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Abstract

Reservoir chloride concentration and injection rate data are used to examine injector-producer

connectivity in two reservoirs, Dixie Valley, Nevada and Palinpinon-I, Philippines. General
trends of chloride and injection rate with time are isolated from their respective short-term var-
iations using the wavelet transformation approach. Multiple regression techniques are then used

to correlate the isolated short-term variations in chloride with corresponding short-term fluctua-
tions in injection rates and subsequently to quantify the degree of connectivity between injectors
and producers. Communication between specific injector-producer pairs, as implied by analysis

of data from Palinpinon-I, was also verified by comparison with tracer test data and qualitative
field observations. Results of analysis of data from Dixie Valley demonstrate that multilinear
modeling is not suitable for analyzing data sets that lack sufficient time variability. In contrast,
adequate time variability is observed in data from Palinpinon-I, and qualitative field observa-

tions and tracer test data agreed best with the results of regression on changes in chloride con-
centration over four-month periods (wavelet detail level 3). Improvements in the analysis could
result from increased data collection frequency of both chloride and injection rate as well as

accounting for the nonlinearity of chloride with injection rate. # 2001 CNR. Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Traditionally, tracer tests are used to establish the degree of connectivity between
wells. However, for wells that are only weakly connected these tests may need to be
conducted over long periods of time using huge amounts of tracer of sufficient stability
to obtain meaningful data. In such cases tracer tests can be too costly and impractical.
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On the other hand, there are substances occurring naturally in the reservoir that can
behave as tracers. One such substance is chloride. In the Palinpinon-I geothermal field
in the Philippines, some injectors and producers are strongly connected so that changes
in injection rates result in corresponding increase or decrease in chloride concentrations
measured in production wells. Data from one such injector-producer pair in Palin-
pinon-I are shown in Fig. 1. The magnitude of the changes in chloride concentration
thus reflects the degree of communication between wells. Moreover, chloride is stable,
reasonably conservative and it is free. We may therefore be able to extract the same, if
not more, information from chloride data as we could from traditional tracer tests
and at lower cost.

The following sections summarize how the method of wavelets and multiple
regression techniques were used to analyze chloride and injection data and, conse-
quently, identify injection return flow paths. The permeability of these paths was then
ranked by quantifying the degree of connectivity between injectors and producers.

2. Preliminary linear models

As part of an optimization problem, an earlier work by Macario (1991) proposed
several correlations for modeling the reservoir chloride and applied these models to
data from Palinpinon-I. Of the models tested by Macario (1991), the linear combi-
nation model came closest to reproducing field observations. In the first phase of
this project, therefore, we chose to expand on that model and test it further.

Nomenclature

a0 a constant associated with local initial chloride concentration
an linear coefficient of well In

b linear time term coefficient
t time elapsed since first recorded chloride concentration data
ClIn chloride concentration in injector well, In
ClP chloride concentration or chloride concentration detail in production

well, P
m number of predictors
N number of data points
QIn mass flow rate or mass flow rate detail to injection well, In
r simple regression coefficient
R2 multiple regression coefficient
S standard deviation
SSreg sum of squared deviations of predicted Y from the mean
SSY sum of squared deviations of Y from the mean
Y dependent variable being modeled
Y0 predicted values of Y
Y average value of Y
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The following is the original linear combination model proposed by Macario
(1991):

Clp ¼ a0 þ a1QI1 þ a2QI2 þ a3QI3 þ ::: . . .þ anQIn ð1Þ

Based on this model, the strength of the connection between the modeled produ-
cer P and an injector Ii is assessed by the magnitude of the coefficient, ai, of that
injector in the model; high values of a correspond to strong connections.

Aside from the extent of reinjection fluid returns, other factors could also affect
the chloride level in the reservoir. Extensive boiling and steam separation within the
reservoir and natural recharge of higher mineralized fluid are processes that could
increase chloride concentrations (Harper and Jordan, 1985). The first process, boiling
and steam separation, is a natural reservoir response to exploitation. The chloride con-
centration may, therefore, be expected to increase with time as the reservoir is produced.
To model this variation with time, a linear time term was added to model (1), thus:

Clp ¼ a0 þ a1QI1 þ a2QI2 þ a3QI3 þ ::: . . .þ anQIn þ bt ð2Þ

More than anything, it was simplicity that guided our choice of the form (linear)
of the time term. As the reservoir pressure drops with production, more steam is
produced and the chloride salts that are left in the brine get more concentrated.
Solution saturation limits could then be expected to put a cap on the maximum
chloride concentration and cause it to level off late in the life of the reservoir. For
practical purposes, however, we assumed that the chloride concentrations being
modeled were far from the maximum limit and increased linearly with time. The

Fig. 1. Example of chloride and injection data from Palinpinon-I.
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question of how chloride concentration in the reservoir actually varies with respect
to time will be addressed in more detail in a later section.

We also hypothesized that the effect of the reinjection return on reservoir chloride is
governed not just by the rates of injection but also by the chloride concentration of
the reinjected fluid. Hence, we have proposed the following modification to model (2):

Clp ¼ a0 þ a1QI1ClI1 þ a2QI2ClI2 þ a3QI3ClI3 þ ::: . . .þ anQInClIn þ bt ð3Þ

The additional parameter ClIn refers to the chloride concentration of the fluid
being injected to injector In.

