STATE OF NEVADA DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES Carson City

View of an irrigated field in lower Meadow Valley.

GROUND-WATER RESOURCES - RECONNAISSANCE SERIES

REPORT 27

GROUND-WATER APPRAISAL OF THE MEADOW VALLEY AREA, LINCOLN AND CLARK COUNTIES, NEVADA

> By F. EUGENE RUSH Geologist

Prepared cooperatively by the Geological Survey, U.S. Department of the Interior

JULY 1964

View of southern part of Spring Valley showing the flow of water from springs about two miles north. The water rises from the alluvium of the valley and supports the meadows and pasture in Spring Valley. The flow that leaves the valley is used in Eagle and Rose Valleys to irrigate crops.

COVER PHOTOGRAPH

View of a field in lower Meadow Valley, about two miles south of Caliente, that is used for hay and pasture. The fields of the area are irrigated by diverting the flow in the wash (beyond railroad tracks) and by pumping irrigation wells. The main line of the Union Pacific Railroad passes through lower Meadow Valley.

GROUND-WATER RESOURCES---RECONNAISSANCE SERIES

Report 27

....

GROUND-WATER APPRAISAL OF THE MEADOW VALLEY AREA,

LINCOLN AND CLARK COUNTIES, NEVADA

by

F. Eugene Rush

Geologist

Prepared cooperatively by the

Geological Survey, U.S. Department of Interior

May 1964

FOREWORD

This report, the 27th in the series of reconnaissance ground-water studies which were initiated following authorization by the 1960 Legislature, gives the results of a study of the Meadow Valley area. This area includes eight valleys in southeastern Nevada -- Patterson, Spring, Eagle, Dry, Rose, Panaca, Clover, and Lower Meadow Valley -- all part of the Colorado River drainage system.

This study was made and report prepared by F. Eugene Rush, Geologist for the U. S. Geological Survey.

These reconnaissance ground-water resources surveys make available pertinent information of great and immediate value to many State and Federal agencies. As development takes place in any area, demands for more detailed information will arise and studies to supply such information will be undertaken. In the meantime, these reconnaissance type studies are timely and adequately meet the immediate needs for information on the ground-water resources of the areas covered by the reports.

Hugh A. Shamberger, Director Department of Conservation and Natural Resources

CONTENTS

- -

-

_ ~

ية • • •

-

Summary	1
Introduction	2
Purpose and scope of the study	2
Location and general features	3
Physiography and drainage	3
Climate	4
Previous work.	9
	,
General geology and hydrology	9
Geomorphic features	9
Lithologic and hydrologic features of the rocks	11
Surface-water features	12
Ground-water appraisal	18
Occurrence and movement of ground water	18
Estimated average annual recharge	20
Estimated average annual discharge	20
Natural discharge by evapotranspiration	20
Discharge of wells and springs	21
	23
	23 24
Total annual ground-water discharge • • • • • • • • • • • • • • • • • • •	24 24
Perennial yield	25
Chemical quality	26
Development	29
Present development · · · · · · · · · · · · · · · · · · ·	29
Surface water.	29
Ground water	30
Potential development	31
Surface water.	31
Ground water	31
Ground water	3.
Proposals for additional studies	34
Designation of wells	34
References cited	40
List of previously published reports in this series	42

Page

ILLUSTRATIONS

L - *

به - ت

....

Page

Plate 1,	Generalized hydrogeologic map of the Meadow Valley area, Lincoln and Clark Counties, Nevada • • •	following p. 4
Figure l.	Map of Nevada showing areas described in previous reports of the Ground-water Reconnaissance Series and the area described in this report •••	following p. 2
2.	Sketch map of part of the Meadow Valley Area showing the flood plain and the area of ancient Lake beds in each valley, and the principal drainage	following p. 3
3.	Graph showing the relation of station altitude to the measured amount of average annual precipitation in the Meadow Valley area	following p. 4
4.	Sketch map of the Meadow Valley area showing the locations of weather stations • • • • • • • • •	following p. 4
5.	Diagram showing the slow decline of water levels in several wells of Panaca Valley • • • • • •	following p. 24
6.	Diagram showing the fluctuation of water levels in several wells of lower Meadow Valley • • • •	following p. 24
7.	Graph showing the relation of temperature to specific conductance of ground water in Panaca Valley • • • • • • • • • • • • • • • • • • •	following p. 28
Photographs		
1.	View of an irrigated field in lower Meadow Valley	Cover

1.	view of an irrigated field in lower Meadow valley	Cover
2.	View of surface-water flow from springs in Spring Valley	Inside cover
3-4.	Views of the limestone walls on Condor Canyon showing solution openings	following p. 19

TABLES

~ ---

• <u>-</u> · -_ -

Page

	Table	1.	Precipitation data at five storage-gage stations in the Meadow Valley area
		2.	Average monthly and annual precipitation at various stations in the Meadow Valley area 6
		3.	Number of days between the last spring minimum and the first fall minimum for Caliente, Overton, and Pioche
		4.	Range of typical annual maximum and minimum tepera- tures recorded at Caliente, Overton, and Pioche 9
		5.	Total monthly and annual discharge, in acre-feet, of Meadow Valley Wash, 4 1/2 miles southwest of Caliente
		6.	Annual discharge of Meadow Valley Wash at the south end of Dry Valley
~		7.	Annual discharge, in acre-feet, of the Muddy River and Meadow Valley Wash
-		8.	Daily discharge, in cubic feet per second, of the Muddy River and Meadow Valley Wash, for the dates given
		9.	Miscellaneous streamflow measurements in the Meadow following Valley area - October, 1963 · · · · · · · · · · · p, 19
		10.	Estimated average annual precipitation and ground-water following recharge in the Meadow Valley area ••••••• p. 20
		11.	Estimated natural evapotranspiration of ground water by phreatophytes in the Meadow Valley area - 1963 • • • 22
		12.	Inventory of pumpage from large-diameter wells in the Meadow Valley area - 1963 · · · · · · · · · · · · 23
-		13.	Chemical analyses, in parts per million, of water from following the Meadow Valley area
-		14.	Estimates of present and future agricultural land use and irrigation-water needs in the Meadow Valley area 33
		15.	Records of selected wells in the Meadow Valley area \cdot following p. 34
		16.	Selected drillers' logs of wells in the Meadow Valley area • • • • • • • • • • • • • • • • • • •

GROUND-WATER APPRAISAL OF THE MEADOW VALLEY AREA,

LINCOLN AND CLARK COUNTIES, NEVADA

by F. Eugene Rush

SUMMARY

The Meadow Valley area includes eight valleys in southeastern Nevada: Patterson, Spring, Eagle, Dry, Rose, Panaca, Clover, and Lower Meadow Valleys. The area is a hydrologic unit forming part of the Colorado River drainage system.

Precipitation within the drainage area and underflow from Lake Valley are the source of virtually all the ground water. Most of the ground water is stored in and transmitted through the Tertiary and Quaternary alluvial valley fill. The Paleozoic carbonate rocks apparently transmit a large amount of ground water from Patterson Valley to Panaca Valley where much of it is discharged as warm water by Panaca Spring. Surface flow is perennial in some reaches of Meadow Valley wash. Storm and snowmelt runoff cause flow to the mouth of the wash during the winter and spring of some years.

The estimated average annual recharge to the area is 24,000 acre-feet from precipitation and 3,000 acre-feet by underflow from Lake Valley, for a total of 27,000 acre-feet. About two-thirds of the recharge occurs in Patterson and Spring Valleys where the bordering mountains are high.

The estimated discharge of water by phreatophytes, principally greasewood, rabbitbrush, and saltbush was 3,600 acre-feet in 1963. It is estimated that wells discharged about 19,000 acre-feet in 1963; the net draft on the ground-water reservoir was about 12,000 acre-feet. Panaca Spring has an estimated flow of 8,000 acre-feet a year, having a net draft of about 4,000 acre-feet. The discharge of ground water due to subsurface outflow from the Meadow Valley area to the lower Moapa Valley was not determined. The ground water in storage in the uppermost 100 feet of saturated alluvium in the area is estimated to be at least 8 million acre-feet.

The preliminary estimate of perennial yield of the area is 25,000 acrefeet. This value cannot be refined until data are available to determine the subsurface outflow from the area. Local overdraft may be occurring in Panaca Valley where net draft now exceeds the local recharge to the valley.

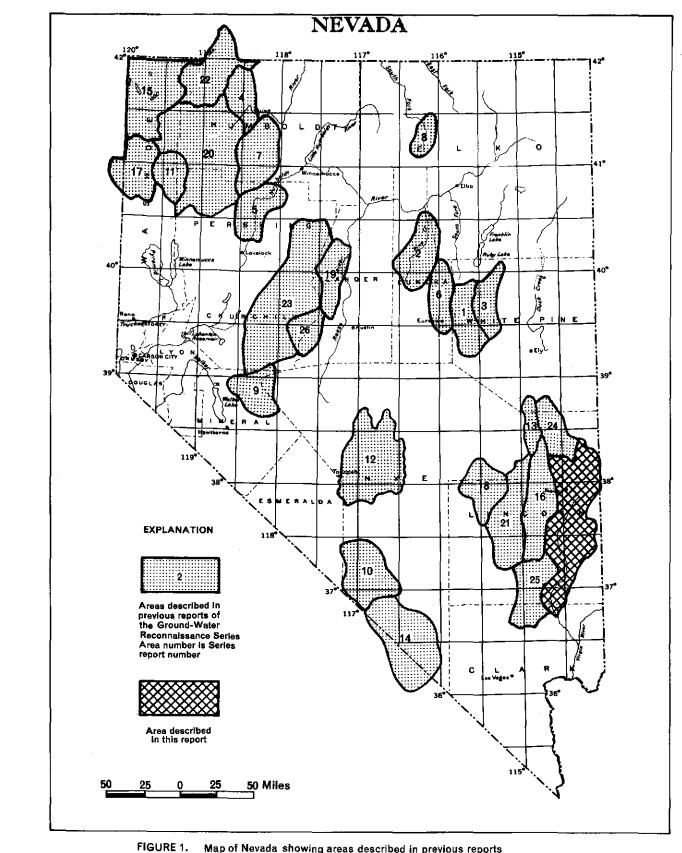
The chemical quality of the ground water is best near the sources of recharge and generally increases in dissolved-mineral content southward

toward Glendale. The salinity hazard of most of the water sampled was medium to high. Near Glendale, the ground-water quality seems to be deteriorating with time.

Part of the ground water now wasted by phreatophytes and lost for development due to underflow from the Meadow Valley area may be salvaged for use by lowering the water table below the phreatophyte root-system and by reducing the ground-water gradient toward the Muddy River area near Glendale. Flash runoff and unused spring discharge might be salvaged by inducing greater infiltration to the alluvium and consequent recharge to the ground-water reservoir.

The total amount of water available rather than the amount of available land suitable for irrigation, probably will be the limiting factor in agricultural development.

