Electrical energy (MW-cent)	Electrical power (MW (20 yr))		
Plan 1:				
Thermal energy	24,380	121,900		
Mechanical energy	9,970	49,850		
Total	34,350	171,750		
Plan 2:		<u></u>		
Thermal energy	38,140	190,700		
Plan 3:				
Thermal energy	5,690	28,450		
Mechanical energy	3,560	17,800		
Total	9,250	46,250		

Note that, because of the one-order-of-magnitude difference in the conversion efficiencies for the two kinds of energy resource, the mechanical energy, which constituted only a very small percentage of recoverable energy at the wellhead, under both Plan 1 and Plan 3, provides 29 percent and 38.5 percent, respectively, of the recoverable electrical energy.

The variation in the recoverable energy with the conditions imposed in different development plans further indicates the importance of detailed economic and environmental studies in selecting an optimum development plan. It should be emphasized again that the assessments presented here (1) are not based on such economic and environmental studies, (2) are of the orderof-magnitude type, and (3) could be completely different than assessments based on an optimum plan.

In addition to subsidence, briefly discussed above, studies are also needed to determine the feasibility of disposing of the waste water by injecting it into shallower saline aquifers, as suggested by Wilson, Shepherd, and Kaufman (1974) and House, Johnson, and Towse (1975), or by discharging it into the Gulf of Mexico. The geochemistry of the waters and the shale beds is another factor that needs to be studied. The membrane properties of the shale beds could play an important role in determining the amounts and quality of the waters that are contributed from the shale beds. The chemistry of the water could also create corrosion problems in the wells that would affect their flow rates. Another factor that could influence the economics of development and that needs to be investigated is the feasibility of converting unsuccessful or depleted oil and gas wells into production wells from the geopressured reservoirs. This list is by no means complete, but it points out the complexity of arriving at an optimum development plan for recovering energy from the geopressured reservoirs.

Discussion of the reliability of the recoverable energy assessments

The most important factor in the recoverable energy assessments is the total volume of water produced by wells. The effect of selecting different development plans on the volume of produced water has already been emphasized. Therefore the discussion here is limited to the reliability of the presented assessments. Under the selected development plans that specified the flow rate, the reliability of the produced volume estimates depends on the effects of the idealization of the reservoirs and on the reliability of the well-spacing determinations.

The conceptual reservoirs were assumed to consist of a single sand bed underlain and overlain by two single shale beds that are continuous and exist throughout each subarea. The assumption of two single confining shale beds would normally result in a smaller contribution of water from storage than that expected in a system of interbedded sand and shale. However, this effect has been accounted for by assuming a larger than usual permeability for the shale beds (see the "Appendix"). Theoretically, assuming a single thick sand bed instead of multiple sand beds having the same total thickness would not have any effect since the transmissivity (hydraulic conductivity times thickness) is the same for both cases. However, underlying this theory is the assumption that in both cases the wells are open throughout the sand beds. Multiple completion of the wells in every sand bed would not be practically possible. Therefore, in the actual multiplesand-bed systems, wells would probably be completed only in the thick sand beds. Assuring that thick sand beds constitute at least 50 percent of the cumulative sand thickness, the transmissivities of the conceptual reservoirs could be in error by about 50 percent.

Existence of the reservoirs throughout each subarea should not be confused with continuity. Since the assumed development plans require a

large number of wells in each subarea, artificial boundaries would be created between wells. Thus, the effect of having compartmentalized reservoirs instead of one continuous reservoir would not be so critical, provided these compartments exist throughout the area and are larger than the area of influence of each well, that is, the square of the well spacing. The wells from the logs of which sand bed thicknesses were determined were rather uniformly distributed over the study area. These logs as well as others examined during the course of this study and of previous studies of the hydrogeology of the gulf coast indicate that sand bed sequences exist throughout most of the study area, except in the areas where massive shale sequences were chosen as the boundaries of the subareas. Therefore the assumption that the reservoirs exist throughout the study area could result, at most, in an error of about 20 percent in the number of wells.

The well spacing at a specified flow rate depends on the available drawdown and on the hydraulic parameters of the reservoir. The available drawdowns that were used in the assessments were calculated from the initial hydraulic head and the imposed wellhead conditions. The initial hydraulic heads were based on the average reservoir pressures, which are fairly reliable (see the "Appendix"). Therefore large errors in the assumed drawdowns are not likely. Furthermore, the available drawdowns are so large that, even if they are in error by 50 or 100 m, the flow rate/ drawdown ratio does not change by much. Consequently, the well spacing that is determined from figure 16 by using this ratio will also not change appreciably.

Permeabilities, which were used to calculate transmissivities, are believed to be the least reliable of the reservoir data used in this study. If permeabilities are assumed to be overestimated by 50 percent, and this error is combined with the 50-percent error assumed to be due to the idealization of the reservoirs, the transmissivities will be reduced to one-fourth of those assumed in table 23. Therefore the effect of having one-fourth of the assumed transmissivities was examined. Under Plans 1 and 2, the drawdowns are large, ranging from 3,000 to 5,000 m, and cause the flow rate/ drawdown ratios to be small, from about 3×10^{-5} to 6×10^{-5} m³/s/m. At this range of flow rate/ drawdown ratios, the curves in figure 16, each of which is for a different set of transmissivities and storage coefficients, are close to each other; therefore the well spacing does not vary much with the hydraulic parameters of the reservoirs. On the average, a 75-percent reduction in transmissivities was found to increase well spacing under these two plans by about 0.5 km and to cause a reduction of about 25 percent in the number of wells. Under Plan 3, the drawdowns are small, ranging from 750 to 1,200 m, and result in flow rate/drawdown ratios from 1.25×10^{-4} to 2.0×10^{-4} m³/s/m. Within this range, well spacing varies considerably with the hydraulic parameters of the reservoir. Under this plan, a reduction of 75 percent in transmissivities reduces the number of wells by about 60 percent.