2.1. Results and discussion

The original and extended models were applied to analysis of both the data set
from Palinpinon-I previously used by Macario (1991) and another data set from the
Dixie Valley field in Nevada. Qualities of the fit to the data were assessed by inspect-
ing both the calculated values of the multiple regression coefficient, R2, and plots of
model-predicted chloride against actual data. The multiple regression coefficient, R2,
represents the proportion of variation in the modeled variable (in this case, chloride
concentration) that is predictable from the model. It is, therefore, desirable to have
high values of R2. Only the model that best fits the data or, equivalently, had the
highest value of R2 was subjected to further tests.

For any model to be considered relevant it was deemed necessary that that model
be able to account for variations in chloride at any time interval in the data set
regardless of which portion of the data set was used to calculate the linear coeffi-
cients. Thus, we assessed model relevance by examining how well the model predicts
later chloride measurements using coefficients that were calculated from earlier
portions of the data set.

The following section discusses the results of application of models (1), (2), and (3)
to the Dixie Valley and Palinpinon-I data sets. Model (3) was not used to analyze
the Palinpinon-I data set due to the lack of injectate chloride data from that field.

2.1.1. Dixie Valley case
At Dixie Valley, injection rates were recorded daily while chloride concentrations

were measured much less frequently. Only simultaneously measured chloride con-
centrations and injection rates were used for regression.

Table 1 lists R2 values for models (1), (2), and (3) obtained for each production
well. Except for wells 27-33 and 28-33, model (2) gave the highest value of R2 for all
production wells. Addition of the time term to model (1) resulted in a 2–35% increase
in R2 while inclusion of injectate chloride concentration in model (3) did not result in
any significant change in R2 values. The small effect of the injectate chloride term is
due to its nearly constant value (the injectate chloride concentration is strongly a
function of the separator pressure, which is controlled so as to remain more or less
constant). Fig. 2 shows the effect of a 35% difference in R2 on the quality of data fit
for well 84-7. It also illustrates the very minor effect that the injectate chloride term
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had on the quality of the match. Based on these results we chose to subject model (2)
to further testing.

Subsequently, the last six data points were excluded from the regression. Model (2)
was then used to predict these values using the coefficients calculated on the basis of
the truncated data set. Fig. 3 plots the results of the truncated series analysis for well
27-33, which had a 9% maximum deviation of predicted chloride from actual data—
the highest deviation observed among all the production wells. Other wells had as
little as 1% deviation (Fig. 4).

Inspection of the calculated coefficients revealed one possible reason for the relatively
good predictive capacity displayed by model (2) (see Table 2). For this data set, the time
term dominates the correlation. In fact, the coefficient of the time term is several orders
of magnitude (3 to 5, even 8 orders!) greater than the injection rate coefficients. This
discrepancy was enough to render the injection rate terms trivial and excluding an
injection rate term from model (2) resulted in only tiny changes in the quality of the
data fit. Fig. 5 shows the chloride match for well 74-7 when the chloride is predicted
using model (2) but with the injection rate term corresponding to injector INJ5218
excluded. That the injection rate terms are inconsequential to chloride prediction
was also evident from inspection of the chloride data. For the most part, the chlo-
ride increased linearly with time and response to changes in injection rates was not
readily evident. Hence, once the variation of chloride with time was captured in the
analysis of the early portion of the data set there was little deviation observed in the
succeeding predictions. It was noted however, that although the deviations were
small some of them showed a tendency to increase (Fig. 3). This was true for wells
whose chloride ceased at some point to vary linearly with time.

At this point, it is worthwhile to recall that the goal of this project was not prediction
but, rather, correlation. Although for this specific data set model (2) matched and pre-
dicted chloride data relatively well, the dominance of the time term rendered the injec-
tion rate coefficients meaningless and ultimately made this model unsuitable for
comparing the effects of injection wells on production wells at Dixie Valley.

The preceding results lead us to conclude that for the purpose we have set for this
project, multiple regression is not a suitable analysis tool for chloride data sets that
lack temporal variability.

Table 1

R2 values for Dixie Valley wells

Well name R2, Model (1) R2, Model (2) R2, Model (3)

27-33 0.917 0.963 0.965

28-33 0.852 0.936 0.940

45-33 0.935 0.970 0.966

63-7 0.826 0.828 0.815

73-7 0.774 0.952 0.952

74-7 0.755 0.968 0.967

76–7 0.930 0.947 0.943

82-7 0.764 0.969 0.967

84-7 0.716 0.978 0.978
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2.1.2. Palinpinon-I case
In this case, injection rate data were available as monthly average values; thus,

chloride data were converted to monthly average values prior to analysis. As with

Fig. 2. Predicted vs. measured chloride concentration for well 84-7, Dixie Valley, using models (1), (2),

and (3).
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the Dixie Valley data set, the amount of chloride data set the limit on the number of
data points used for regression. Only the portion of the data set from 1983 to 1989
was initially available for use in the preliminary inspection of the linear models. Thus,
the following results pertain to the analysis of that early portion of the data set.

The effect on R2 of adding the time term to model (1) was even more drastic for
the Palinpinon-I data set: a maximum increase of 80% in R2 was observed (Table 3).

Fig. 3. Predicted vs. measured chloride concentration for well 27-33, Dixie Valley. Model (2) coefficients

were calculated with the last six data points excluded.