INTRODUCTION


Purpose and Scope of the Study:

One of the greatest deficiencies in water knowledge in Nevada is the lack of hydrologic data in about half of the valleys in the State. In an effort to overcome this deficiency, legislation was enacted in 1960 to provide for reconnaissance studies of ground-water basins in Nevada under the cooperative program with the U.S. Geological Survey. The purpose of these studies is to provide ground-water resources information to the public and to assist the State Engineer in the administration of the ground-water law by making preliminary estimates of the average annual recharge to, the discharge from, and the perennial yield of valleys and basins. The scope of the reports includes appraisals and information on (1) climate, (2) geologic environment, (3) extent of the hydrologic systems, (4) ground water in storage, (5) water quality, (6) areas of potential development, (7) existing and potential problems, and (8) needs for additional study.

This report is number 27 in the series of reconnaissance studies (fig. 1). The field work was a 3-week study of the hydrologic conditions and the geologic environment of the area. The field work was done in October and December 1963.

The author takes this opportunity to thank his colleagues, D. O. Moore and L. K. Nalder, who provided considerable assistance by making many of the surface-water flow and spring-discharge measurements.

Special acknowledgement is due Lester Mathews, Amy Mathews, and Ronald Mathews in helping the author locate many of the wells and in furnishing power-consumption data for these wells. In addition, help was received from Darrell Free, well driller, and many well owners.

1. Map of Nevada showing areas described in previous reports of the Ground-Water Reconnaissance Series and the area described in this report

Location and General Features:

The Meadow Valley area is in the southeastern part of Nevada and is enclosed by longitude 114° 00' W. and 115° 00' W., and latitude 36° 30' N. and 38° 30' N. (fig. 1). The area is mostly in Lincoln County; however, the southern part of the area is in northeastern Clark County. The north end of the area is about 80 miles south of Ely, Nevada; the south end about 50 miles northeast of Las Vegas. The principal communities of the area are Pioche, Panaca, and Caliente.

The Meadow Valley area, as defined for this study, is a long, narrow series of valleys, having its maximum dimension, 110 miles, in a north-south direction. Its maximum width between topographic divides, measured near Caliente, is about 35 miles. It has an area of about 2,500 square miles.

The area is made up of many small valleys that locally have names. All the principal named valleys, except Clover Valley and the southern part of lower Meadow Valley, are shown in figure 2. These include Patterson, Spring, Eagle, Rose, Dry, Panaca, and lower Meadow Valleys.

Principal access to the area is by U.S. Highway 93 which extends northward through the northern half of the area; Nevada State Highway 25 and Utah Highway 56 which jointly extend eastward from Panaca to Cedar City, Utah; and U.S. Highway 91 which traverses the southern tip of the area at Glendale and connects Las Vegas with Salt Lake City. Paved roads extend from Pioche to Ursine and Caselton. Improved roads extend southeastward from State Highway 25 through Crestline; eastward from Caliente to Beaver Dam State Park, which is just east of the report area; and southward from Caliente through the small communities of Elgin and Carp to Glendale. Numerous roads and trails cross the area and connect the small valleys.

The main line of the Union Pacific railroad passes through the area from Glendale along Meadow Valley Wash to Caliente and then eastward through Clover Valley to Salt Lake City. A spur line extends from Caliente through Panaca Valley to the mining area west of Pioche.

The exact population of the area is not known; however, the Nevada Department of Economic Development estimates that in 1963 between 1,600 and 1,800 people lived in the area. The largest community is Caliente, having a population of about 800. Pioche is nearly as large with a population of about 600.

Physiography and Drainage:

The Meadow Valley area is a part of the Colorado River drainage and is in the eastern part of the Great Basin section of the Basin and Range physiographic province. This north-trending area is tributary to the Muddy River drainage near Glendale and, together with the Virgin River, these comprise the

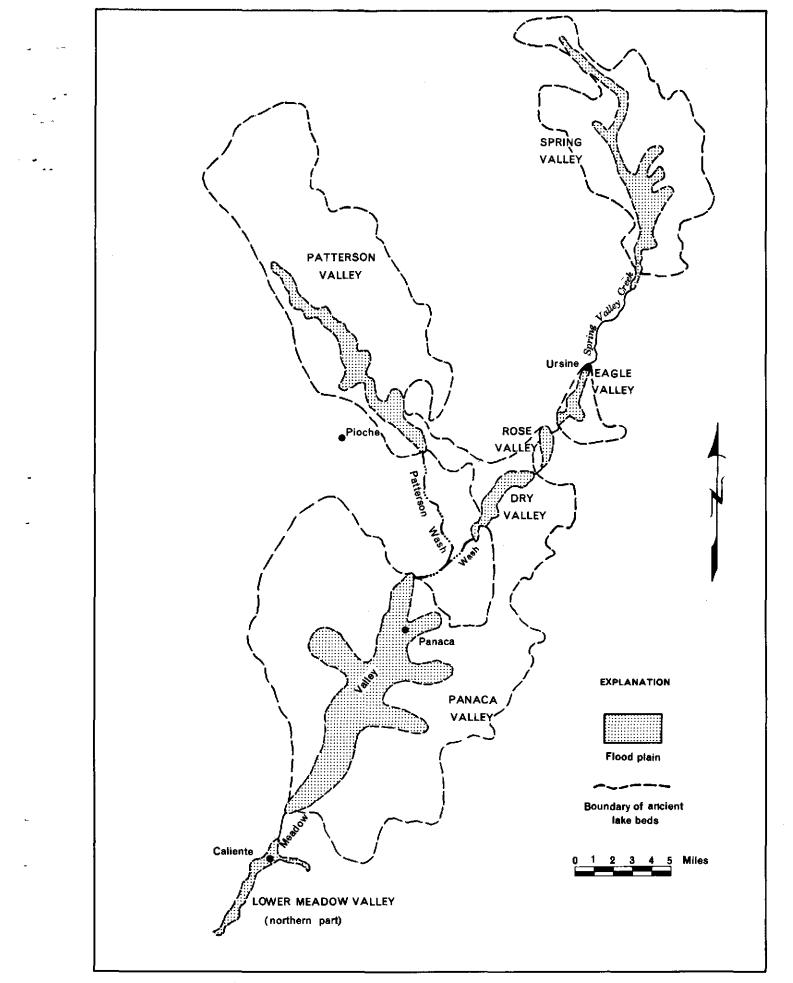
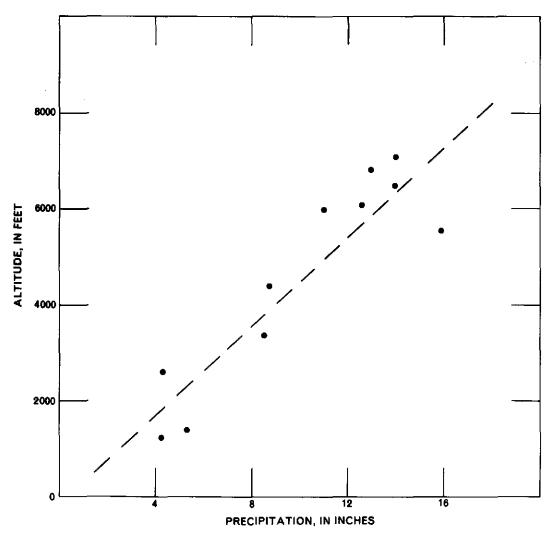
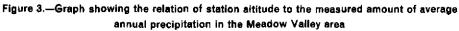


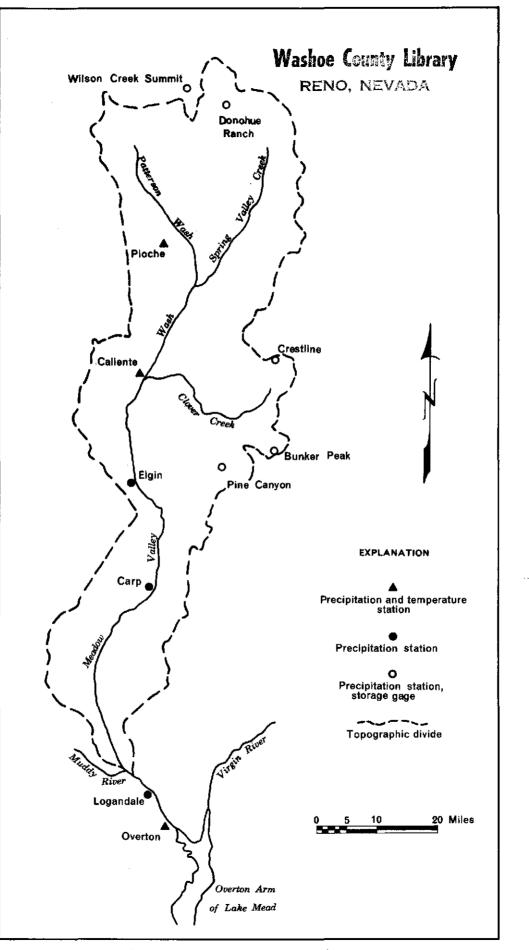
Figure 2.—Sketch map of part of the Meadow Valley area showing the flood plain and the area of ancient lake beds in each valley and the principal drainage

areas tributary to the Overton arm of Lake Mead. The north end of the area is separated from Lake Valley; in part by a low alluvial divide, and in part by the Wilson Creek Range. The report area is bounded on the east by the White Rock, Needle, and Mormon Mountains; and on the west by the Ely, Bristol, and Highland Ranges, and the Meadow Valley Mountains.

The highest peaks are along the boundaries of the northern part of the report area. The highest, Highland Peak a few miles west of Pioche, has an altitude of 9, 500 feet. Two others, Mount Wilson (9, 296 feet) and White Rock Peak (9, 196 feet), are along the north boundary of the area. Parsnip Peak (8, 942 feet) is in the Wilson Creek Range on the divide between Patterson Valley and Spring Valley. Another notable peak, Mormon Peak (7, 411 feet), is 10 miles south of Carp along the east boundary of lower Meadow Valley. The lowest point in the report area is at Glendale where Meadow Valley Wash joins the Muddy River. The altitude here is about 1, 500 feet. North of Caliente the valley floor is above an altitude of 4,400 feet and reaches an altitude of about 6,000 feet in Spring Valley. The mountains generally rise 2,000 to 3,000 feet above the adjacent valley floors; however, in some areas the highest peaks extend 5,000 feet above the valleys.


The many small valleys that comprise the Meadow Valley area are interconnected by a common drainage system. The main drainage way, Meadow Valley Wash, is formed by the junction of Patterson Wash and Spring Valley Creek at Condor Canyon (pl. 1).


Climate:


The air masses that move across the Meadow Valley area are characteristically deficient in moisture. The valley floors are semiarid to arid, whereas the higher mountain areas are semihumid. The precipitation pattern is related to the topography; the stations at the high altitudes generally receive a greater amount than those at the low altitudes. This relationship is shown by the graph in figure 3. Thunderstorms occur principally in the summer, and commonly result in flash floods.