Lower bounds for the recoverable energy assessments are obtained by combining the effects of the two factors discussed above on the volume of produced water, by assuming that methane content may be only one-fourth of saturation, and by assuming a combined error of about 5 percent in temperature, density, and specific heat. These lower bounds are:

		 Lower bounds	Percent of orizinal assessments
Plan	1	 155.0	43
Plan	2	 233.5	43
Plan	3	 19.5	23

The corresponding lower bounds for conversion of thermal and mechanical energy to electrical energy and to power are:

		Lowe	Lower bounds				
		Electrical energy (MW•cent)	Electrical power (MW (20 yr))	Percent of original assessments			
Plan	1	 19,850	99,259	58			
Plan	2	 21,730	108,659	58			
Plan	3	 2,880	14,40	31			

Note that, because the greatest reduction is in the estimates of methane, the reduction in the recoverable electrical energy is not as large as the reduction in energy at the wellhead. Also, if all the possible errors assumed in obtaining these lower bounds are valid, the resulting reservoir conditions may require completely different development plans for assessing the recoverable energy.

ACKNOWLEDGMENT'S

Data and assistance from Exxon, Shell, Amoco, Atlantic-Richfield, Mobil, Sun, Phillips, and Chevron in particular and the petroleum industry in general are gratefully acknowledged. More than 6,600 reservoir data records provided by the Computer Projects Unit of the Bureau of Natural Gas were a significant contribution to this study.

REFERENCES CITED

- Culberson, O. L., and McKetta, J. J., Jr., 1951, Phase equilibria in hydrocarbon-water systems, III—The solubility of methane in water at pressures to 10,000 PSIA: Am. Inst. Mining Engineers Petroleum Trans., v. 192, p. 223–226.
- Dickinson, George, 1953, Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana: Am. Assoc. Petroleum Geologists Bull., v. 37, no. 2, p. 410–432.
- Dorfman, Myron, and Kehle, R. O., 1974, Potential geothermal resources of Texas: Texas Univ. Bur. Econ. Geology Circ. 74–4, 33 p.
- Durham, C. O., Jr., 1974, Proposed geopressured energy investigation: Louisiana State Univ., School Geoscience Rept., 38 p.
- Haas, J. L., Jr., 1970, On equation for the density of vapor-saturated NaCl-H₂O solutions from 75° to 325°C: Am. Jour. Sci., v. 269, p. 489–493.
- Hantush, M. S., 1960, Modification of the theory of leaky aquifers: Jour. Geophys. Research, v. 65, no. 11, p. 3713-3725.
- Herrin, E., 1973, Development of geothermal reservoirs from over-pressured areas beneath the Gulf Coast Plain of Texas, final report: Air Force Office of Scientific Research TR-73-1344; March 1973, NTIS No. AD 766855, 148 p.
- Hottman, C. E., 1966, U.S. Pat. No. 3,258,069, June 28, 1966.
 - ------ 1967, U.S. Pat. No. 3,330,356, July 11, 1967.
- House, P. A., Johnson, P. M., and Towse, D. F., 1975, Potential power generation and gas production from Gulf Coast geopressure reservoirs: California Univ., Lawrence Livermore Lab. Rept. 51813, 40 p.

Jones, P. H., 1969, Hydrology of Neogene deposits in the northern Gulf of Mexico basin: Louisiana Water Resources Research Inst. Bull., GT-2, 105 p.

1970, Geothermal resources of the northern Gulf of Mexico basin: Geothermics, Spec. Issue 2, Part 1, p. 14-26.

- Meyer, C. A., McClintock, R. B., Silvestri, G. J., and Spencer, R. C., 1968, 1967 ASME steam tables (2d ed.): Am. Soc. Mechanical Engineers, 328 p.
- Myers, B., Nelson, R., Howard, J., and Austin, R., 1973, Some elements of the northern Gulf of Mexico basin geopressure energy source: California University Lawrence Livermore Report UCRL-74807, 27 p.
- O'Sullivan, T. D., and Smith, N. O., 1970, The solubility and partial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50° to 125° and 100 to 600 Atm: Jour. Phys. Chemistry, v. 74, no. 7, p. 1460–1466.
- Papadopulos, S. S., 1975, The energy potential of geopressures reservoirs: Hydrogeologic factors: Energy Conf. Proc. Austin, Texas, June 2–4, 1975. (in press)
- Parmigiano, J. M., 1973, Geohydraulic energy from geopressures aquifers: Louisiana State Univ., Baton Rouge, La., M.S. thesis, 104 p.
- Schmidt, G. W., 1973, Interstitial water composition and geochemistry of deep Gulf Coast shales and sandstone: Am. Assoc. Petroleum Geologists Bull., v. 57, no. 2, p. 321-337.
- Streeter, V. L., 1962, Fluid mechanics (3d ed.): New York, McGraw-Hill, 555 p.
- Wallace, R. H., 1970, Abnormal pressures and potential geothermal resources in the Rio Grande erbayment of Texas: Symposium on Abnormal Subsurface Pressure, 2d, Proc. Louisiana State Univ., Baton Rouge, La., p. 87–104.
- Wilson, J. S., Shepherd, B. P., and Kaufmar, Sidney, 1974, An analysis of the potential use of geothermal energy for power generation along the Texas Gulf Coast: Dow Chemical U.S.A., Texas Div., 63 p.

APPENDIX

Discussion of Data Used in Assessment of Onshore Geopressured-Geothermal Resources in the Northern Gulf of Mexico Basin

This appendix discusses the basis on which data presented in the various tables of this report were determined, calculated, or assumed. Other untabulated data and equations used in the assessments presented in this report are also discussed. Examples illustrate the use of the data for evaluating energy recovery plans other than those presented in the main text of the report.

DATA ON AVERAGE CONDITIONS IN SUBAREAS

Average depth to top of geopressure

Geopressure, as used in this report, refers to a fluid pressure that is higher than hydrostatic. For the average salinities of 60 to 80 g/l that are found in the hydrostatic, or normally pressured,

zones of the gulf coast, this corresponds to a vertical pressure gradient greater than 10.5 kilonewtons per square metre per metre (kN/m²/m), or 0.465 lb/in²/ft. In the southern half of the Texas coastal plains, a "top geopressure" map furnished by a major oil company was used to determine the average depth to the top of geopressure within each subarea. Pressure measurements available within the mapped area numbered from 22 to 432 determinations per subarea. Outside the mapped area, in the northeastern Texas coastal plain and in coastal Louisiana, average depth to the top of geopressure was determined by using computer-derived shale density plots, well records, and geophysical log examination. Less control, therefore, was used in these areas because of the time required to process information.

Average pressures

Pressures at the midpoint depth of each subarea were obtained by averaging pressure data on shale density determinations from geophysical logs and on mud weights recorded within various depth intervals. Selected wells that approached or penetrated the midpoint depth were used. The resulting pressure determinations were compared with bottom-hole shut-in pressure measurements made during wireline or drill-stem testing and initial reservoir pressure measurements recorded with the Texas Railroad Commission or the U.S. Bureau of Natural Gas. Agreement between the data sets was very good.