Fig. 4. Predicted vs. measured chloride concentration for well 74-7, Dixie Valley. Model (2) coefficients

were calculated with the last six data points excluded.
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Table 2

Model (2) coefficients for Dixie Valley production wells

Production wells

Model parameter 27-33 28-33 45-33 63-7 73-7 74-7 76-7 82-7 84-7

a0 314.58 354.39 271.46 283.77 272.43 318.32 384.12 254.39 271.60

Injection wells

INJ255 -6.61E-05 �4.84E-04 5.06E-04 1.80E-03 2.94E-04 1.51E-05 3.60E-04 �3.05E-06 3.99E-04

INJ455 -2.20E-04 �5.56E-04 3.33E-04 1.33E-03 2.70E-04 �1.62E-04 �1.37E-04 7.57E-05 3.89E-05

INJ3218 -1.21E-03 �4.30E-04 �1.54E-03 2.69E-03 2.12E-04 �5.89E-04 �3.59E-04 6.67E-04 �1.24E-03

INJ4118 4.58E-04 6.02E-04 3.54E-04 �4.40E-04 4.35E-05 7.31E-05 2.87E-04 �2.31E-04 9.76E-07

INJ5218 -1.20E-03 �7.39E-04 �1.18E-03 �2.95E-04 4.37E-04 �2.50E-04 �5.42E-04 7.43E-04 �1.42E-04

INJ6518 3.56E-03 3.40E-03 2.65E-03 �2.77E-03 �6.31E-04 9.02E-04 �5.63E-04 �3.33E-04 2.07E-03

INJSWL1 -3.99E-03 �3.74E-03 �3.33E-03 8.45E-04 5.39E-04 1.68E-04 4.18E-04 6.27E-04 �7.24E-04

INJSWL3 1.49E-03 9.69E-04 1.33E-03 �4.17E-03 �1.35E-03 �2.18E-04 �3.49E-05 �1.43E-03 �3.27E-04

b 8.48 10.37 7.61 2.30 17.44 12.95 4.82 26.25 19.04
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The effect of a 60% increase in R2 on the quality of the match for well PN-16D is
shown in Fig. 6.

As was done previously in the analysis of the Dixie Valley data set, the last six
points in the chloride series were not considered in the calculation of the linear
coefficients in the subsequent regression using model (2). The excluded chloride
values were then predicted using the coefficients calculated based on the truncated

Fig. 5. Predicted vs. measured chloride concentration for well 74-7, Dixie Valley. Predicted values were

calculated using model (2) with one injection rate term excluded.

Table 3

R2 values for Palinpinon-I wells

Well name R2, Model (1) R2, Model (2)

OK-7D 0.783 0.956

OK-9D 0.717 0.902

OK-10D 0.490 0.535

PN-15D 0.824 0.993

PN-16D 0.606 0.964

PN-17D 0.519 0.939

PN-18D 0.718 0.930

PN-19D 0.559 0.903

PN-23D 0.736 0.958

PN-24D 0.706 0.895

PN-26D 0.728 0.922

PN-27D 0.696 0.944

PN-28D 0.643 0.895

PN-29D 0.817 0.948

PN-30D 0.710 0.832

PN-31D 0.625 0.946
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data set. Deviations of predicted chloride values from actual data for the Palinpi-
non-I data set were relatively high (with a maximum of about 20%) compared to
those of Dixie Valley. Model (2) overpredicted the chloride for well OK-9D (Fig. 7)
and underpredicted it for well PN-19D (Fig. 8).

As with the Dixie Valley data set, the increasing deviations may be explained by the
fact that the linear form of the time term does not account properly for the general
trend in chloride with time. Moreover, the relatively high values of the deviations
suggest that the injection rate terms contribute significantly to the model but that
their contribution has not been assessed adequately.

Table 4 shows that the time term coefficients for this data set are only one to two
orders of magnitude higher than the injection rate coefficients, as compared to five
to eight orders of magnitude in the Dixie Valley data set. This is due to the more
textured nature of the Palinpinon-I data, which are characterized by marked dips

Fig. 6. Predicted vs. measured chloride concentration for well PN-16D, Palinpinon-I, using models (1)

and (2).
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and bumps that are superimposed on the general increasing trend in chloride. Since
the dips and bumps that are accounted for by the injection rate terms are of sub-
stantial magnitude, the injection rate coefficients had high absolute values compared
to those calculated for the relatively untextured Dixie Valley data set.

It is also important to note that, contrary to expectation, some of the injection rate
coefficients had negative values. This implies that the operation of injection wells cor-
responding to those negative coefficients would actually lessen the percentage of injec-
tate being produced. One explanation is that the injectors with negative coefficients

Fig. 7. Predicted vs. measured chloride concentration for well OK-9D, Palinpinon-I. Model (2) coeffi-

cients were calculated with the last six data points excluded.