Precipitation data have been recorded at nine stations in the report area and at Logandale and Overton, a few miles south of the area. These stations are shown in figure 4. For the period 1952-61 the maximum average annual precipitation, 15.92 inches, occurred at the Bunker Peak station. A great variation in the annual precipitation has occurred there during this period, ranging from about 24 inches to less than 7 inches per year. At the five other high altitude stations, all at altitudes of about 6,000 feet or more, the average precipitation equaled or exceeded 11 inches per year (tables 1 and 2). For the period 1940-62 the smallest average annual precipitation, 4.22 inches, occurred at Overton. As shown in table 2, the Carp and Logandale stations have recorded similar amounts. At the intermediate altitudes, the Caliente and Elgin stations have recorded an average of about 9 inches annually.

4,

Table 1, -- Precipitation data at five storage-gage stations in the Meadow Valley area

Station	Location	Altitude	Period of record	Annual precipitation (inches)			
		(feet)		Average	Maximum	Minimum	
Bunker Peak	Sec. 12, T. 6 S., R. 70 E.	5, 575	1952 to 1961	15.92	24.46	6.57	
Crestline	Sec. 26, T. 3 S., R. 70 E.	5,982	8-27-57 to 9-13-63	11			
Donohue Ranch	Sec. 29, T. 5 N., R. 69 E.	6, 825	6-20-59 to 10-04-62	13			
Pine Canyon	Sec. 28, T. 6 S., R. 69 E.	6,500	1952 to 1961	13.01	17.93	5.96	
Wilson Creek Summit	Sec. 17, T. 5 N., R. 68 E.	7,100	1955 to 1962	14.03	19.29	5.73	

(from published records of the U.S. Weather Bureau)

2. A

un i

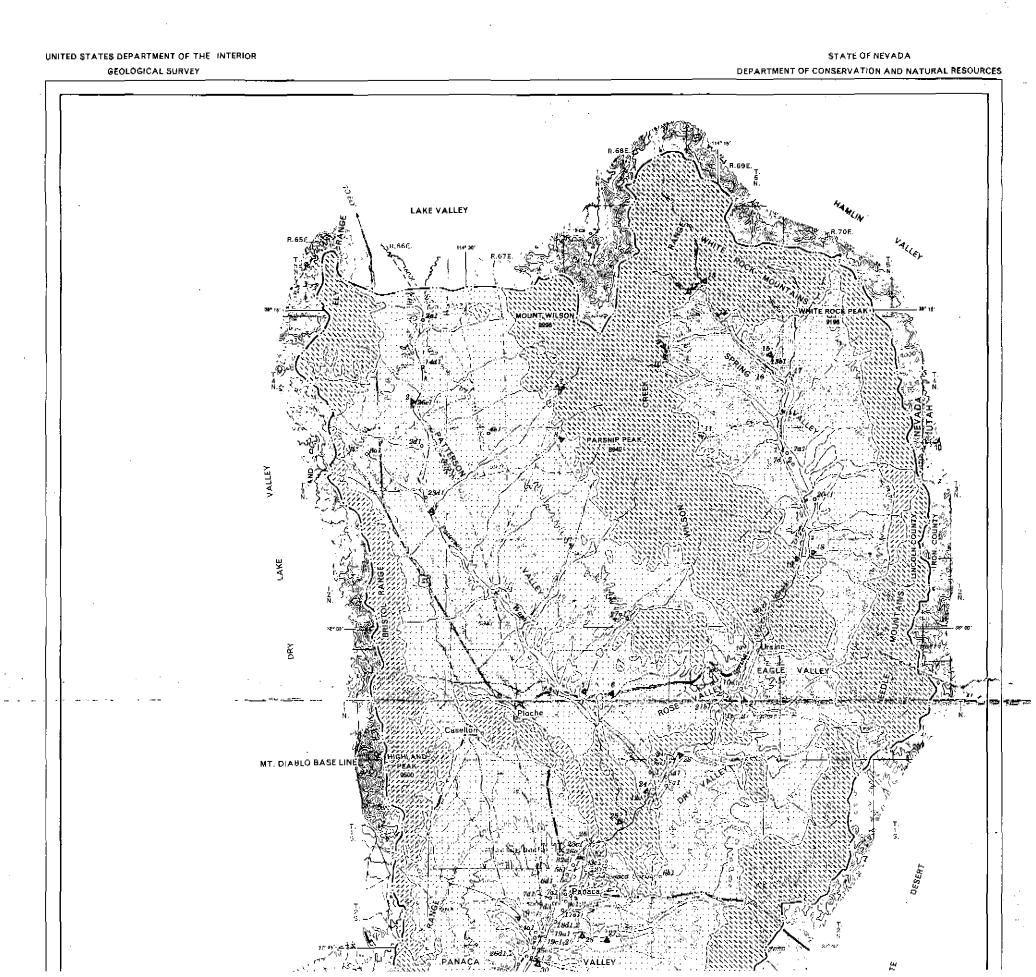


Table 2. -- Average monthly and annual precipitation at

six stations in the Meadow Valley area

(from published records of the U.S. Weather Bureau)

				Preci	pitation	n, in ir	nches					······	····
Station	Jan.	Feb.	Mar.	Apr,	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year
$\frac{1}{Caliente}$. 83	. 80	. 85	. 67	. 55	. 37	. 79	. 93	.49	. 88	.71	. 85	8.72
$Carp^{2/}$, 83	.37	. 60	.26	, 13	.04	.42	.28	.30	.40	29	. 62	4.24
$Elgin - \frac{3}{2}$	1.27	1,01	.61	. 47	•49	.12	.79	.85	.60	.81	. 94	.56	8.50
$Logandale^{4^{/}}$.79	.67	.49	.29	.14	.14	.46	.58	.30	.48	. 97	.58	5.29
Overton ^{5/}	.54	.48	.41	.24	.15	.05	.20	.38	.29	.47	.41	.60	4.22
$Pioche^{6/}$	1,50	1,30	1,40	1,12	. 82	. 32	. 89	1,10	.68	1,11	. 92	1.30	12.46
1. Altitude 4 2. Altitude 2	2,600 feet.	Locat	ion sec. 3							-			4
Record 3. Altitude 3 4. Altitude 1 5. Altitude 1 6. Altitude 6	, 400 feet. , 220 feet.	Locat Locat Locat	ion sec. 7 ion sec.27 ion sec.19	2, T. 150 9, T. 160	S., R. S., R.	67 E. 68 E.	Period Period	l of rec l of rec	ord, 3 ord, 1	2 years, 3 years,	1906-3 1940-6	2.	

φ.

In summary, the precipitation pattern varies with the surface altitude. The least amount of precipitation, averaging perhaps 4 to 6 inches annually, can be expected in lower Meadow Valley between Elgin and Glendale. In the high mountain ranges of the northern half of the report area amounts ranging from 10 to 20 inches on the average fall annually, whereas the valleys in this northern area receive 6 to 12 inches.

Temperature data have been recorded at Caliente, Pioche, and Overton. For these stations, the Weather Bureau has been publishing freeze data since 1948. This information is given in table 3. Because killing frosts vary with the type of crop, temperatures of $32^{\circ}F$, $28^{\circ}F$, and $24^{\circ}F$ are used to determine the number of days between the last spring minimum and the first fall minimum.

At Pioche and Caliente, the growing season contains about the same number of days. Here, crops experiencing a killing frost at 28°F would typically have a growing season of about 160 to 190 days. In the lower altitude area between Elgin and Glendale, the average growing season for such a crop is probably 200 to 220 days. In Spring Valley, owing to the high altitude of the valley floor, the growing season probably is very short for most crops. In Patterson Valley, the figure may be somewhat less than at Pioche, because of the probable thermal inversions at the lower altitudes.

The average temperature extremes are summarized for Caliente, Overton, and Pioche in table 4.

Table 3. -- Number of days between the last spring minimum and the first fall minimum for Caliente, Overton, and Pioche

18

	32°F	or below		28°F or	• below		24°F	24 ⁰ F or below				
Year	Caliente	Overton	Pioche	Caliente	Overton	Pioche	Caliente	Overton	Pioche			
1948	129	168	128	140	173	140	204	285	178			
1949	180	230	141	198	298	191	204	299	203			
1950	146	241	147	150	282	185	214	283	198			
1951	157	243	173	178	278	175	207	309	223			
1952	183	243	173	208	265	210	227	319	232			
1953	122	221	146	144	221	162	191	267	173			
1954	151	234	136	206	256	176	210	338	177			
1955	137	198	143	178	227	170	186	227	197			
1956	151	205	152		226	163	204	253	204			
1957	138	238	134	162	247	190	227	298	227			
1958	134	207	178	150	252	179	152	300	224			
1959	135	243	131	150	243	178	200	291	2.09			
1960	141	207	144	189	274	164	205	295	204			
1961	136	208	148	179	260	165	183	301	188			
1962	157		142	175		180	229	277	232			
Ave.	146	220	148	165	250	175	191	289	2.05			

(from published records of the U.S. Weather Bureau)

 $\{ r_i \}$

<u>,</u>

415

Table 4. --Range of typical annual maximum and minimum temperatures recorded at Caliente, Overton, and Pioche

Station	Average annual maximum temperature (^o F)	Average annual minimum temperature (^o F)
Caliente	100 to 105	-10 to 0
Overton	115 to 120	15 to 25
Pioche	95 to 100	0 to 5

(from published records of the U.S. Weather Bureau)

Previous Work:

The geology of Lincoln and Clark Counties, jointly including all the Meadow Valley area, has been mapped by Tschanz and Pampeyan (1961) and Bowyer and others (1958), respectively. A study of the ground-water resources of Panaca Valley and reconnaissance ground-water investigations of the remaining parts of the Meadow Valley area north of the vicinity of Caliente were made by Phoenix (1948). In addition, a geologic map and sections of the Pioche Hills were compiled by Parks and others (1958). A report describing the ground-water resources of southeastern Nevada was compiled by Carpenter (1915).

Reconnaissance studies of the ground-water resources has been made in many areas of the State, and in the adjacent areas of Dry Lake and Delamar Valleys (Eakin, 1963), Pahranagat and Pahroc Valleys (Eakin, 1963) and Lake Valley (Rush and Eakin, 1963) as shown in figure 1 and listed in a later section of this report.

GENERAL GEOLOGY AND HYDROLOGY

Geomorphic Features:

The mountain ranges of the report area are complexly folded and faulted mountain blocks of igneous, metamorphic, and sedimentary rocks. The present topographic relief is largely the result of movement along the numerous north-trending faults.

Debris washed from the mountains has formed large alluvial fans along the mountain fronts in the areas to the north of Caliente and to the south of Elgin. In much of these areas the fans are extensively dissected, but retain their original form along the east flank of the Bristol Range northwest of Pioche and along the western slope of the Mormon Mountains southwest of Mormon Peak.

In Patterson Valley the alluvial fans bordering the Ely and Bristol Ranges on the west and the Wilson Creek Range on the east nearly merge along the axis of the valley, resulting in the development of a very narrow flood plain (fig. 2). The maximum development of the flood plain in the valley is east of Pioche where it reaches a width of about a mile. The plain slopes southward 30 to 60 feet per mile.

In Spring, Eagle, Rose, and Dry Valleys a distinctive, very flat flood plain is developed; however, it is very narrow, rarely exceeding a mile in width.