Average temperatures

Temperature data were derived from measurements made during electrical well logging operations. These measurements were adjusted to equilibrium conditions using a correction equation developed by the American Association of Petroleum Geologists Geothermal Survey of North America. Mean depths of occurrence for six isogeothermal surfaces (70°C, 100°C, 120°C, 150°C, 180°C, and 250°C) and average midpoint temperatures were calculated for each county (or parish) in the study area. County determinations were averaged to obtain midpoint temperatures within each subarea. Temperature control was most abundant within 20 southern Texas counties (Rio Grande embayment area). In this area, approximately 1,150 wells from a project data file of 11,000 reached or exceeded midpoint depths. Control was limited to about five wells per county in the northeastern half of the Texas coastal plain and in southern Louisiana.

Salinity

Salinity estimates were based upon an evaluation of all chemical analyses from the geopressure interval available to the U.S. Geological Survey. In some instances, data from outside the interval may have been included. In the southern Texas coastal plain (areas CT₁, DT₁, and ET₁), salinities computed from electric logs (total dissolved solids and NaCl) were alro available. Computed salinities in table 21 represent an average of the salinity of each significant sand bed occurring in the interval from the top of the geopressure zone to the total depth of the well. In areas DT_1 and ET_1 , calculated values were used as best available data. In area CT₁, sufficient data were available for use of both sampled and calculated salinities. Results were very similar (23,000 mg/l versus 22,000 mg/l tctal dissolved solids). Most sampled data and many computed values used in these estimates were from the upper part of geopressured reservoirs. Within the geopressured zone, an irregular decrease in salinity with depth is usually observed. Thus, average salinity values shown on table 21 are probably high for the average midpoint depth.

DATA ON PROPERTIES OF A CONCEPTUAL RESERVOIR

Thickness

Sand aquifer.—The thickness of the sand acquifer was determined by averaging cumlative sand-bed thicknesses and percentage of sand for a number of wells within each subarea, as shown in table 22, in the interval between the top of the geopressure zone at the well location and the total depth of the well. This percentage was then applied to the interval between the average top of geopressure and the 6- or 7-km depth (that is, the total thickness of the conceptual reservoir) to obtain an extrapolated thickness for the idealized aquifer.

Confining shale beds.—The total thickness of the shale beds was calculated as the difference between the total thickness of the conceptual reservoir and the extrapolated sand-bed thickness. This total shale-bed thickness was distributed between an upper shale bed and a lower shale bed by assuming the following: (1) the vertical flow in an undeveloped reservoir is steady; therefore, if the permeability of both the underlying and overlying shale beds is assumed to be the same, the hydraulic gradient across them should be also the same, and (2) the fluid pressure at the bottom of the lower shale bed should not exceed 95 percent of the lithostatic pressure.

Porosity and permeability

Sand aquifer.-Porosity measurements from sidewall and conventional cores, representing thousands of wells drilled in the gulf coast, show a general decreasing trend with depth. Permeability values also tend to decrease with depth, the lowest values being measured in the vicinity of the top of the geopressure zone. A highly variable but general increase in permeability occurs at intermediate depths within the zone of geopressure. Data available for the sand aquifer porosity-permeability estimates in table 22 were heavily weighed by samples from the uppermost sand beds of the geopressured zone and lowermost sand beds of the hydrostatic zone (that is, the "tightest" interval). Data from project files, published reports, regulatory agencies, and petroleum industry and industry service companies we re organized and analyzed on an area-by-area basis. Observed permeabilities ranged from 0.1 to 1000 md and porosities from 12 to 30 percent. Real data from horizons selected for the idealized aquifers were scarce or absent from available records. The averages presented are generally not representative of the idealized aquifer zone. From the range of values observed and from conversations with petroleum industry scientists, it is probable that permeabilities of 100 to 400 md are found in the more massive sand beds at depths greater than 4 km. The porosity of these sand beds could also be larger by as much as 5 percent.

Confining shale beds.—As in the case of the sand beds, the porosity and permeability of shale beds tend to decrease with depth, but a general increase of these parameters occur within the geopressured zone. Schmidt (1973) reports that, in a well at the Manchester Field in Louisiana, shale-bed porosity decreased to 12 percent at a depth of 3.0 km, just above the top of geo-

pressure, and then suddenly increased to 17 percent at a depth of 3.4 km, within the geopressured zone, gradually decreasing again to 12 percent at a depth of 4.5 km. In the absence of sufficient specific data on shale-bed porosities within the study area, porosities for the shale beds were estimated by using (1) a plot of burial depth against porosity of the gulf coast shale beds, presented by Dickinson (1953), and (2) the assumed midpoint depths for the upper and lower shale beds. As stated in the report, the permeability for all shale beds of the corceptual reservoirs was assumed to be 0.0001 md. This value of permeability is about two to three orders of magnitude higher than the permeability of normally compacted shale beds. Shale beds within the geopressured zone are undercompacted however, resulting in permeabilities larger than those of compacted shale beds. Furthermore, under actual reservoir conditions of interbedded shale and sand beds, several shale beds would be draining from both sides to adjacent sand beds that are developed, contributing a much larger amount of water to the sand beds than the shale beds of the idealized conceptual reservoir, which consist of only two beds, each draining on only one side. Thus, it is believed that for the analyses of this study, which are based on the corceptual reservoirs, the assumed shale-bed permeability is reasonable.

Hydraulic head

The hydraulic head above the midpoint of each conceptual reservoir was calculated by dividing the average pressure by the in situ density and the gravitational acceleration. This head was converted to head above land surface by subtracting the average depth to the midpoint. Within the sand aquifer, this hydraulic head was assumed to be uniform. Within the upper confining shale beds, the head was assumed to vary uniformly from zero at the top, that is, hydrostatic, to the head of the sand aquifer at the bottom. The same hydraulic gradient was assumed to occur in the lower shale bed. As explained earlier, this assumption was also used in determining the shalebed thicknesses.

Hydraulic conductivity

The estimated or assumed sand- and shele-bed permeabilities in millidarcys were converted to permeabilities in square metres. These permeabilities were then multiplied by the gravitational acceleration and divided by the average viscosity of the reservoir waters to obtain the hydraulic conductivities of the sand aquifer and of the confining shale beds.