Fig. 8. Predicted vs. measured chloride concentration for well PN-19D, Palinpinon-I. Model (2) coeffi-

cients were calculated with the last six data points excluded.
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Table 4

Model (2) coefficients for Palinpinon-I production wells

Production wells

Model parameter OK-7D OK-9D OK-10D PN-15D PN-16D PN-17D PN-18D PN-19D

a0 5292.15 4290.85 3875.44 4761.51 3824.35 4917.71 4758.59 5043.93

Injection wells

PN-1RD 4.49E+00 1.15E+00 3.31E+00 2.56E+00 1.09E+00 1.04E+01 1.81E+00 �8.37E-01

PN-2RD �2.49E+01 �7.06E+00 �2.27E+00 �7.73E+00 �5.82E-01 �1.13E+01 �2.27E+01 1.01E+00

PN-3RD 1.37E+00 5.97E+00 �2.64E+00 1.88E+00 �3.81E+00 �3.48E+01 �1.40E+00 �9.77E+00

PN-4RD �1.75E+00 6.28E+00 9.97E-01 �1.63E+01 �5.25E-01 1.04E+00 �6.84E+00 �3.38E+00

PN-5RD 1.38E+01 �1.46E+01 �3.48E+00 1.01E+01 �4.68E-01 2.47E+01 7.15E+00 7.57E+00

PN-6RD �4.51E+00 8.91E-01 3.62E+00 1.97E+00 �4.20E-01 2.72E+00 �1.75E+00 �4.68E+00

PN-7RD 5.69E+00 �5.69E+00 1.15E+01 1.67E+01 7.65E+00 9.72E+00 �4.55E+00 4.97E-01

PN-8RD 2.56E+00 �1.64E-01 6.77E-01 9.05E-01 2.36E+00 �1.49E+01 4.69E+00 4.92E+00

PN-9RD 1.07E+01 5.81E+00 �1.99E+00 �9.65E+00 9.92E-01 �1.04E+01 2.15E+00 �1.61E+00

b 683.31 322.12 123.82 707.56 590.02 881.05 670.13 621.24

Model parameter PN-23D PN-24D PN-26D PN-27D PN-28D PN-29D PN-30D PN-31D

a0 4434.14 3770.09 5552.84 3949.51 5843.37 5233.71 4360.31 4365.67

Injection wells

PN-1RD 9.54E-02 �2.48E-01 7.56E+00 9.03E-01 6.16E+00 2.01E+00 �4.14E-01 1.33E+00

PN-2RD �6.39E+00 �4.68E+00 �1.22E+01 �6.89E+00 �1.90E+01 �1.99E+01 �2.95E+00 2.01E-01

PN-3RD 4.71E+00 �5.60E+00 1.04E+00 1.54E+00 �1.06E+00 3.81E+00 3.96E+00 �2.84E+00

PN-4RD 3.02E+00 �7.31E+00 �1.15E+00 1.06E+01 �2.98E+00 �1.92E+00 8.92E-01 �5.57E+00

PN-5RD �1.46E+00 2.85E+00 1.36E+01 �1.42E+01 5.99E+00 3.28E+00 3.24E+00 5.36E+00

PN-6RD �1.92E+00 4.09E+00 4.53E-01 8.73E-01 �4.56E+00 �4.24E+00 �2.65E-01 �1.63E+00

PN-7RD �3.10E+00 2.32E+01 6.82E+00 �5.24E+00 6.31E+00 �3.36E+00 �3.00E+00 �2.40E+00

PN-8RD �1.86E+00 7.24E+00 3.87E+00 �6.15E-01 2.28E+00 1.31E+00 �3.07E+00 4.79E+00

PN-9RD 1.71E+00 9.74E+00 3.93E+00 1.11E+01 6.52E-01 9.01E+00 �1.15E-01 6.85E+00

b 475.82 661.45 685.95 569.91 708.20 836.91 189.52 677.22
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could be diverting the flow from the other injectors away from the production well.
It is also possible that increased injection to the well with negative coefficient pre-
vents inflow of natural recharge fluids with higher chloride concentration.

2.2. Improvements

The linear form of the time term in model (2) was a very convenient assumption
we made despite the nonlinear trend in chloride that was readily apparent from the
data. Use of the linear time term in the previous section gave an indication of how
much the time variable accounted for variations in chloride. For both Dixie Valley
and Palinpinon-I, the high values of time term coefficients showed that the time term
contributed very significantly to the chloride model. These observations provided
the motivation to identify the correct form of the time term or, equivalently, the
general trend in chloride with time. Wavelet analysis was chosen for this task.

Based on the results of the analysis of the Dixie Valley data set, it was concluded that
the effects of individual injection rate terms on chloride were trivial because their cor-
responding coefficients were very small compared to the coefficient of the time term.
But is the significance of a variable’s contribution to the regression solution really
reflected by the magnitude of its coefficient in the regression equation? Would the
comparison of those small coefficients from Dixie Valley result in as meaningful and
valid conclusions as those derived from comparison of the bigger coefficients in
Palinpinon-I?

Regression using model (2) gave us R2 values that are very close to unity, signifying
that the variation in chloride is almost entirely predictable from the model. Ironically,
model (2) yielded regression coefficients that could not be generalized from the early
to the later portion of the data set; that is, the model had poor predictive capability.
Possible reasons for these discrepancies are discussed in the following section.