The flood plain of Panaca Valley is the largest in the Meadow Valley area. The flood plain is broad, flat, and has a very gentle slope to the south of about 25 feet per mile. It extends laterally several miles from the axis of the main drainage channel up the principal tributary valleys.

The flood plain has been formed by the cutting and eroding away of Pliocene lake beds, locally called the Panaca Formation. This dissection has formed three distinct terraces in Panaca Valley. The lake beds were cut below the present land surface in the area where the younger alluvium is now present. Phoenix (1948, table 7) logged 15 feet of younger alluvium in well 18/68-28c1 near Condor Canyon, whereas at Cove Canyon, 166 feet of younger alluvium was logged in a U.S. Geological Survey test well (3867-28c2)

Downstream from Caliente along Meadow Valley Wash, the flood plain is narrow and discontinuous. Where present, it seldom exceeds half a mile in width. Locally, such as south of the Lincoln County-Clark County line, it is more extensively developed.

The streams of Patterson Valley flow only in response to overland runoff of precipitation. No important springs feed them, and the channels are at all times above the water table. In the other valleys of the Meadow Valley area streamflow is present at least part of the year. Springs discharge into the main channel of Spring Valley and the resulting surface flow is continuous throughout the year. This flow probably reaches a maximum at the southern end of the valley. Peak flow occurs generally during the late winter and spring when melting snow adds overland runoff to the spring discharge. Downstream from Spring Valley the surface flow decreases but extends as far as Rose Valley in the summer and fall and to below Carp in the winter and spring. Flow in the wash at Glendale is generally small. Flash floods resulting from thunderstorms or rapid snowmelt periodically cause road and crop damage in Panaca Valley and in lower Meadow Valley.

Lithologic and Hydrologic Features of the Rocks:

The rocks of the report area are grouped into four principal lithologic units: carbonate rocks, the consolidated rocks other than the carbonates, older alluvium, and younger alluvium. This division is based on the hydrologic properties of the rock units. The surface exposures of these units are shown on plate 1. The geologic information shown is based on the work of Tschanz and Pampeyan (1961) in Lincoln County and Bowyer and others (1958) in Clark County, on field work done by the writer, and on aerial-photo interpretation.

Carbonate rocks, largely limestone and dolomite, are present in some of the mountain areas and may underlie some of the valleys at depth. Large exposures of this rock type are in the Bristol and Highland Ranges west and northwest of Pioche, the Mormon Mountains south of Carp, and the southern half of the Meadow Valley Mountains (pl. 1). Locally, small exposures of carbonate rocks crop out on the east side of Spring Valley in the northern part of the Needle Mountains, a few miles north of Ursine at the southern end of the Wilson Creek Range, and in a narrow band extending from Pioche to the north end of Panaca Valley. Farther south they are exposed north and west of Caliente and a few miles northeast of Elgin.

Most of the mountain area of the report area is underlain by noncarbonate consolidated rock, chiefly of Tertiary age. These rocks are principally volcanic rocks. However, sandstone and shale of Paleozoic and Tertiary age are included locally.

The older alluvium is characteristically unconsolidated or poorly consolidated, dissected, deformed, poorly sorted, and composed of gravel, sand, silt, and clay. It is late Tertiary and early Quaternary in age. The deposits consist of lake beds and terrace and fan gravels formed from debris derived from the mountains.

The younger alluvium by contrast to the older alluvium, generally is unconsolidated, undissected, and structurally undisturbed. It is composed of gravel, sand, silt, and clay deposited by streams during late Pleistocene and Recent Epochs. These deposits are better sorted and are more porous and permeable than the older alluvium because it is made up generally from reworked older alluvium that has been subjected to further erosion.

The lake beds of clay, sand, and silt are common throughout the Meadow Valley area. They are locally called the Panaca Formation in Panaca Valley and Muddy Creek Formation in lower Meadow Valley. Extensive outcrops are in Patterson Valley, Spring Valley, and the combined areas of Dry, Rose, and Panaca Valleys, as shown in figure 2. In these valleys about a third to a half of the area of the older alluvium is lake deposits. Additional areas of lake deposits are east of Barclay in Clover Valley.

The lake deposits occuring at the highest altitude are in Spring Valley where they have a maximum altitude of about 7,000 feet. Those in the southern part of the report area near the county line are at a maximum altitude of about 3,400 feet. The remaining lake deposits reach altitudes of between 5,800 feet in Panaca Valley and 6,200 feet in Eagle Valley. It is probable that Spring Valley was a topographically closed valley during late Tertiary time when these sediments were deposited. The remaining lake-deposit areas of the north half of the report area probably formed in another closed valley. By subsequent erosion, interconnecting channels were cut to form the present drainage system.

Most of the economically available water in the report area occurs in the younger and older alluviums, which comprise the ground-water reservoir. The older alluvium, composed of low to moderately permeable silt, sand, and gravel, characteristically will yield water to wells at low to moderate rates. Moderate to large water supplies can be developed in the younger alluvium. Sand and gravel beds are generally present at depth and yield water freely to wells.

The noncarbonate consolidated rocks are the least favorable for development of water by wells. A large number of springs flow from this type of rock, but most of them have a very low rate of flow and dry up in the summer or during periods of drought. The carbonate rocks, however, are more soluble to natural waters and therefore contain underground channelways through which ground water can move. For example, Panaca Spring flows from carbonate terrain just south of Condor Canyon. The outcrop pattern of the rocks indicates that recharge occurs in the Bristol and Highland Ranges, and in part migrates down-gradient to be discharged at Panaca Spring. This conclusion is substantiated in part by the absence of large amounts of natural discharge by other means, such as evapotranspiration in Patterson Valley. However, underflow through the carbonate rocks probably is the largest means of natural discharge from Patterson Valley.

SURFACE-WATER FEATURES

Most of the base flow in Meadow Valley Wash is from ground-water sources. Generally this surface flow is reabsorbed by the alluvium as it flows southward. However, during periods of spring snowmelt or flash floods caused by thunderstorms, water flows to the mouth of the wash and discharges into the Muddy River. This water, having never been ground water, is not included in the appraisal of annual ground-water recharge and discharge.

Streamflow data are available for several stations on Meadow Valley Wash. For the period 1951-60 a station was maintained 4 1/2 miles south of Caliente, and the streamflow averaged 8,620 acre-feet a year, as shown in table 5. The peak periods of flow were generally during February and March when snow melting occurred. The smallest flow was generally in September or October of each year and reflects the general absence of significant rainfall events for the period of record in these months. The ground-water

contribution immediately upstream from the gaging station appears to sustain, a minimum base flow of about 0.8 cfs (cubic feet per second) at the station.

For shorter periods of time streamflow data are available for Spring Valley Creek in the canyon between Spring and Eagle Valleys. A gage was installed and the measurements began in August 1962, so that data are available for only 13 months. For the period May through August 1963, the daily discharge averaged about 3 cfs, never exceeding 5.4 cfs nor dropping below 1.6 cfs. This flow is largely spring discharge of ground water. For the year beginning October 1, 1962, and ending September 30, 1963, the flow past the gage was 4,050 acre-feet. The momentary maximum rate recorded was 29 cfs on February 1, 1963. This high rate is due to melting snow in Spring Valley.

For the period 1945-49, a station was maintained on Spring Valley Creek in sec. 13, T. 1 S., R. 68 E. at the south end of Dry Valley, near the Delmue Ranch headquarters. The average discharge was 3,400 acre-feet a year as shown in table 6. Streamflow greater than a fraction of a cubic foot per second, issuing from local springs on the ranch, was recorded only during the winter and early spring. During the growing season, the streamflow from Spring Valley is diverted in both Eagle and Rose Valleys resulting in no flow through Dry Valley.

Floods of large magnitude have been reported in Meadow Valley Wash. In March 1906 and again in January 1910, devasting floods occurred, which forced the relocation of the then San Pedro, Los Angeles, and Salt Lake Railroad Company tracks along Clover Creek east of Caliente and along Meadow Valley Wash south of Caliente. The "highline" of the railroad, including 15 tunnels, was constructed between August 1910 and April 1912 to avoid future destruction. At that time it was concluded that the floods were related to the removal of the forest and woodland cover in Clover Valley. Other floods occurred in the years 1907, 1908, 1911, 1914, 1922, and 1938. The author can find no evidence of higher floods since 1938. The damage in 1938 prompted the approval by Congress in May 1955 of construction of two flood-control dams in Clover Valley. These were constructed at Pine Canyon (sec. 30, T. 5 S., R. 69 E.) and Mathews Canyon (sec. 24, T. 5 S., R. 69 E.) but have remained empty most of the time since their completion. The dams are designed to contain flash floods that occur in this otherwise moderate precipitation area.

							1							M	omentary	rate	
]	•				Į							Maxin		Minir	num
Year	Jan.	Feb.	Mar	. Apr.	May	June	July	· Aug.	Sep,	Oct.	Nov,	Dec.	Year	Dis- charge (cfs)		Dis- charge (cfs)	Date
1951		800	600	451	282	137	114	88	91	165	286	1,710		50	2-05-51	0.6	8-24-51
	1,270	1,720	11,580	5,570	592	30 7	338	208	206	211	478	1,220	23,700	1,000	3-27-52	1	8-24-52 8-25-52
1953	1,200	דדר	581	319	265	254	148	506	98	169	445	464	5,230	110	8-02-53	1.1 <u>a/</u>	
1954	1,360	1,200	878	284	228	247	209	542	436	136	276	571	6,370	825	9-04-54	.7 <u></u> ^{b/}	
1955	552	1,210	5,670	324	147	175	381	2730	193	202	526	1,530	13,640	785	8-03-55	1.9 <u>a</u> /	0-03-55
1956	1,520	1,060	644	175	109	686	855	247	101	147	208	335	6,090	1,500	6-30-56	.8	9-17-56
1957	844	1,570	880	255	497	169	140	124	116	186	758	1,020	6,560	117	2-11-57	1.6 <u>c</u> /	
1958	954	1,430	2,430	2,560	198	158	121	125	137	106	315	594	9,130	249	3-22-58	• 9	5-06-58
1959	1,010	1,440	702	143	235	137	98	:99	119	95	209	515	4,800	75	2-19-59	1.2	5-20-59
1 <u>9</u> 60		1,250	984	1					79					.98	2-10-60	.8	9-21-60
verage 1951 round	e 60,1,04(ed)	1,240	2,490	1,030	272	239	250	476	158	157	389	884	8,620	<u> '</u>	<u> </u>	i	

Table 5. -- Monthly and yearly runoff, in acre-feet, of Meadow Valley Wash, $4 \frac{1}{2}$ miles southwest of Caliente (from published records of the U.S. Geological Survey)

Table 6. --Yearly discharge of Meadow Valley Wash at the south end of Dry Valley

	Momentary rate											
	Maxim	um	Minin	mum	Runoff acft.)							
Year	Discharge (cfs)	Date	Discharge (cfs	Date								
1945	605	8-02-45	0.1	7-03-45 and 7-04-45	5,450							
1946	946	8-05+46	. 1	5-13-46, 8-10-46, and 9-23 to 30-46	4,240							
1947			.2	on several days	1,820							
1948	70	2-20-48	. 2	on several days	2,610							
1949	43	3-20-49	.2	8-20-49 and 8-21-49	2,681							
	Average ()	Ll rounded)		<u>.</u>	3,400							

(from published records of the U.S. Geological Survey)

In February 1955, the U.S. Geological Survey, at the request of the Nevada State Engineer, studied the cause of streamflow loss in Meadow Valley Wash between the gaging stations near Caliente and near Glendalc. Very little streamflow had entered Muddy River during the preceding several years. On February 17, stream-discharge measurements were made at the north and south ends of the flood plain just north of Carp. The plain is about 10 miles long and has an area of about 3, 200 acres. (See pl. 1). The measurements showed a decrease in streamflow from 20 cfs to 1.5 cfs, or a loss of 18.5 cfs on that day. However, at Carp the springs in the alluvium increased the flow from 1.5 cfs to 7.5 cfs, but it again dwindled to 1.5 cfs in the middle of the next flood plain of 2, 800 acres just north of Rox. Again springs near Rox increased the flow, but only to 2.5 cfs, which was absorbed on the third flood plain of 9, 100 acres between Rox and Glendale. No flow was at the mouth of the wash.