Specific storage

The specific storage—that is, the volume of water that a unit volume of the reservoir would release from storage under a unit decline of head —had to be assumed for both the sand aquifer and the confining shale beds. A specific storage coefficient of 3.3×10^{-6} per metre was assumed for the sand beds in all of the conceptual reservoirs.

The confining shale beds, which are undercompacted and expected to have a high compressibility, were assumed to have a specific storage of 3.3×10^{-4} per metre. This high specific storage, however, was used only for the "shortterm" effects of the recoverability calculations. In determining the total volume of storage that could be released from storage, needed for the assessment of the mechanical energy component of the resource base, the average decline of head in the shale beds was first converted to an equivalent increase in burial depth by assuming a lithostatic pressure gradient of 22.6 kN/m²/m (1.0 lb/in²/ ft). The porosity corresponding to this equivalent burial depth was determined from the previously mentioned plot of burial depth and porosity (Dickinson, 1953). The difference between the original porosity and the new porosity was then used to calculate the volume released from storage.

Transmissivity and storage coefficients

The transmissivity and storage coefficients for the sand aquifers were obtained by multiplying the calculated hydraulic conductivities and the assumed specific storage for the sand aquifers by their extrapolated thickness.

DATA ON WATER PROPERTIES

Density

The "at surface" density of the geothermal waters—that is, the density at saturation pressure and at the average temperature and salinity —was calculated from data given by Haas (1970). The "in situ" density—that is, the density at the average pressure, temperature, and salinity—was calculated as follows. Densities for freshwater at the average temperature were calculated both at saturation pressure and at the average pressure using the 1967 ASME Steam Tables (Meyer and others, 1968). The percent change of the freshwater density from saturation to average pressure was then applied to the atsurface density to calculate the in situ density.

Methane content

Gases dissolved in normally pressured gulf coast formation waters consist primarily of methane. Minor amounts of other hydrocarbons plus carbon dioxide and nitrogen are also present. Methane usually represents more than 95 percent of the total volume. Assuming all of the dissolved gas to be methane and correcting for salinity, data from dissolved gas analyses of 134 water samples taken from Tertiary sands in 79 Texas wells were found to approximate saturated conditions as described by Culberson and Mc-Ketta (1951, fig. 5, p. 226). These samples were from normally pressured horizons. The highest pressure recorded was about 22 MN/m² (3,200 lb/in²), the highest temperature was about 102°C, and the highest dissolved gas content was 3.064 standard m3/m3 recorded from a water sample with 35,000 mg/l total dissolved solids.

Although the dissolved gas content of waters from geopressured zones has not been measured, on the basis of the above observations these waters were assumed to be methane saturated. The methane content was determined by using curves of methane solubility in freshwater presented by Culberson and McKetta (1951, fig. 5, p. 226), which were extended and modified to correct for salinity by using an extension of a solubility table from O'Sullivan and Smith (1970, p. 1461). These extensions and modifications vere in accord with trends shown and are nonlines.

Kinematic viscosity

For the range of the average pressures and temperatures of the reservoirs, the linematic viscosity of freshwater varies from 1.75×10^{-7} to 2.25×10^{-7} m²/s (1967 ASME Steam Tables, Meyer and others, 1968). On this basis, an average kinematic viscosity of 2×10^{-7} m²/s was assumed for the calculations of transmissivities and hydraulic conductivities, and of the Reynold's number needed in the determination of pipe friction losses.

Specific heat

The specific heat of freshwater at the average temperatures found in the geopressured reservoirs ranges from 4,060 to 4,160 J/kg/°C at the average pressures and from 4,290 to 4,430 J/ kg/°C at saturation pressure (1967 ASME Steam Tables, Meyer and others, 1968). In this study, average values of 4,100 and 4,350 J/kg/°C were used for the specific heat at the average reservoir pressures and at saturation pressures, respectively.

PIPE FRICTION AND WELL-FLOW EQUATIONS

The head loss, h_i , due to pipe friction in wells was calculated by using the Darcy-Weisbach equation (Streeter, 1962), which, in terms of flow rate Q, well radius r_w , and well depth L, is expressed as

$$h_l = f \frac{Q^2 L}{4\pi^2 r_w^5 q}$$

where f is a friction factor and g is a gravitational acceleration. The Reynold's number for the assumed flow rate, well radius, and kinematic viscosity was calculated to be 4.2×10^6 , a roughness coefficient of 1.65×10^{-5} per metre was assumed for the well casing, and the friction factor corresponding to this Reynold's number and roughness coefficient was found to be 0.0118 by interpolating in a Moody diagram (Streeter, 1962).

The well-flow equation used in the preparation of figure 16 is the "modified leaky aquifer" equation presented by Hantush (1960). The equation, which describes the drawdown distribution s around a well producing at a constant rate Qfrom an infinite confined aquifer, allows for the effects of leakage from storage in both the upper and lower confining beds. The equation has the form

where

$$s = \frac{Q}{4\pi T} H(u,\beta)$$

 $u = r^2 S / 4Tt.$

 $\beta = r\lambda/4$.

 \sim

and

$$\lambda = (K'S'_{s}/TS)^{\frac{1}{2}} + (K''S''_{s}/TS)^{\frac{1}{2}}$$

and in which $H(u, \beta)$ is a tabulated function, r is distance from the well, T and S are the trans-

missivity and storage coefficients of the aquifer, respectively, t is time since the production started, and K', S'_s and K'', S''_s are the hydraulic conductivity and specific storage of the upper and lower confining beds, respectively. The equation is valid for "relatively small times" of t less than both $(b')^2 S'_{s}/10K'$ and $(b'')^2 S''_{s}/10K''$. For the smallest shale-bed thickness used in this study this relatively small time covers a period up to about 100,000(!) years.

In the assumed recovery plans in which wells are placed on a square grid, each well can be assumed to be located at the center of a square reservoir having the dimensions of the well spacing. To apply the above equation, which is for an infinite aquifer, to a bounded square aquifer, the method of images was used. The formation drawdown at the well face was calculated for a unit flow rate and different well spacings, and the results were expressed in terms of the flow rate/drawdown ratio as shown in figure 16.