3. Multiple regression

The high values of R2 coupled with the poor predictive capacity of model (2) sug-
gested that this was due to having a sample size that is too small relative to the number
of variables in the linear model (e.g. overfitting, Tabachnick and Fidell, 1996). To
illustrate the point, consider the case of bivariate regression where a straight line
(y ¼ mxþ b) is fitted through the data points. When calculating the parameters m and
b, the square of the prediction error (graphically, the deviation of the data points from
the ‘best fit’ line) is minimized. In the extreme case where only two data points are
available, the minimization problem reduces to a deterministic problem; m and b are
calculated exactly, based on the two data points, and the solution becomes perfect (and
meaningless). Tabachnick and Fidell (1996) suggest the following generalizations:

N550 þ 8m for testing R2

N5104 þm for testing individual coefficients
ð4Þ
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Tables 5 and 6 show that for both Dixie Valley and Palinpinon-I, too few data
points were used in the regression analysis. This means that the R2 values and coef-
ficients calculated previously were only artifacts of the data analyzed and do not
generalize to extensions of the chloride series. The restriction on the amount of data
required prevented analysis of the Dixie Valley data set. Fortunately, a larger data
set from Palinpinon-I was made available by PNOC-EDC. In instances where even

Table 5

Number of data points in Dixie Valley data set

m=9, model (2)a

Well name Actual Na (50+8 m) (104+m)

27-33 32 122 113

28-33 31 122 113

45-33 36 122 113

63-7 44 122 113

73-7 39 122 113

74-7 31 122 113

76-7 56 122 113

82-7 42 122 113

84-7 28 122 113

a m is the number of IVs and N is the number of data points included in the analysis.

Table 6

Number of data points in Palinpinon-I data seta

m=10, model (2)a

Well name Actual Na (50+8 m) (104+m)

OK-7D 53 130 114

OK-9D 44 130 114

OK-10D 55 130 114

PN-15D 25 130 114

PN-16D 47 130 114

PN-17D 24 130 114

PN-18D 46 130 114

PN-19D 52 130 114

PN-23D 54 130 114

PN-24D 30 130 114

PN-26D 37 130 114

PN-27D 37 130 114

PN-28D 36 130 114

PN-29D 54 130 114

PN-30D 52 130 114

PN-31D 50 130 114

a m is the number of IVs and N is the number of data points included in the analysis.
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the extended data set was short of the required amount of data, the only possible
solution was to reduce the number of terms in the model to include only those which
contribute significantly to the regression solution. The procedure for choosing the
important terms is discussed later in this section.

It is worth noting here that the addition of the time term to model (1) pushed the
regression problem towards the deterministic region as it lowered the data-to-
parameter ratio. This accounts for the observed increase in R2 values described
above.

A second issue was the suitability of inferring the contribution of injection rate
terms to the regression solution from the sizes of the coefficients alone. According to
Tabachnick and Fidell (1996), interpretation of the multivariate solution based on
the sizes of the coefficients alone is strictly possible only in the case where all the
independent variables (IVs; injection rates and time in the case of model 2) are
independent of each other. Disregarding the issue of interdependence between IVs,
there are statistical tests that allow us to tell whether the unique contribution of
an IV as represented by its coefficient is significantly different from zero or not; that
is, it tells one whether to accept or reject the hypothesis that the coefficient of an IV
is zero. One such test is the probability or P-test. According to this test, there is a
(100 � x)% probability that an IV is important to the regression solution or,
equivalently, its coefficient is not equal to zero if its P-value is less than or equal to
x%. It is common practice to set x to 5%; hence, there is a 95% certainty that
the coefficient of an IV is not equal to zero if its P-value is less than or equal to
0.05. Calculation of P-values is discussed by Bowerman and O’Connell (1990) and
is done automatically by the Microsoft Excel regression macro that we used.
Note again that the P-test does not take into account the interdependence between
IVs.

Considering the need to eliminate unimportant terms in the linear model to meet
the data requirement as discussed previously and taking care not to exclude IVs
whose importance is masked by their interdependence with other IVs, we have pro-
posed the following procedure for subsequent applications of multiple regression
analysis:

1. To economize on IVs, temporarily set aside variables with P-values higher than
0.05;

2. Also, eliminate IVs with P-values lower than 0.05 and low values of simple
correlation, r;

3. Inspect IVs that were eliminated in step 1 and put those with high r back to the
model;

4. Perform another regression using the reduced model and interpret the results
of this regression.

There are several possible variations to the preceding procedure and the one out-
lined above may not be the best but the important point to consider is the need to be
aware of the possible complications that prevent straightforward interpretation of
regression results based on the magnitude of coefficients alone.
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4. Wavelet analysis

An alternative approach is to use wavelet analysis, which has recently been applied
to the analysis of production data from oil fields (Jansen and Kelkar, 1997). Wavelet
analysis allows examination of the features of a signal of any size by decomposing the
signal to different detail levels and a coarse approximation. The approximation retains
the general trend with time while the details bear information on the signal’s fluctua-
tions at different time scales. Fig. 9 illustrates the concept using the chloride con-
centration signal from well OK-7D from Palinpinon-I. It is worth emphasizing that
the approximation to OK-7D chloride shown in Fig. 9 demonstrates that the general
trend in chloride is nonlinear, contrary to the assumption in model (2).