It was concluded that the three flood plains had sufficient storage capacity to absorb a minimum of 20,000 acre-feet -- and perhaps much moreof streamflow resulting from any single storm. It was further concluded that over a period of months of no storm runoff, the absorbed water would be slowly re-discharged; mostly by evaporation, transpiration, and possibly by underflow to the Muddy River area so that storage capacity would be maintaine? During 1952 and 1955, however, streamflow was sufficient to overcome the absorption capacity of the flood plains and contribute significantly to flow of the Muddy River, as shown by the following discussion.

There are two gaging stations on the Muddy River near the mouth of Meadow Valley Wash; one near Moapa 9 1/2 miles upstream from the mouth, the other near Glendale 2 1/2 miles downstream. For the 8-year period, 1952-59, the flow at the two Muddy River stations was very similar, except for the years 1952 and 1955 (table 7). For these years a flow of about 5,000 acre-feet more was recorded at the downstream gage than at the upper gage. A similarly larger-than-normal annual flow was measured in Meadow Valley Wash near Caliente. A further inspection of the discharge measurements at these three stations indicates that there were three periods of high discharge at the lower gage near Glendale in 1952 and four in 1955 that were not recorded upstream near Moapa. Because these stations are only 12 miles apart, the increase probably was caused by flow from Meadow Valley Wash rather than by localized storms or snowmelt occurring between stations. This is further supported by the fact that the data for the Caliente gaging station show sharp increases in streamflow about two days in advance of the events at the lower station near Glendale (table 8). It is concluded that during these two years of the 8-year period, seven important storms or snowmelts caused flow in Meadow Valley Wash from above Caliente to its mouth. These large flows, as recorded near Caliente, were reflected in the large difference in the total annual discharge at the two stations on the Muddy River.

Table 7. -- Annual discharge, in acre-feet of the Muddy River and Meadow Valley Wash

Calendar year	Muddy River near Moapa <u>1</u> /	Muddy River near 2/ Glendale —	Change in dis- charge between Moapa and Glendale stations	Meadow Valley Wash <u>-</u> /
1952	34,030	39,600	+5,570	23, 700
1953	33, 250	32, 420	- 830	5,230
1954	33,190	32,140	-1,050	6,370
1955	33,960	39, 130	+5,170	13,640
1956	33,160	31,500	-1,660	6,090
1957	35,800	36,900	+1,100	6,560
1958	34,950	33,450	-1,500	9,130
1959	36,030	32,760	-3, 270	4,800
Average 1952-59				
(rounded)	34,200	34,700		9,400

(from published records of the U.S. Geological Survey)

1. Gaging station 9 1/2 miles upstream from the mouth of Meadow Valley Wash.

2. Gaging station 2 1/2 miles downstream from the mouth of Meadow Valley Wash.

3. Gaging station 4 1/2 miles downstream from Galiente.

Table 8. -- Daily discharge, in cubic feet per second, of the

Muddy River and Meadow Valley Wash, for the dates given

(from publications of the U.S. Geological Survey) -

······	Meadow	Muddy	River		Meadow	Muddy	
Date	Valley _{1/}	near 2/	near 3/	Date	Valley _{1/}	near	near Glendale-
	Wash -	Moapa-	Glendale-'		Wash $-'$	Moapa ²⁷	Glendale-
12-29-51	20	50	56	3-05-55	333	50	103
12-30-51	258	50	57	3-06-55	1	49	194
12-31-51	311	49	57	3-00-55	f .	47	143
1-01-52	54	49	109	3-08-55		47	104
1-02-52							131
1-02-52	22	50	63	3-09-55	297	47	151
2-28-52	37	48	48	3-10-55	179	47	223
2-29-52	124	48	47	3-11-55	184	48	159
3-01-52	777	48	48	7-24-55	2.2	43	39
3-02-52	454	49	169	7-25-55		43	39
3-03-52	131	49	241	7-26-55		42	72
3-24-52	30	51	55	7-27-55	4.4	42	45
3-25-52	216	51	52	8-02-55	r	42	37
3-26-52	622	50	86	8-03-55		42	37
3-27-52	797	- 50 - 49	347	8-04-55		42	80
					1	42 42	100
3-28-52	416	48	528	8-05-55	194	44	100
3-02-55	81	50	57	8-06-55	43	42	119
3-03-55	172	50	57	8-07-55	11	43	54
3-04-55	305	50	66				

1. Gaging station 4 1/2 miles downstream from Caliente.

- 2. Gaging station 9 1/2 miles upstream from the mouth of Meadow Valley Wash
- Gaging station 2 1/2 miles downstream from the mouth of Meadow Valley Wash.

GROUND-WATER APPRAISAL

Occurrence and Movement of Ground-Water:

Ground water in the Meadow Valley area is derived mostly from precipitation within the drainage area. However, ground-water underflow from Lake Valley moves through the alluvium underlying the low divide at the northern end of the area and adds recharge to Patterson Valley (Rush and Eakin, 1964, p. 12). In the low lying areas, where precipitation is small, little if any recharge to the ground water occurs. In the mountains most of the recharge occurs because of the greater precipitation.

The snow and rain of the mountains in part infiltrates the consolidated rocks and in part collects into small, short streams which generally are absorbed by the alluvium of the fans. Much of this water is evaporated before and after infiltration, some adds to the soil moisture, and some percolates to the water table and recharges the ground-water reservoir.

Little of the precipitation occurring in the low lying areas reaches the water table, rather it is held in the alluvium and is used by the plants or evaporated. The water that reaches the main stream channel by surface and subsurface runoff, as in Spring Valley, is generally absorbed by the alluvium as it flows through the several valleys to the south.

Ground water occurs under both confined (artesian) and unconfined (water table) conditions in the Meadow Valley area. Hydrostatic heads in several wells are above land surface in Panaca Valley. Two such wells are the Amy Mathews west well (2S/68-19c1) about 3 miles southwest of Panaca and the Chester Oxborrow well 2 (3S/67-28c1) at the north end of Cove Canyon. The Mathews well, whose principal water-bearing zone is from 85 to 125 feet below the land surface, was reported to flow 50 gpm (gallons per minute) in 1956 and now flows only during the winter and spring. The Oxborrow well, which taps sand from 45 to 98 feet below land surface, flowed at an estimated rate of 100 gpm in November 1962. At the time the author obtained a water sample from the well in December 1963, the estimated flow was about the same. In both wells the aquifers were overlain by clay or silt, which form the confining beds.

The thickness of the ground-water reservoir is not known because most wells do not exceed 150 feet in depth. The deepest known well drilled in the area was constructed near Panaca in 1940 (Phoenix, 1948, p. 104). It was drilled to a depth of 620 feet and bottomed in alluvium. However, below a depth of 400 feet, no productive sand or gravel beds were logged. The well yielded only 70 gpm with a drawdown of 150 feet.

In general, the ground-water movement is in the direction of surface flow; that is, from the mountain areas toward the centers of the valleys. This pattern is modified, however, by the general flow of ground water from the northern part of the area, where most of the recharge occurs, to the southern

part of the area where much of the discharge occurs. The ground water is transmitted largely in the alluvium. In the canyons connecting the various valleys, the capacity of the water to be transmitted in the subsurface is reduced because of the reduction of the cross-sectional area of the alluvial fill. Where this occurs, such as at the canyon between Spring and Eagle Valleys, Condor and Cove Canyons, and the canyons just south of Carp and Rox, the ground water "overflows" to the land surface and flows in Meadow Valley Wash until it is discharged by evaporation or is re-absorbed into the alluvium.

Stream-discharge measurements were made at 75 sites during October 1963; the data are presented in table 9, and the sites are shown on plate 1. These data illustrate the general conditions of surface-water flow during the late part of the growing season. All of the measured streamflow was from ground-water sources.

The hydrologic conditions of Patterson Valley are different from those in the rest of the Meadow Valley area. No base flow is observed in the area, no significant areas of natural discharge due to phreatophytes are found, and no typical rise of water from the subsurface to the stream channel occurs in the bedrock canyon which drains the area (T. 1 S., R. 68 E.). Most of the recharge from precipitation and underflow from Lake Valley (Rush and Eakin, 1964, p. 12) discharges from the area through the consolidated rock. Carbonate rocks, which commonly transmit large quantities of water through enlarged joints and fractures in this part of Nevada (Eakin, 1963, p. 11), are exposed in the high mountains on the west side of the wash and at the south end of the area (pl. 1). The alluvium at the southern end of Patterson Wash and part of Panaca Valley probably is underlain by these rocks.

An inspection of the carbonate rocks was made in Condor Canyon near Panaca Spring (25/68-4b1) where large and numerous solution cavities were observed as shown in photographs 3 and 4. Much of the ground-water recharge in the mountains bordering Patterson Valley enters the carbonate-rock system and is transmitted to Panaca Valley, where most of the water is discharged by Panaca Spring. Panaca Spring undoubtedly issues from the carbonate rock, because it is on the western flank of a limestone hill and is near the southern extent of the outcrop of the carbonate system. The temperature of the water is warm, 85°F, indicating relatively deep percolation. Records indicate that the spring had a flow of about 14 cfs in 1946, or the equivalent of 10,000 acre-feet per year. This is very close to the estimated recharge from all sources, 9,000 acre-feet, for Patterson Valley. The flow of the spring in October 1963 was only 10.88 cfs, or about 8,000 acre-feet per year. Some irrigation wells also yield abnormally warm water, although well water is not as warm nor as nearly free of dissolved minerals as the spring water. It is concluded that the well water is a mixture of the water in the carbonate rocks and the colder, more highly mineralized water of the alluvium. This relationship is discussed further in the quality of water section of this report.