The volume of leakage—that is, the volume of water contributed from storage in the confining beds-which was used to obtain crude estimates of possible subsidence, as stated in the main text of this section, was calculated from the following equation (Hantush, 1960):

$$V_{L} = V \left\{ 1 - \frac{2}{\sqrt{\eta \pi t}} + \frac{1}{\eta t} [1 - e^{\eta t} erfc(\sqrt{\eta t})] \right\}$$

re
$$\eta = T \lambda^{2} / S,$$

where

V = Qt = volume of produced water,

and in which e^x is the exponential function and erfc (x), the complementary error function, which are both tabulated functions. Other symbols are as previously defined. Although Hantush (1960) presents this equation for aquifers of infinite extent, it can be shown that the equation is equally applicable to bounded aquifers without modification.

ILLUSTRATIVE EXAMPLES

The following three examples illustrate the use of figure 16 for evaluating development plans other than those considered in this report. It is assumed that all alternate plans will have a 20year production period. Well diameters are also assumed to be of 0.23-m diameter. However, the curves in figure 16 are very insensitive to well diameter, and as such they can be used for wells of different diameter. Pipe friction losses, on the other hand, would increase very rapidly with decreasing well diameter.

In the examples, the following symbols are used:

Q =	Flow rate of wells,
$S_T =$	Drawdown in wells,

 $r_w =$ Well radius,

 N_w = Number of wells,

 $D_w = \text{Depth of wells},$

 $T_s =$ Sand aquifer thickness,

 $T_{\rm shu} =$ Upper shale-bed thickness,

 $D_{\rm gp}$ = Depth to top of geopressure,

 h_L = Pipe friction losses,

 $S_f = 20$ -year formation drawdown,

l = Well spacing,

 A_w = Area of influence of wells,

 A_T = Areal extent of reservoirs,

- C_{20} = Average subsidence at the end of the 20year production period, and
- V_L = Volume of leakage from storage in the confining shale beds.

Example I

Given :	$Q = 0.20 \text{ m}^3/\text{s}$ and					
	$S_T = 2,000 \text{ m},$					
find :	N_w in reservoir AT_1 for the specified Q					
	and S_T .					
Solution :	$D_w = D_{gp} + T_s + T_{shu}$					
	From tables 21 and 22:					
	$D_w = 2.360 + 630 + 1.800 = 4.790$ m.					
	From pipe friction loss equation given in					
	this "Appendix":					
	$h_L = 300 \text{ m},$					
	$S_t = S_T - h_L$					
	=2,000-300=1,700 m, and					
	$Q/S_f = 1.18 \times 10^{-4} \text{ m}^2/\text{s}.$					
	From figure 16 :					
	<i>l</i> =5.3 km, and					
	$A_w = l^2 = 28.1 \text{ km}^2$.					
	From table 21 :					
	$A_{\rm T}$ =8,948 km ² , and					
	$N_w = A_T / A_w = 318.$					

Example II

Given :	$l=10$ km, and $S_T=2,000$ m,
find :	Q in reservoir AT ₁ for the specified l and S_{T} .
Solution :	From figure 16: $Q/S_T = 2.35 \times 10^{-4} \text{ m}^2/\text{s}$, and $S_T = Q/2.35 \times 10^{-4}$ = 4,250 Q. From the pipe friction loss equation with $f = 0.0118$, $D_w = 4,790$ m, and $r_w = 0.115$ m. $h_L = 7,260 \text{ Q}^2$ $S_T = S_T + h_L = 2,000$ m, or $7,260 \text{ Q}^2 + 4,250 \text{ Q} - 2,000 = 0$. Solving this quadratic equation and tak- ing the positive root : $Q = 0.31 \text{ m}^3/\text{s}$
Example III	
Given :	$Q = 0.20 \text{ m}^{3}/\text{s}$, and $\overline{C}_{29} = 1.5 \text{ m}$
find :	N_{w} , l , and S_{T} in reservoir AT_{1} for the specified Q and C_{20} .
Solution :	From leakage equation given in this "Appendix": $V_L = 5.52 \times 10^7$ m ³ , $A_w = V_L/\overline{C_{20}}$, = 36.8 km ² , $N_w = A_T/A_w$, = 243, and $l = \sqrt{A_w}$, = 6.06 km. From figure 16: $Q/S_t = 1.42 \times 10^{-4}$ m ³ /s/m, and $S_t = 0.20/1.42 \times 10^{-4}$ = 1.410 m From pipe friction equation given in this "Appendix": $h_L = 300$ m, and $S_T = S_t + h_L$, = 1.410 + 300, = 1.710 m.

Once the numbers of wells or the flow rate has been determined, the volume of water that can be produced from the reservoir, and hence the energy recoverable under the development plans of the above examples, can be calculated.

Assessment of Geothermal Resources of the United States-1975

Summary and Conclusions

By D. E. White and D. L. Williams

The appraisal of the geothermal resources of the United States presented here is as factual as we can provide from available data. Much effort has been made in each individual chapter to specify the uncertainties and assumptions involved in each estimate; we urge that these uncertainties be kept in mind. The estimates should be regarded as first attempts that will need to be updated as new information becomes available.

This assessment consists of two major parts: (1) estimates of total heat in the ground to a depth of 10 km and (2) estimates of the part of this total heat that is recoverable with present technology, regardless of price. No attempt has been made to consider most aspects of the legal, environmental, and institutional limitations in exploiting these resources.

DEFINITIONS

Resource-related terms used in this circular are defined as follows: Geothermal resource base includes all of the stored heat above 15°C to 10 km depth (under all 50 States). Geothermal resources are defined as the stored heat, both identified and undiscovered, that is recoverable using current or near-current technology, regardless of cost. Geothermal resources are further divided into three categories based on cost of recovery: (1) submarginal geothermal resources, recoverable only at a cost that is more than two times the current price of competitive energy systems; (2) paramarginal geothermal resources, recoverable at a cost between 1 and 2 times the current price of competitive energy; and (3) geothermal reserves are those identified resources recoverable

at a cost that is competitive now with other energy resources. The distinction between resource base and resources is technologic, in contrast to the distinctions between submarginal resources, paramarginal resources, and reserves, which are economic.

RESOURCE BASE

The three major categories of the resource base are shown in table 26.

The hydrothermal convection systems of category 1 (Renner and others, this circular) occur where circulating water and steam are transferring heat from depth to the near surface; they tend to occur in areas of unusually groat heat supply and favorable hydrology. These systems are relatively favorable for geothermal development because high temperatures occur near the ground surface and drilling costs are low. We have a sound basis for optimism that many concealed hydrothermal systems exist, and that they can be discovered (see Renner and others, this circular).