Since the effect of changing injection rates is expected to manifest itself as short-
term variations in reservoir chloride concentrations, analysis of the detail functions
instead of the approximation functions is more appropriate. Also, because the
approximation functions isolate and retain the general trend in chloride with time,
multiple regression of the details does not require a time term in the linear model.
Thus, we used the following model:

Clp ¼ a1QI1 þ a2QI2 þ a3QI3 þ ::: . . .þ anQIn ð5Þ

Fig. 9. Wavelet decomposition: breaking a function down into a very coarse approximation, with an

ordered sequence of detail functions making up the difference. Here, the chloride concentration of well

OK-7D is decomposed into an approximation and four detail functions.
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where Clp=chloride concentration detail in production well, P,
QIn=injection rate detail in injection well In,
an=linear coefficient of well In

Comparison of coefficients obtained by using model (5) allows us to differentiate the
degree of connectivity of different injectors to a given producer. Since details are devia-
tions from local averages, multiple regression using details ignores the differences in base
chloride levels between producers. Regression results for different producers may there-
fore be intercorrelated; more specifically, the coefficients obtained may be used to com-
pare the contributions of an injector to different production wells and, consequently, to
verify any conclusions drawn from the analysis against tracer test results.

The choice of modeling details over approximations was an obvious and straight-
forward decision. The appropriate detail level to model was less obvious, however. It
seemed reasonable at first to assume that the best choice is the one that will give the
highest R2 value. Investigation of the R2 values obtained from modeling the chloride
details of OK-7D invalidated that assumption. Table 7 shows that at level 4, the
regression coefficient becomes unity, signifying a perfect correlation, and correlation
at succeeding levels remains perfect. As the decomposition level goes up, the detail
will have longer time intervals with constant values. This effectively reduces the
amount of data to be modeled and results to a perfect, meaningless correlation. The
choice is thus narrowed down to levels 1, 2, and 3.

Visual inspection of injection and chloride details showed that the correspondence
between changes in chloride concentration and changes in injection rate is more readily
visible at level 3. In Fig. 10 the level 3 details of injection wells PN-6RD and PN-9RD
closely follow the detail of OK-7D chloride during intervals when injection to these wells
is high. Some degree of correspondence at levels 1 and 2 is also apparent from Fig. 11
though not quite as obviously as in level 3. Thus, all three levels of detail were analyzed.

As was done in previous analyses, the chloride data that were recorded at irregular
time intervals were converted to monthly average values to put them in the same time
basis as the injection rates. Since wavelet analysis requires that data be available in the
entire time interval being analyzed, missing chloride data were linearly interpolated.
Interpolation was done over maximum intervals of six months and only when no
drastic fluctuations were apparent within six months of the interval where inter-
polation was to be done. Where interpolation was not possible, only the longest
continuous portion of the data series was analyzed.

Table 7

R2 values for multiple regression of OK-7D chloride detail

Detail level R2

1 0.202

2 0.530

3 0.853

4 1.000

5 1.000
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Fig. 10. (a) Level 3 detail of OK-7D chloride—thin line; level 3 detail of PN-6RD injection rate—thick line. (b) Level 3 detail of OK-7D chloride—thin line;

level 3 detail of PN-9RD injection rate—thick line. (c) PN-6RD injection rate. (d) PN-9RD injection rate. Level 3 details of wells PN-6RD and PN-9RD

closely follow the detail of OK-7D chloride during intervals when injection to these wells is high.
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Fig. 11. (a) Level 1 detail of OK-7D chloride—solid line; level 1 detail of PN-6RD injection rate—dashed line. (b) Level 1 detail of OK-7D chloride—solid

line; level 1 detail of PN-9RD injection rate- dashed line. (c) Level 2 detail of OK-7D chloride—solid line; level 2 detail of PN-6RD injection rate-dashed line.

(d) Level 2 detail of OK-7D chloride—solid line; level 2 detail of PN-9RD injection rate—dashed line.
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When taking wavelet transforms of discrete data, the algorithms used require that
the data set size be a power of two. A common way to precondition the data when
this is not true is to ‘‘pad with zeroes,’’ that is, to increase the size of the data set to
the next larger power of two. Although this is a reasonable approach, it is proble-
matic in that it ‘‘dilutes’’ the signal near the end of the original data set since wavelet
coefficients will have zeroes averaged into their computation (Ogden, 1997). Matlab,
the program used to take the wavelet transform of our data, apparently utilizes this
data preprocessing procedure, as evidenced by the inaccurate reconstruction near
the end of the data series. It was therefore necessary to truncate the detail compo-
nent functions used in regression analysis to eliminate the end effects of padding
with zeroes. Plots of wavelet component functions retain the end effects but in the
analysis three to six data points were eliminated from the details series.

In about 1990, the bulk of the injection in Palinpinon-I was moved farther away
from the production sector, resulting in some injection wells being shut off and new
ones being operated. Thus, based on operating time, injection wells in Palinpinon-I
can be grouped into those that operated between 1983 and 1990, those that started
to inject in 1990 and are still injecting, and those that have been injecting since 1983
and are still injecting. It is logical to assume that regression analysis will be best able
to assess the degree of contribution of injection wells if all the wells are operating
during the time interval over which the regression is done. So, where possible, the
chloride series was divided into two time intervals, 1983 to 1990 and 1990 to present.
The regression analysis included only wells that were operating during those periods.

Regression was done for levels 1, 2, and 3 of the detail functions, using the pro-
cedure outlined earlier. In some cases, that procedure had to be applied repeatedly
until the number of terms left in the linear model is such that the data size require-
ment is met (or almost met). When eliminating injection well terms that had small r
values, care was taken not to remove wells that operated only for very short periods
of time (the small r values in these cases are unnatural effects of the scarcity of cor-
relatable data).