мар ^{1/} Ro.	Site	Locati Township	on Range	Date	Discharge ^{2/} (cfs)	Ма <u>р≟</u> / No.	51F#	<u>locati</u> Township	Range	Dare	Discharge ¹ (cta)
1	Wildhorse Bill Spring	4 n.	66 K.	10-23-63	(]	38	Tributary to Clover Creck	58.	69 E.	10+28+63	0
2	Patrerson Wash	4 N.	00 E.	10-23-63	0	39	Glover Greek	55.	68 K.	10-28-65	(. 10)
3	Parterson Wash	3 M.	66 B.	10-23-63	ú	40	Clover Greek	5 S.	68 π,	10-28-63	1,89
4	Patterson Wash	1 м.	66 K.	10-24-63 10-29-63	0 0	41	Cjover Creek	5 5.	68 E.	10-28-63	(.10)
5	Tributury to Patterson Wesh	1.81.	44 a	10-29-63	о 11	42	Glover Greek	58.	68 E.	10-28-63	(10.)
5	Tributery to Unitereon Wash	1 N.		20-24-63	 0	43	Clover Creek	4 S,	ыц π,	f0-58-60	(, 20)
,	Tributary to Patterson Wash	4 N,	68 E.	10-24-63	(0.05)	44	Clover Creek	45.	ьη Б.	10-20-63	(.02)
5	Triburary to Parterson Wash	э N.			0	45	Clover Greek	48.	68 E.	10-28-63	0
 9	Sceward out Raiser - Upper Spring	4 N.		10-25-63	(،و،)	46	Tributary to Clover Greek	48.	68 E.	10-28-63	0
	Steward and Raiger - Lower Spring	4 M.		10-25-63	()	47	Clover Gréek	4 £.	67 E.	10-28-63	0
	Parsnip Wash Spring	зи.	69 к.	10-25-63	(,04)	4B	Tributary to Glover Greak	4 ×.	67 m.	10-28-63	0
12	Tributury to Spring Valley Creek	5 N,		10-25-63	.33	49	Clover Creek	4 8.	67 K.	10-28-63	(. 10)
3	Tributary to Spring Valley Greak	5 N,		10-29-63	27	50	Clover Creek ⁰⁷	4.8.	67 R.	10-28-61	u
.4	Spring Valley Greek	5 N.		10+25-63	.80	51	Tributary to Meadow Valley Wash $^{\pm/}$	4 5.	67 B.	10-29-60	(-,03)
-	Tributery to Spring Valley Creek	5 м. 4 м.	64 K.	10-25-63		52	Meadow Volley Wash	58.	66 E.	10-27-63	2.27
				10-25-63		53	Meedow Valley Vesh	6.5.	66 X,	10-27-63	2.04
.6 ?	Spring Valley Creek	4 H.			0	54	Mondow Valley Wash	78.	67 E.	10-27-63	(1,50)
	Tributary to Spring Valley Craek	4 N.		10-29-63		55	Mendow Valley Wash	78.	67 E.	10-27-63	(.60)
d	Triburary to Spring Volley Creek	2 11,		10-29-60	0	56	Meadow Valley Wash	/ s.	ό7 K.	10-27-53	(.10)
4	Spring Valley Greek	2 19.		10-25-63	3.72	57	Meadow Velley Wash	7 5.	67 K.	10-27-64	(.30)
20	Sprice Volley Greek gaging station ³⁷			10+29+63	4.91	58	Meadow Valley Wash	7.6,	67 8.	10-27-63	2.82
1	Tributary to Spring Valley Creek	1 N.		10-29-63	Ú	59	Tributary to Meadow $V_{\rm G}$ ley Wash	д Б ,	67 B,	10-27-61	D
22	Spring Valley Creck ¹ /	1 N.	69 E.	10-29-63	9.12	60	Meadow Valley Nach	5 S.	67.3.	10-27-63	(1,25)
23	Spring Valley Greek ⁵⁷	1 N.	69 X.	10-25-64	U .	61	Meadow Valley Wash	9 S.	67 Б.	10-27-63	a
.4	Delmue Springs - at house⊆/	13.	68 K.	10-26-64	(50)	62	Mendow Walley Wush	10 8.	67 E.	10-27-03	2.94
'i	Patherson Wash ^{7/}	15,		10-29-63	0	63	Tributary to Meadow Valley Vasb	10 5.	66 K.	10-27-54	0
<u>}</u> 6	Meadow ⊽alley Wash⊡/	18.		10-28-63	.81	64	Meadow Valley Wash	10 S.	66 Z,	10-22-63	1.74
6	Mendow Valley Wash	18.	68 H.	10-28-63	Ú	65	Kendow Walley Wash	11 8.	66 B.	10-27-60	,47
7	Tributary to Meadow Valley Wash	Z 8.	68 K.	10-28-64	0	66	Mendow Valley Wash	11 8.	66 E.	10-27-63	(.10)
./ μ	Penaca Spring ²⁷	2.5.	66 E.	10-28-61	10,00	67	Mondow Valley Wash	12 2.	65 E.	10-27-63	(.02)
8	Yriputary to Needow Vailey Sash	2 5.	ńΝ X,	10-26-61	ü	66	Mendow Volley Wash	12.2.	68 L.	10-27-63	(.30)
9	Tributary to Meadow Valley Wash	25,	67 R.	10-26-63	ü	65	Membow Valley Weah	15.8.	65 K.	10-27-63	. 99
U	Wributary to Meadow Valley Wash	25.		10-28-00	0	70	Meadow Valley Wash	EV. 6.	66 K.	10-27-63	41
2	Mendow Valley Wash	38.		10-29-63	1.46	71	Meadow Valley Wash	14 5,	66 E,	20-27-63	a
2	Clover Greek	5 S.		10-28-63	0	72	Meadow Valley Wash ¹³⁷	14 5.		10-27-03	ϵ , 30)
3	Tributary to Clover Greek	58.	60 E.	10-28-63	Ű	73	Moddy River13/	15 8.	66 E.	10+23-63	40.7
ή.	Tributary to Clover Creek	y s,	69 84	10-78-61	n	74	Kuddy Kiver ^{22/}	15 5.	бе к.	10-26-63	40.1
5	Clover Crevit	5 5.	69 E.	10-28-03	(.50)	75	Moddy River puging station	15.5		10-25-63	47.1
16	Clover Greek	58.	69 S.	10-28-63	(.01)		,				
7	Clover Creek	58.	68 S.	10-28-03	0						

Table 9.--MiscellAgeous Streamflow neusormments in the Meadow Valley area - October 1964

Sine identification number shown on place 1.

 $\tilde{z}_{\rm c}$. Pigores in paymetheses are notimated by personnel of the 0.5. Coological Survey.

3. In compon between Spring Valley and Bogle Valley.

4. In canyon between Engle Valley and Rose Valley.

5. In canyon between Rose Volley and Dry Valley.

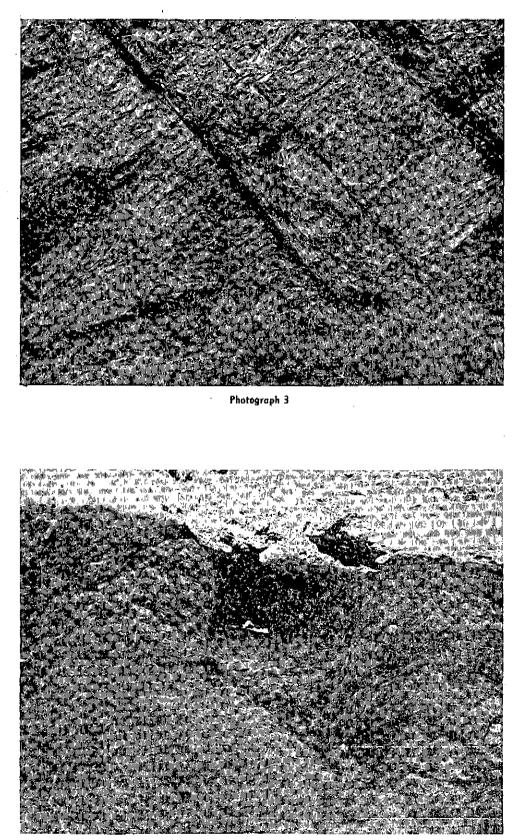
 β . Flow of 0.45 are reported by Phoenix (194d, p. 49).

7. An point where Partetson Wash enters Meadew Valley Wash.

8. Ar southwest end of Condor Canyon.

9. Warm Spring, 2 miles morth of Panaga.

10. At point where Glover Creek enters Meadow Valley Wash.


11. Flow of two springs in State Park.

32. Just upstream from where Meadow Valley Wash enters Muddy 30 vas.

11, Above Meadow Valley Wash,

14. Below Hendow Velley Wesh.

15. Sclew Mendow Valley Wash and site 74.

₹ .

Photograph 4

Views of the limostone walls of Condor Canyon showing solution openings caused by ground water. Photograph 3 shows an enlarged joint along a bedding plane of the limestone. Photograph 4 shows an irregular solution opening, about five feet wide, having no recognizable orientation or relation to tractures.

Estimated Average Annual Recharge:

Precipitation in the drainage area and ground-water inflow from Lake Valley to Patterson Valley probably are the principal sources of the ground water in the area. A method described by Eakin and others (1951, p. 79-81) is used to estimate the recharge. This method assumes that a fixed percentage of the average annual precipitation recharges the ground-water reservoir. Hardman (1936) showed that in gross aspect the average annual precipitation in Nevada is related closely to altitude and that it can be estimated with a reasonable degree of accuracy by assigning precipitation rates to various altitude zones. Figure 4 shows this relationship for the precipitation stations in the Meadow Valley area.

The average annual precipitation distribution is delineated as follows: 8 inches at 6,000 feet, 12 inches at 7,000 feet, 15 inches at 8,000 feet, and 20 inches at 9,000 feet. Five precipitation zones are selected, using the above values. The zones, the estimated precipitation, and the estimated recharge are summarized in table 10. The estimated average annual precipitation over the entire area is about 1,000,000 acre-feet, and the estimated average annual recharge resulting from this precipitation is only 2.4 percent, or 24,000 acrefeet. The underflow from Lake Valley (Rush and Eakin, 1964, p. 13) adds an additional 3,000 acre-feet a year, making a total of 27,000 acre-feet a year of recharge from all sources. The highest rate of estimated recharge occurs in Spring Valley, where 5.6 percent of the estimated precipitation enters the ground-water system. In Fatterson Valley the figure is 3.1 percent,

About two-thirds of the recharge from precipitation occurs in Patterson and Spring Valleys, which combined are only 40 percent of the Meadow Valley area. The highest mountains of the report area are in these two areas.

Estimated Average Annual Discharge:

Prior to development by man, all the ground water in the area was discharged by evaporation, transpiration, and subsurface and surface outflow to the Muddy River valley. With the advent of mining and agriculture, spring flow was diverted and wells were pumped to satisfy domestic, stock, and irrigation needs. The net result has been an increase in the draft on the ground-water reservoir.

Natural Discharge by Evapotranspiration: Much of the ground water discharged by evapotranspiration is consumed by native phreatophytes. These plants, prior to the development of agriculture, probably grew over most of the flood plains, except in Patterson Valley where the depth to water is generally more than 50 feet. Much of the flood plains in the several valleys have been cleared of these plants in recent years, and irrigated crops are grown in their place.