The hot, young igneous (volcanic) systems of category 2 (Smith and Shaw, this circular) occur in regions where molten magma has been generated deep in the Earth's crust or mantle and has intruded upward into the shallow crust. Silicic magma (equivalent to granite where crystallized) commonly comes to rest as large masses at depths of a few kilometres, thus conserving its heat; basaltic magma, beirg much more fluid, is commonly erupted at the surface, where its heat is rapidly dispersed. Many young igneous systems and a few older still-hot systems

		Ident	ified systems	Identified + estimate for undiscovered
	I	Number	Heat Content, 10 ¹⁸ call	Heat Content 10 ¹⁸ cal ^{1/}
1.	Hydrothermal convection systems (to 3 km depth, ~10,000 ft, near the maximum depth drilled in geo- thermal areas).	_		
	Vapor-dominated (steam) system	s 3	26	∿50
	High-temperature hot-water systems (over 150°C)	63	370	∿1,600
	Intermediate-temperature hot- water systems (90° to 150°C)	224	345	<u>∿1,400</u>
	Total	290	~741	<u>~.3,050</u>
2.	Hot igneous systems (0 to 10 km)			
	Molten parts of 48 best known, including Alaska and Hawaii		∿13,000	
	Crystallized parts and hot margins of same 48		∿12,000	
	Total		~25,000	<u>~100,000</u>
3.	Regional conductive environments (O to 10 km; all 50 states subdi into 19 heat-flow provinces of 3 basic types, Eastern, Basin-and- Range, and Sierra Nevada).	vided		
	Total, all states		∿8,000,000	<u>~8,000,000</u>
0ve rec unč	erall total (as reported, without pard to significant figures and certainties)		8,025,741	8,103,050

 Table 26.—Estimated heat content of geothermal resource base of the United States (heat in the ground, without regard to recoverability)

 $\frac{17}{10^{18}}$ calories equivalent to heat of combustion of ${\sim}690$ million barrels of petroleum or ${\sim}154$ million short tons of coal.

are identified but are not yet evaluated in detail. Estimates of the heat content of hot igneous systems, both evaluated and unevaluated, are included in table 26. All these are favorable target areas in exploring for concealed hydrothermal convection systems.

The stored heat of the conduction-dominated environments, category 3, is huge in quantity, even though temperatures are low, because so much area and volume are involved (Diment and others, this circular). Most of the heat is transferred from the deep, hot interior by thermal conduction through solid rocks, but some is generated by normal radioactivity of rocks, mainly in the upper crust. The entire United States is subdivided into 19 heat-flow provinces that, with present limited data, are classified into three basic types, each with characteristic trends in temperature with depth. The Basin and Range type has the highest temperature gradients; the eastern and Sierra Nevada types have much lower gradients except in special areas, such as the gulf coast, which constitutes a special part of the resource base. Three kinds of potential energy are available from the geopressured pore fluids, including geothermal energy, mechanical energy from the overpressured fluids, and methane dissolved in the pore waters. Heat flows of the gulf coast are presumed to be similar to the eastern type, but adequate data are lacking. Temperature gradients however, are higher than in most of the eastern region because the high-porosity sediments of the gulf coast have low thermal conductivities.

In general, the average heat content of rocks is considerably higher in the Western United States than in the East. This also helps to explain why the most favorable hydrothermal convection systems and the hot young igneous systems also occur in the West.

The anamolous heat of the hydrothermal convection and the hot igneous systems can be considered as "hotspots" superimposed on regional conduction-dominated environments. About 0.01 percent of the total heat stored beneath the United States to a depth of 10 km is in identified hydrothermal convection systems, and about 0.3 percent is in the best known of the hot igneous systems. If our estimates of the undiscovered and unevaluated "hotspots" are valid (table 26), the corresponding percentages are 0.04 and 1.2.

RECOVERABILITY

The useful heat recoverable from identified systems with present or near-current technology and prices (=reserves) and at as much as double present prices (=paramarginal resources)exists almost entirely in the hydrothermal corvection systems of the Western States (table 27) and the geopressured sedimentary environment of the gulf coast (table 28).

Resources of the most attractive identifed convection systems (excluding national parks) with predicted reservoir temperatures above 150°C $(\sim 300^{\circ} F)$ have an estimated electrical production potential of about 8,000 MW cent, cr about 26,000 MW for 30 years (Nathenson and Muffler, this circular)⁴ Assumptions in this conversion are: (1) one-half of the volume of the hert reservoirs is porous and permeable, (2) one-half of the heat of the porous, permeable parts is recoverable in fluids at the wellheads, and (3) the conversion efficiency of heat in wellhead fluids to electricity ranges from about 8 to 20 percent, depending on temperature and kind of fluid (hot water or steam). The estimated overall efficiency of conversion of heat in the ground to electrical energy generally ranges from less than 2 to 5 percent, depending on type of system and reservoir temperature.

In order to divide the resources of the hightemperature convection systems into reserves and paramarginal and submarginal resources, each system should have been analyzed individually for economic and physical recoverability. In general, the necessary physical data are nct available; few systems have been drilled or tested extensively, and the necessary economic data are not well known. No hot-water system in the United States has yet been produced extensively. Thus, in lieu of an objective analysis, subjective evaluations were made for the three resource categories. The most important single factor is temperature; reservoirs above 200°C are most likely to contain reserves. Other utilized data include indicated magnitude of the reservoir and indicated lack of severe problems, such as high salinity and inadequate fluid supply.

⁴A megawatt.century of electricity is a unit of energy equivalent to 1 MW (1,000 kW) of power being produced for 100 years (or 3.33 MW for 30 years). Approximately 1,000 MW (the capacity of many modern nuclear power plants) is required to satisfy the electrical needs of an average city of 1 million people.

Table 27.—Geothermal resources of hydrothermal convection systems assumed recoverable with present and near-current technology and without regard to cost (Nathenson and Muffler, this circular)

	Heat in ground 1018ca1 <u>1</u> /	Heat at well-head 1018ca1 <u>2</u> /	Conversion efficiency	Beneficial heat <u>3</u> / 10 ¹⁸ cal	Electrical energy MW·cent ⁴ /	MW for 30 years <u>5</u> /
High-temperature systems (>150 ⁰ C; for generation of electricity)						
Identified resources	257	64	0.08 to 0.2			
Reserves					3,500	11,700
Paramarginal resources					3,500	11,700
Submarginal resources					>1,000 <u>6</u> /	> 3,300 <u>6</u> /
Undiscovered resources	1,200	300	0.08 to 0.2		28,000 <u>7</u> /	126,7007/
Intermediate-temperature systems (90° to 150°C; mainly non-electrical uses)						
Identified resources	345	86	0.24	20.7		
Undiscovered resources	1,035	260	0.24	62.1		
TOTAL	2,837	710		82.8	46,000	153,400

 $1/10^{18}$ cal (a billion-billion calories) is equivalent to heat of combustion of 690 million barrels of oil or 154 million short tons of coal; these estimates exclude the national parks.