4.1. Checking results against tracer test data

Two sets of radioactive tracer test results were available for comparison with the
results of this analysis. One test was conducted on well PN-9RD and one on OK-
12RD. Both sets were reported by Macario (1991) and are reproduced in Table 8.
Macario (1991) defined mean transit time as the time it takes for half of the tracer
return to reach the production well. Assuming that the mean transit time measures
the degree of connectivity between the injector tested and a producer (lower transit
times corresponding to stronger connections), Table 8 lists the production wells in
order of decreasing connectivity with the injector. Correspondingly, Tables 9 and 10
list the wells affected by OK-12RD and PN-9RD, respectively, in the order of
decreasing coefficients based on regression on all three wavelet detail levels.

Table 10 shows, with the exception of one well, that all wells affected by PN-9RD
had positive coefficients. Comparison of Table 10 with Table 8 shows that tracer
return was indeed monitored in all wells shown by regression analysis to be affected
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by well PN-9RD, including PN-29D, which had a negative coefficient. More
importantly it shows that the order of the strength of connection between PN-9RD
and the wells monitored in the tracer test was most closely mimicked by the results
of regression on detail level 3 with OK-7D showing the strongest connection to PN-
9RD and PN-29D, PN-16D and PN-23D displaying connections of about the same
strength.

On the other hand, comparison of Table 9 with Table 8 shows that tracer return
was observed in two of the seven wells shown by regression analysis to be affected by

Table 8

Radioactive tracer test results for PN-9RD and OK-12RD

Monitored wella Mean transit time, days

PN-9RD tracer test

OK-7D 5.4

PN-26D 13

PN-28D 14

PN-29D 15.4

PN-30D 15.7

PN-23D 15.8

PN-16D 16

PN-19D 16

PN-31D 16

PN-18D 17.2

OK-9D Monitored, no return

OK-12RD tracer test

PN-15D 7.3

OK-10D 13.8

OK-7D 14.6

PN-29D Monitored, no return

a Only wells which have chloride data are reported here.

Table 9

Regression results for OK-12RD

Affected well Coefficient

Detail level 1

OK-10D 12.38

Detail level 2

PN-23D 2.46

PN-29D �4.05

PN-31D �10.82

Detail level 3

PN-15D 125.27

PN-16D �7.40

PN-29D �3.34

PN-30D 6.15
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well OK-12RD. Four of the seven wells were not monitored during the tracer test.
The well which is most connected to PN-9RD based on the tracer test had the
highest coefficient at level 3 regression; the same is true for OK-12RD.

Based on these observations we have concluded that regression analysis of details
at level 3 best assesses the degree of connectivity between wells: high positive coeffi-
cients correspond to strong connections, and negative and low positive coefficients
correspond to weak connections.

Harper and Jordan (1985) reported the following observation: from May 1984 to
October 1984 a large increase in reservoir chloride occurred in production wells PN-
19D, 23D, 29D, 31D, OK-7D and OK-9D when reinjection was shifted to the wells
PN-7RD and PN-8RD. This observation matches the results of level 3 detail analysis
for well PN-8RD as outlined in Table 11: OK-7D, PN-19D, and PN-31D were all
found to be strongly connected with PN-8RD. PN-23D,-29D, and OK-9D may have
been receiving reinjection returns from OK-7D but no injection rate data from OK-
7D were available to allow verification with regression results.

On the other hand, Amistoso and Orizonte (1997) reported that OK-10D and PN-
20D experienced enhanced steam flows, which they attributed to reinjection fluids
intruding into the production sector at deeper levels. They considered wells TC-2RD,
TC-4RD, PN-3RD and PN-5RD to be wells that are providing pressure support to the
reservoir due to deep injection but attributed the enhanced steam flow in OK-10D
and PN-20D to TC-2RD and TC-4RD, specifically. Regression analysis results for
these wells (Tables 12–14), however, show that OK-10D was not affected by TC-2RD.
Rather, it was affected by PN-1RD, PN-2RD, and PN-3RD between 1986 and 1990,
and by PN-3RD, TC-3R, N3 and OK-3R between 1990 and 1996. It is worth noting
that the effect of PN-3RD on OK-10D was found to be consistent between the
intervals 1986–1990 and 1990–1996, as reflected by close r values for the two periods

Table 10

Regression results for PN-9RD

Affected well Coefficient

Detail level 1

PN-30D 5.74

PN-29D 3.99

PN-16D 1.47

Detail level 2

PN-19D 4.87

PN-18D 4.06

OK-7D 2.96

PN-16D 2.02

PN-29D �11.65

Detail level 3

OK-7D 9.4

PN-29D 1.83

PN-16D 0.92

PN-23D 0.43
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(�0.79 and �0.77). The large positive coefficient of well N3 is suspect as it conflicts
with its negative r value. PN-20D was also determined to be affected by PN-3RD.
The effect of TC-2RD and TC-4RD on PN-20D could not be ascertained from
regression analysis due to insufficient chloride data from PN-20D after 1990.