The principal phreatophytes are greasewood, rabbitbrush, meadow grass, and salt bush. Cottonwood, willow, and saltcedar are others, and occur

Precipitation			ited annu <u>a</u> l		Estimated recharge from procipitation			
zone (feet)	Area _ (acres)	Range (inches)	Average (inches)	Average (feet)	Average (scre-feet)	Percentage of pr <u>ecipitatio</u> u	(acre-feat <u>per ye</u> ar)	
(TEEL)		(110,128)				precipication	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
			t	SPRING VAL	ley.			
Above 9,000	0	more than 20	21	1,75	υ	2,5	Ο.	
9,000 to 9,000	10,600	15 to 20	17.5	1,46	15,500	15	2,300	
7,000 to 8,000	69,000	12 to 15	13.5	1,12	77,300	7	5,400	
6,000 to 7,000	101,000	8 to 12	10	.83	83,800	З	2,500	
below 6,000	<u> </u>	less than 8	6	., 50	1,750	0 ·	0	
Subtotal (rounded)	184,000				178,000		10,000	
			PAT	TTERSON VA	LLEY			
Above 9,000	150	more than 20	21	1.75	260	25	70	
3,000 to 9,000	5,400	15 to 20	17,5	1.46	7,900	~ 15	1,200	
,000 to 8,000	23,800	12 to 15	13,5	1.12	26.700	Ż	1,900	
,000 ±∞ 7,000 -	123,000	8 to 1.2	10	.83	102,000	3	3,100	
below 6,000	114,000	Less than 8	6	. 50	57,000	0	0	
Subtotal (rounded)	266,000				194,000		6,000	
		RE	MAINDER OF	THE MEAD	OW VALLEY ARE	A		
Above 9,000	350	more than 20	21	1.75	640	25	150	
,000 to 9,000	4,500	15 to 20	17.5	1.46	6,600	15	990	
,000 to 8,000	20,200	12 to 15	13.5	1.12	22,600	7	1,600	
,000 to 7,000	202,000	8 to 12	10	.83	168,000	`3	5,000	
below 6,000	942,000	less than 8	6	.50	472,000	0	0	
Subtotal (rounded)	1,170,000				670,000		8,000	
Total (rounded)	1,620,000				1,000,000		24,000	
Estimated gro	und-water	underflow from	Lake Vall	cy Eo Pat	terson Wash		3,000	
Rutimated use	ຳການ ແລະ ເປັນການເຜື	l recharge fro	m all sour	ens to th	≙ Meadow Vall	ev atea	27,000	

•

Table 10.--<u>Estimated average annual precipitation and ground-water recharge in the Meadow Valley area</u>

along the banks of the wash in lower Meadow Valley.

Table 11 lists the estimated acreage of the phreatophytes for each valley in 1963 and summarizes the estimates of evapotranspiration. These estimates are based on rates of consumption of ground water by phreatophytes in other areas, and are derived largely from the work of Lee (1912), White (1932), Young and Blaney (1942), and Houston (1950). The estimated total evapotranspiration of ground water by phreatophytes in the Meadow Valley area is about 3,600 acre-feet per year.

During the nongrowing season, several areas become very wet and are partially covered by standing water. The principal areas of this kind are the wet and dry meadows of Spring Valley and fields northwest of Panaca in Panaca Valley. In early December 1963, standing water was observed in the latter area. The springs of the wet-meadow area of Spring Valley, Panaca Spring, and surface-water runoff are the principal sources of this water.

Evaporation from these wet areas during the nongrowing season possibly is large and may even be as large as the evapotranspiration of the phreatophytes. However, adequate data are not available on which to base an estimate.

Discharge of Wells and Springs: Most of the discharge of wells and springs is used to irrigate crops. Many wells are used for stock-watering and domestic supply, but their combined discharge in relation to that for irrigation purposes is very small; probably less than 100 acre-feet a year.

In 1963 there were 60 active irrigation wells and 5 public-supply wells in the report area. Forty of the irrigation wells were in Panaca Valley. The remaining wells were scattered throughout the several valleys (pl. 1). An inventory of pumpage was made for the area, based principally upon rates of electric-power or diesel-fuel consumption and the measured and estimated rates of discharge from the wells. A summary of the pumpage of the irrigation and public-supply wells is given in table 12, which shows that in 1963 the estimated total pumpage for the Meadow Valley area was 19,000 acre-feet. The single area of largest annual pumpage, about 7,500 acre-feet, was Panaca Valley. Lower Meadow Valley was next largest, having a pumpage of about 4,700 acre-feet.

It is estimated that about 40 percent of the irrigation water seeps back to the ground-water reservoir, the remaining amount being consumed by evapotranspiration. Therefore, in 1963 the estimated net draft on the groundwater reservoir resulting from the discharge of wells was on the order of 12,000 acre-feet.

There are several thermal springs in the area, the largest of which is Panaca Spring. Smaller thermal springs are at the Delmue Ranch in Dry Valley and at Caliente. The Delmue Springs (sec. 18, T. 1 S., R. 69 E.) flow only a fraction of a cubic foot per second; the spring at Caliente no longer flows. A nearby public-supply well pumps water that has a temperature of $104^{\circ}F$.

9.9

			Areal		Evapotran	spiration		
Area	Phreatophyte	Area	density	Depth to water	Acre-feet	Acre-feet		
		(acres)	(percent)	(feet)	per acre	(rounded)		
Patterson Valley	Greasewood and rabbitbrush	750 :	· 20.to 25	20 to 30	0.1	80		
Spring Valley	Rabbitbrush	6 0 0	15 to 30	5 to 25	.1	60		
	Very wet meadow	500	, ~ -	0 to 5	1,5	750		
	Dry meadow	450		5 to 10	.5	220		
Eagle Valley	Dry meadow	500			.5	250		
Э	Rabbitbrush and big sage	140	15 to 25	10 to 15	.3	40		
Rose Valley	Rabbitbrush and big sage	60	20 to 35	20 to 25	.1	10		
Dry Valley	Rabbitbrush, some big sage	80	40 to 60	15 to 40	.1	10		
Panaca Valley	Greasewood and rabbitbrush	3,300	20	10 to 20	.1	380		
	Rabbitbrush	1,000	30 to 50	15 to 25	.2	200		
	Dry meadow	300] ← -	5 to 10	.5	150		
	Rabbitbrush	300	15 to 25	. 10 to 25	.2	60		
Lower Meadow	Saltbush	3,000		20 to 60	.1	300		
•	Greasewood and rabbitbrush Greasewood and rabbitbrush	1,100	20	20 to 50	.1	110		
	mixed with creosote bush Cottonwood, willow, and	800	10		.1	80		
<u> </u>	salt cedar	300		0 to 5	3.	900		
Total (rounded)		13,000		<u>+</u> -		3,600		

Table 11. -- Estimated natural evapotranspiration by phreatophytes of ground water in the Meadow Valley area - 1963

Valley	Active wells	Estimated pumpage (acre-feet)
Spring Valley	0	0
Eagle Valley	1	220
Rose Valley	3	1,200
Dry Valley	5	3,600
Patterson Valley	1	85
Panaca Valley	41	7,500
Clover Valley	0	0
Lower Meadow Valley		
Caliente area	8	1,900
Elgin area	2	950
Carp area	2	2,400
Rox area	1	80
Glendale	1	1,300
Total (rounded)	65	19,000

 Table 12, --Inventory of pumpage from large-capacity wells

 in the Meadow Valley area in 1963

The discharge from Panaca Spring is used during the growing season for irrigation. During the remainder of the year, a small part of the flow is used for stock watering. The remaining flow is discharged on the fields where it evaporates, adds to the soil moisture, recharges the ground-water reservoir, and drains from the area in Meadow Valley Wash. It is estimated that about half the flow ultimately recharges the ground-water reservoir; the remainder, about 4,000 acre-feet per year, is discharged by evapotranspiration.

Outflow: Ground-water outflow from the Meadow Valley area to the Muddy River valley occurs in two forms: underflow through the alluvium of

lower Meadow Valley, and leakage through bedrock.

Although the outflow cannot be computed by direct methods with the data now available, the total probably is several thousand acre-feet per year (see below)

Total Annual Ground-Water Discharge: The total ground-water discharge is the sum of (1) the evapotranspiration by phreatophytes, (2) the evapotranspiration by irrigated crops of water obtained from wells and springs, (3) the evaporation from wet areas during the nongrowing season, and (4) the subsurface outflow near Glendale. Of these four types of discharge, only the first two have been estimated by direct methods--for 1963 they total about 20,000 acre-feet. Because most of the areas presently irrigated by pumping were at one time areas of evapotranspiration, there probably has been only a very slight net increase in the discharge by these two processes.

Over the long term the recharge should equal the natural discharge. Thus, a crude approximation of the discharge by evaporation from wet areas during the nongrowing season plus subsurface outflow near Glendale (processes 3 and 4 above) is about 7,000 acre-feet per year; computed by the difference between the estimated average annual recharge of 27,000 acre-feet (p.20), and the discharge by process 1 and 2 above of about 20,000 acre-feet.

X.

Storage:

Under natural conditions, before the development of ground water by man, the ground-water system was in dynamic equilibrium; the long-term average annual recharge and discharge were equal, and the amount of water in storage remained nearly constant. This balance has been disturbed by destroying many acres of phreatophytes which use ground water and by the diversion of surface and ground water. The first tended to reduce discharge, the latter to increase it. Figures 5 and 6 show the trends of water levels in observation wells for recent years. The general trend is one of very slow local decline of ground-water levels, which indicates that water is being taken from storage and that, locally, discharge exceeds recharge. It is evident that the increased discharge by pumpage has more than offset the decrease in discharge caused by the removal of phreatophytes. The amount of excess discharge over recharge is not known; however, the very slow reduction of ground water in storage indicates it is small.

Storage apparently is increasing locally in the flood plain just north of Rox. Water level in observation well 125/65-13b2 shows a slight but general rise, as shown in figure 6.

Short-term fluctuations of water-levels within a period of a year indicate seasonal changes in ground-water recharge and discharge and the resulting short-term changes of ground water in storage. These fluctuations are illustrated in figures 5 and 6 during years in which several water-level measurements were made.