2/ Assumed recovery factor 0.25 for all convective resources.

- 3/ Thermal energy applied directly to its intended thermal (non-electrical) use; 10¹⁸cal of beneficial heat, if supplied by electrical energy, would require at least 1,330 MW-cent (or 4,400 MW for 30 years); however, a user of this geothermae energy must be located or must relocate close to the potential supply; insufficient data available to predict demand or to subdivide into reserves, paramarginal, and submarginal resources.
- 4/ Unit of electrical energy; 1 MW-cent is equivalent to 1000 KW produced continuously for 100 years.
- 5/ Assumes that each MW cent of electricity can be produced at rate of 3.33 MW for 30 years.
- 6/ Small because of exclusion of systems with temperatures below 150°C.
- 2/ Perhaps as much as 60 percent will be reserves and paramarginal resources; costs of discovery and development are more speculative than for identified resources.

	H eat in pore fluids, 10 ¹⁸ cal	Percent recovery (heat only)	Heat equiva- lent at well- head =- 10 ¹⁸ cal	Conversion efficiency	Electrical energy, MW-cent <u>3</u> /	MW for 30 years <u>4</u> /
Gulf Coast geopressured fluids in sediments of Tertiary age; assessed on-shore parts only, to depth ranging up to 7 km.	10,920					
Plan 1, maximizes total recovery over 20-year period; no pressure de- cline below 2,000 psi; 17,160 wells; subsidence estimated 5 to \sim 7 m.						
Thermal energy		0.021	229.4	0.08	24,380	81,260
Methane (thermal equivalent)			124.2		<u>5</u> /	<u>5</u> /
Mechanical energy (thermal equivalent)			9.4	0.80	9,970	33,230
TOTAL			363.0		34,350	114,490

Table 28.—Geothermal resources of geopressured sedimentary environments assumed recoverable with present and near-current technology and without regard to cost (Papadopulos and others, this circular)

Thermal energy only; 10^{18} cal is equivalent to heat of combustion of 690 million barrels of oil. 1/

All plans assume 0.15 m^3 /sec flow rate per well and saturation of water with methane, but reliable data lacking.

Unit of electrical energy; 1 MW cent is equivalent to 1000 kw produced continuously for 100 yrs.

 $\frac{\overline{2}}{\overline{3}}$ Estimates made for 20 yr. production period; converted to 30 yrs. to be consistent with other estimates of this circular.

5/ Methane assumed recovered but not used locally for electricity.

Perhaps in part reserves but mostly paramarginal, depending on environmental and other costs. <u>6/</u> 7/

Thermal equivalent of methane included in heat at well-head but excluded from electrical energy; recoverable part highly speculative because of unknown porosities and permeabilities, but probably largely submarginal; note that the recoverable fraction for these environments is assumed to be lower than that for the assessed resources.

No detailed assessment but considered likely to exist in California and other states. 8/

	Heat in pore fluids, 1018cal_	Percent recovery (heat only)	Heat equiva- lent at well- head ≟/ 10 ¹⁸ cal	Conversion efficiency	Electrical energy, MW-cent <u>3</u> /	MW for 30 years <u>4</u> /
Plan 2, assumes drawdown to land surface, unre- stricted subsidence, and mechanical energy not utilized; 25,850 wells; estimated average sub- sidence >7 m.						
Thermal energy		0.033	358.8	0.08	3 8,140	127,100
Methane (thermal equivalent)			193.6		<u>5</u> /	<u>5</u> /
Mechanical energy (thermal equivalent)						
TOTAL			552.4		38,140 ⁶ /	127,1006/
Plan 3, limits estimated average subsidence to ∿l m; 4,000 wells.				r		
Thermal energy		0.005	53.1	0.08	5,690	19,000
Methane (thermal equivalent)			28.8		<u>5</u> /	<u>5</u> /
Mechanical energy (thermal equivalent)			3.3	0.80	3,560	11,900
TOTAL			85.2		<u>9,250</u> ⁶ /	30,9006/
Other unassessed parts of Gulf Coast geopressured environment, on-shore and off-shore to 10 km.Z/	22,000		>500		>50,000	>166,700
Other geopressured environments to 10 km.7.8/	11,000		>250		>25,000	> 83,300

Table 28.—Geothermal resources of geopressured sedimentary environments assumed recoverable with present and near-current technology and without regard to cost (Papadopulos and others, this circular)—Continued

Nearly one-half of the production potential from the identified systems (3,500 MW cent or nearly 12,000 MW for 30 years) is considered to be reserves, recoverable with present prices and technology. Paramarginal resources recoverable at as much as twice present prices and with existting and near-current technology are also estimated to be 3,500 MW · cent or about 12,000 MW for 30 years. In addition, high-temperature resources in undiscovered convection systems, using the estimates of Renner, White, and Williams (this circular) and the conversion efficiencies expected of these systems (Nathenson and Muffler, this circular), are estimated to be 38,000 MW cent or about 5 times that of the identified hot-water systems, excluding the national parks. Of the undiscovered resources, a considerable fraction is likely to be recoverable at present prices and technology, but a larger part will probably be paramarginal.

All of the intermediate-temperature convective resources (90° to 150°C) are submarginal for the generation of electricity, but, under favorable conditions, some are utilizable now for space heating and industrial uses. The potential for nonelectrical uses may attract new industry in many places because the supply is relatively dependable and because the overall efficiency of the direct use of the geothermal energy for heating is greater than for generating electricity for the same purposes (Nathenson and Muffler, this circular). The beneficial heat that can be recovered in favorable circumstances, assuming that a need occurs near the same locality as the potential supply, totals 20.7×10^{18} cal in identified systems (table 27); this is equivalent to about 14.3 billion barrels of oil.