Table 11

Level 3 regression results for PN-8RD

Affected well Coefficient

OK-7D 3.14

PN-16D 0.64

PN-18D 2.76

PN-19D 4.93

PN-30D �1.36

PN-31D 10.49

Table 12

Level 3 regression statistics for OK-10D (1986–1990)

Regression statistics

Multiple R 0.839369312

R2 0.704540842

Standard error 79.20406691

Observations 48

Coefficients r (simple) Standard error P-valuea

PN-1RD 1.0860989 0.742898166 0.432894148 0.015779816

PN-2RD �3.710875222 �0.725961532 1.775342121 0.042277591

PN-3RD �4.411471297 �0.789481133 1.783793986 0.017237615

a P-value is the probability that an independent variable is not important to the regression solution.

Table 13

Level 3 regression statistics for OK-10D (1990–1996)

Regression statistics

Multiple R 0.835160095

R2 0.697492385

Standard error 150.1670809

Observations 80

Coefficients r (simple) Standard error P-valuea

PN-3RD �11.49790761 �0.771033019 1.485833395 3.48317E-11

TC-3R 1.704839524 0.522611064 0.404330736 6.77595E-05

N3 30.87773863 �0.653934071 6.498963063 9.35588E-06

OK-3R �7.361847973 �0.360888493 2.134566707 0.00092135

a P-value is the probability that an independent variable is not important to the regression solution.
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Pamatian (1997) reported that reinjection fluid from TC-2RD neutralized the fluid
acidity in wells OK-10D and PN-13D. Again, the effect of TC-2RD on OK-10D was
not substantiated by regression results but its effect on PN-13D was (Table 15).
Terms with conflicting r and coefficient signs still posed interpretation problems.

5. Conclusions and recommendations

Based on the results of regression analysis of chloride and injection rate data from
Dixie Valley, we have concluded that multilinear modeling is not suitable for ana-
lyzing data sets that lack sufficient time variability.

Table 14

Level 3 regression statistics for PN-20D (1983–1989)

Regression statistics

Multiple R 0.635764265

R2 0.404196201

Standard error 495.2038572

Observations 80

Coefficients r (simple) Standard error P-valuea

PN-1RD 10.21445053 0.346132276 1.741845857 1.0654E-07

PN-3RD 12.28448348 0.357197703 2.153358367 2.06197E-07

PN-6RD 4.493768629 0.105136293 1.637086662 0.007527849

a P-value is the probability that an independent variable is not important to the regression solution.

Table 15

Level 3 regression statistics for PN-13D (1990–1996)

Regression statistics

Multiple R 0.962568329

R2 0.926537788

Standard error 74.57273176

Observations 70

Coefficients r (simple) Standard error P-valuea

TC-2RD 4.826890146 0.403207897 0.459363951 1.44516E-15

TC-3R 1.989170863 0.37912479 0.16882133 1.11144E-17

TC-4R 52.80156771 �0.473050095 4.657792303 5.98442E-17

ML-1RD �191.3866835 �0.731292263 16.95558741 7.1995E-17

N3 11.67741779 �0.769449454 1.849731659 2.93281E-08

OK-3R 27.49754181 �0.472419422 2.227450499 1.38165E-18

a P-value is the probability that an independent variable is not important to the regression solution.
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A closer look at multiple regression techniques showed that what seemed to be
highly encouraging results (high R2 values) from prior multilinear modeling were
effects of the scarcity of data used in the correlation. Hence, no meaningful physical
interpretation may be drawn from them. Moreover, it showed that care should be
taken not to base the interpretation of multiple regression results on straight-for-
ward comparison of coefficients alone.

Wavelet analysis provided more useful results. Qualitative field observations and
tracer test data agreed best with the results of regression on level 3 detail of chloride
concentration and injection rates in Palinpinon-I. Wells identified by tracer tests to
be strongly connected had high positive coefficients whereas weak connections were
indicated by negative and low positive coefficients at level 3 regression. This suggests
that producer-injector interactions are best detected by correlating changes in chloride
concentration over periods of four months (corresponding to level 3 resolution) with
corresponding four-month fluctuations in injection rates. While the good correlation at
such a relatively low level of time resolution may be explained as the result of the natural
dispersion of chloride and injection rate signals as they propagate through the reservoir,
it is also possible that this is due to the loss of information brought about by the use of
monthly averaged data values in the analysis. It is, therefore, recommended that both
chloride and injection rate data be recorded more frequently and the analysis be done on
this larger data set. It is also possible that the Haar wavelet that was used in signal
decomposition was too coarse in that it contributed to the loss of detail in the data.

Emphasis is also placed on the need for continuous data measurements when
doing wavelet analysis. Highly intermittent measurements result in data loss.
Because it is considered safe to interpolate only over short periods of time, the lack
of data over long time intervals forces one to disregard the data collected prior to
such periods when doing the analysis.

Another possible improvement to consider in future regression analyses is to take
into account possible nonlinearity in the variation of chloride with injection rates.
While nonlinearity does not invalidate the analysis, it certainly weakens it as the
relationship between chloride concentration and injection rates is not completely
captured by the coefficients of the linear model. Although regression analysis uses a
linear model, effects of nonlinearity in the variation of chloride with injection rates
may be incorporated into the model by using nonlinear terms: the model is kept
linear even though the individual terms are not. Results of this modified analysis will
be more difficult to interpret, however, because the strength of interaction between
producers and injectors will be measured not only by the magnitude of the coefficients
but also by the exponent of each term.
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