The heat content of pore fluids of the assessed onshore geopressured parts of the gulf coast to depths up to 7 km (Papadopulos and others, this circular) is shown in table 28. This heat component excludes all heat contained in rocks and minerals and also excludes the potential energy of dissolved methane and the mechanical energy from excess pressure. The recoverable part of the total fluid resource base depends critically on the specific plan (or plans) selected for reservoir development. Factors that can be emphasized include: (1) maximizing total recovery from the reservoirs, (2) maximizing production from in-

dividual wells, (3) establishing some minimum pressure decline that limits subsidence of the land surface resulting from production, and (4) varying the utilization of methane and machanical energy relative to thermal energy. A major uncertainty concerns the actual content of methane in geopressured fluids. Saturation of methane at reservoir temperatures, pressures, and salinities is assumed, but reliable data are not yet available. Three different production plans (of the many possible plans) are summarized in table 28.

Assuming that mechanical energy is convertible into electricity with 80 percent efficiency and thermal energy at reservoir temperatures is convertible into electricity with 8 percent efficiency (Papadopulos and others, this circular), Plan 1 can recover 34,400 MW cent of electricity; Plan 2, 38,100 MW · cent; and Plan 3, 9,250 MW · cent. Each projection is only for the assessed onshore part of the gulf coast. The energy available from methane, which is not limited to utilization at the wellhead and is best considered in this geothermal assessment as a valuable byproduct, is not included. The potential value of the methone, if present in the assumed contents, is somewhat greater than that of the geothermal and mechanical energies. For any one kind of energy alone, the geopressured fluids are probably paramarginal or submarginal resources; when all kinds of potential energy are recovered, a small but significant part of the total resource may be considered as reserves, with much of the remainder as paramarginal resources.

This assessment of recoverability of geopressured-geothermal resources of the gulf coast is necessarily focused on physical recoverability regardless of cost. Economic assessments are greatly complicated by the three kinds of potentially available energy, as well as by possible environmental problems of subsidence and wastewater disposal. Populated areas near the shoreline are relatively sensitive to subsidence, so their potential geothermal resources may not be utilized, at least not until the subsidence effects can be quantified in other less sensitive areas. Although three alternative development plans were used in evaluating all of the 21 subareas of Texas and Louisiana (Papadopulous and others, this circular), different production plans can be chosen

for each subarea, tailored to its tolerance of subsidence and other factors.

The very large heat contents of magma, hot dry rocks near volcanic centers, and most conduction-dominated parts of the resource base are not now geothermal resources because the necessary recovery technology has not yet been developed. Recovery technology for the hot dry rocks is now receiving much attention and may be developed in the future.

CONCLUSIONS

- 1. The geopressured fluids of the gulf coast have a huge geothermal potential. The energy deliverable at the wellhead in the assessed onshore part of the gulf coast varies according to production plan but is likely to range from 9,000 to 35,000 MW cent (31,000 to 115,000 MW for 30 years). This range excludes the energy equivalent of recoverable methane, which is probably at least equal in value, but reliable data are lacking. Other geopressured parts of the gulf coast and the United States probably have at least 3 times more potential energy in pore fluids than the evaluated part, but the recoverable fraction may be considerably less because of lower average porosity and permeability to be expected in older and more deeply buried sedimentary rocks. Cost analyses of these huge geopressured resources are not attempted here. Such analyses must consider alternate plans for reservoir development but require better data than are now available on reservoir permeabilities, the quantity and value of recoverable methane, the environmental costs related to compaction of reservoirs and disposal of effluent, the value of any incidental petroleum recovered from geothermal production, and possible utilization of wells already drilled for oil and gas. Much of this resource is probably paramarginal under present conditions, but some part is probably recoverable now from areas where the environmental impact is low.
- 2. The high-temperature convection systems (>150°C) of interest for the generation

of electricity are dominantly in the western conterminous United States, but some are in Alaska and Hawaii. The identified systems are estimated to have reserves of 3.500 MW · cent of electricity, producible at present prices and technology, and about equal potential in paramarginal resources. Undiscovered rescurces of hotwater systems are predicted to be about 5 times greater than identified resources (excluding Yellowstone Park), and undiscovered vapor-dominated systems may be as much as the identified resources. Sixty-three specific localities are identified that probably have reservoir temperatures above 150°C; these and other favorable volcanic areas are available for detailed exploration and assessment. The total energy recoverable with present technology from undiscovored resources is estimated to be about 38,000 MW cent, with perhaps 60 percent recoverable at prices as much as double present prices.

- 3. The intermediate-temperature convection systems (90° to 150°C) have much potential for supplying thermal energy for home and industrial heating, thereby releasing oil and gas for more critical uses. If 25 percent of the stored energy is recoverable at the surface and the efficiency of utilization of wellhead energy is 0.24 (20°C temperature drop at 100°C, and 32°C at 150°C), the overall recovery factor is 0.06, and the potential bereficial heat is 20.7×10^{18} cal (table 27). If this heat were to be supplied by electrical energy, the equivalent of 27,500 MW cent would be required (efficiency of electrical to thermal assumed 100 percent). This resource clearly has significant potential wherever the demand for thermal energy can be located or relocated close to the potential supply. Two hundred and twenty-four identified systems are tentatively included in this category, but most of the predicted resources are in only a few large systems.
- 4. The hot igneous magma systems and some areas of high regional temperature gradients provide relatively favorable areas for utilizing the heat of hot dry rock, provided that satisfactory methods

of recovery can be developed. The potential resources are huge; temperatures near or above 315°C at 10 km and 200°C at 6 km are likely to characterize parts of the favorable conduction-dominated environments such as much of the Basin and Range province; most of the hot igneous systems are likely to have even higher temperatures.

5. Disregarding cost, the total magnitude of geothermal resources that can be recovered by present and near-current technology is very large. The identified high-temperature convection systems and the evaluated onshore parts of the gulf coast geopressured system are estimated to have a production potential of about 42,000 MW·cent (using Plan 1; 140,000 MW for 30 years) of recoverable electricity, equivalent to 140 Hoover Dams or 140 aver-

age modern nuclear power plants. The undiscovered convection systems and the unassessed geopressured parts of the gulf coast and other sedimentary basins have a production potential that is not yet known but may be at least 100,000 MW \cdot cent (or 330,000 MW for 30 years). Perhaps half of this total can be recovered with existing technology at prices that range up to double present costs.

6. These assessments represent our best estimates of the Nation's geothermal resources as of June 1975. More precise estimates will require detailed investigations of the areas tabulated in this report as well as other areas that will be discovered. These investigations must include extensive drilling, reservoir evaluations, and research to attain a better understanding of the characteristics of these systems.