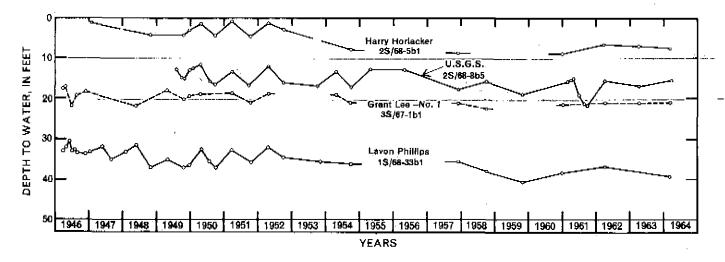
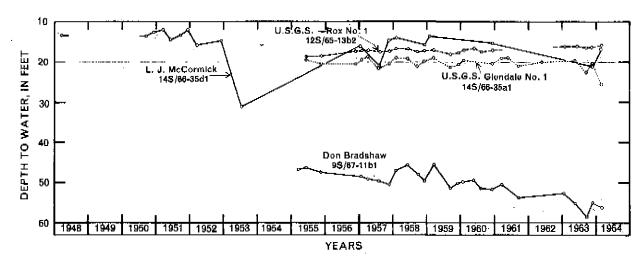



Figure 5.—Graph showing the slow decline of water levels in several wells of Panaca Valley

Recoverable ground water in storage is that part of the stored water that will drain by gravity from the ground-water reservoir. It is equal to the product of the specific yield of the deposits, their saturated thickness, and the area. The specific yield is the quantity of water that a unit volume of permeable rock or soil, after being saturated, will yield when drained by gravity. It may be expressed as a ratio or as a percentage by volume. In Meadow Valley area the average specific yield of the uppermost 100 feet of saturated alluvium probably is at least 10 percent. The alluvium underlies an area of about 800,000 acres. Therefore, the estimated volume of water stored in the upper 100 feet of saturated thickness of alluvium can be computed to be about 8 million acre-feet, or about 300 times the estimated average annual recharge.

The estimated amounts of ground water stored in the uppermost 100 feet of saturated alluvium in the several valleys in the area are:

	Stored water
Valley	(acre-feet)
Spring Valley	800, 000
Eagle Valley	180, 000
Rose Valley	80, 000
Dry Valley	360,000
Patterson Valley	1,800,000
Panaca Valley	1,400,000
Clover Valley	650,000
Lower Meadow Valley	2,800,000
Total (rounded)	8,000,000

Perennial Yield:

Perennial yield of a ground-water reservoir is the maximum amount of water of usable chemical quality that can be withdrawn economically each year for an indefinite period of years. If the perennial yield is continually exceeded, water levels will decline until the ground-water reservoir is depleted of water of usable quality or the pumping lifts become uneconomical to maintain. Perennial yield cannot exceed the natural recharge to an area. On the other hand, the yield may be limited to the amount of natural discharge that can economically be salvaged for beneficial use.

The Meadow Valley area is comprised of several areas which, in downstream order, are hydrologically interrelated. Moreover, Lake Valley, which is north of this area, contributes about 3,000 acre-feet of water per year to Patterson Valley. Accordingly, development in one valley may intercept the supply that otherwise would reach the next valley downstream. As a consequence, the determination of the perennial yield of each small valley is not warranted. Consideration is given only to the perennial yield of the entire area, even though it is recognized that substantial development to the north would decrease the supply reaching Patterson Valley, and large withdrawals in the Meadow Valley area in turn could reduce the supply of lower Moapa Valley.

The estimated average annual recharge to the area is 27,000 acre-feet. The perennial yield could be this large if the subsurface inflow to Patterson Valley were not intercepted in Lake Valley, and if all the subsurface outflow near Glendale could be salvaged. On the other hand, the yield might be less than 20,000 acre-feet if the converse conditions of subsurface flow should occur at sometime in the future. It is assumed that with substantial groundwater development in the area, most of the evapotranspiration loss could be salvaged. Because the inflow from Lake Valley and the outflow near Glendale are not likely to change appreciably in the near future, the preliminary perennial yield of the area is considered to be about 25,000 acre-feet.

Nearly all the estimated 12,000 acre-feet of net draft in 1963 (p. 21) was downstream from Spring and Patterson Valleys, where the estimated average recharge is only 8,000 acre-feet per year (table 10). Obviously, then, unless pumpage induces additional recharge from upstream valleys and (or) salvages substantial outflow to downstream areas, local overdraft will likely occur, particularly in Panaca Valley where gross pumpage in 1963 was about 7,500 acre-feet (table 12).

Chemical Quality:

Water plays a dominant part in the process of decomposition of rock and rock minerals. The salt beds and saline lakes, which occupy the lower parts of some of the closed valleys of Nevada, are the result of accumulation of the products of erosion by solution of the rocks of the surrounding areas. Deposition of minerals from circulating ground water has played a part in both the production of commercially valuable mineral deposits and in the deterioration of agricultural land.

Water acts as a solvent; its dissolving power is greatly increased by carbon dioxide, which is present in most natural waters. Rain water dissolves carbon dioxide from the air, and ground water receives even larger amounts from the decomposition of organic matter in the soil. The longer the percolation time and the greater the amount of rock material the water contacts, the more dissolved mineral matter the water is likely to contain. Therefore, in

the mountain areas where most of the recharge occurs, the water generally has a low mineral content. As the water percolates through the rock material, the dissolved mineral content of the water increases. Thus, by the time the water reaches the central part of the valley, the dissolved-solid content may have a wide range.

The use of the water for irrigation tends to increase the mineral content. Irrigation water which percolates down to the water table and is again used in irrigation would have an increased dissolved mineral content.

Twenty-five water samples, taken from streams, wells, and springs in October and December 1963, were analyzed as part of this study so that a partial appraisal of the suitability of the ground water for agricultural purposes could be made. Sample sites were selected for all the valleys of the Meadow Valley area where there is significant ground-water development. The analyses are listed in table 13.

According to the U.S. Department of Agriculture (1954), the most significant factors with regard to the chemical suitability of water for irrigation are the dissolved-solid content, the relative proportion of sodium to other cations, and the concentration of elements and compounds that are toxic to plants. Dissolved-solid content is commonly expressed as salinity hazard, and is defined in terms of specific conductance of the water sample. Salinity hazard is defined by the U.S. Department of Agriculture as follows:

Salinity hazard	Specific conductance (micromhos at 25°C)	Classification
Low	0 to 250	Cl
Medium	250 to 750	C2
High	750 to 2,250	C3
Very high	greater than 2,250	C4

No data are available on the sodium content or the presence of toxic elements in the water; however, specific conductance was measured for each sample. About half the samples were classified C2 and about half C3. In good agricultural practice excess soluble mineral matter from water left in the soil from irrigation is generally removed by leaching; i. e., by applying more water than what the crop consumes, and allowing the resulting solution to percolate to the ground-water reservoir. In most of the Meadow Valley area, where the water level beneath the irrigated land is beyond the reach of the crop root system and the soil is permeable, the leaching process should be effective in maintaining permanent productivity.

The sample having the lowest specific conductance was from Parsnip Wash Spring (sec. 5, T. 3 N., R. 69 E.) in Spring Valley. The spring is in the Wilson Creek Range at an altitude of nearly 7,000 feet (pl. 1). This

Table 13. -- Chemical analyses, in parts per fillion, of water from the Seudos Valley area

· · · ·

.

.

(Field analyses by the $0.8,\ \mathrm{Oeological}$ Survey)

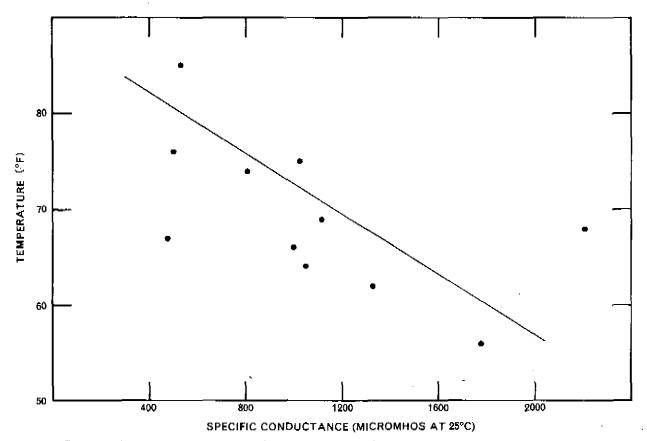
Location	Owner and/or mare	Dute collected	Cul- cium (Ca)	Magne- vium (Mg)	Bicur- bonare (ECO ₃)	Chloride (GL)	Total bard- ness	Specific conduct- ance (microwhos at 25°C)	pн	Repartic ^{1/}
				Spring Vul	tey .					
8ec. 7, T. 3 N., 3, 09 F.	Paranip Wash Spring	10+25-63	24	5,1	98	13	66	211	7.B	Surface water sample,
Sec. 7, T, 7 N., 8. 70 E.	Spring Valley Creek	10-25-63	51	10	265	39	160	575	7.K	Surface water sample taken ut bridge over work,
Sev. 25, T. 2 N., 7, 69 K.	Spring Valley Greek	10-27-63			· .			570		Surface water sample taken of gage site in Canyon between Spring and Kagie Valiey.
	· · · ·			<u>Eagle' Vul</u>	lay					
18769-1041	Faul Stiss well	10-25-65	95	17	412	65	267	. 927	7.4	
Sec. 15, 7. 1 5., 8, 69 8,	Spring Valley Greek	10-25-63		`		••		ъят		Surface cater gample taken in conyon between Ragle and Rose Valleys.
				Rude Vol	<u>1ey</u>					reader were and
Smc. 28, T. 1 N., R. 69 R.	Spring Valley Creak	10=29-63	72	15	342	48	242	711	0.1	Surface water sample taken in capyon butween Roce and Dry Valleys.
IN/69-21a2	James Ross well	10-25-60	73	9-К	294	43	222	67.2	7,5	
				<u>Dry V</u> all	cy					
540, 78, T. 1 S., K. 68 B.	Meadow Velley Wash	10-27-53	39	4.7	137	51	113	44 2	H . 7	Surface water sumple (Aken an month of Conton Canyon, Aixo: Garbonate (CO ₃), 10 ppm.
18/69-601	Delmue Brothers - North Wall	10=26+63	#5	17	480	55	257	794	7.5	
			<u>1</u>	uttersyn V	ul <u>lov</u>					
3K /68- 241	Tweaty-one with heiding corret well	10-23-63	42	9.0	179	sa	142	374	7.К	
	,			<u>Panacă, V</u> a					_	
15/68-33e1	C, Kenneth Luc - South well	12- 4-63	41	9.8	214	13	140	504	7.7	
28/67=2441	Roy Kurt = No. 1 well	10-27-63	82	25	258	117	307	1,179	7.3	
800.4, Т. 25,, А, ен К.	`Vonucă Spring	4-15-63	51	4.8	189	15	11K	401	.8.1	Warm Spring, Z miles woill'of Panara. A Silica.(SiO ₂), 51; Tren (Wu), 0; Sudium (Na), 35; Suddasiam (S), 6,1; Exificat (So ₂), 29; Finanida (K), 1.6; Njiyara (Su ₂), 2,6; Buchm (N), D.1; Dissolard acida, 2/1.
75/68-561	Darry H. Horiacker well	12- 4-63	61	л	354	60	290	1,050	7.6	
12:/68 -7 01	Panaga LDS Church well	12- 4-63	65	21	239	125	250	X L Ú	• 7.5	
25/(JI-065	U.S.C.S. = Observation well .	12- 3-60 6-1940	56 22	31 26	619 1,130	107 282	256° 154	1,700 8,390	/.6 • -	Heli mile west of Panara. Also: Stitza (Stop), 85; Solida (Ma) 1 Petasaina (K), 795; Sulfate (SOA), 507; Thoy(as (V), 17; Milede (MO,); 0; Sor (B), 1.0; Disselved Solida, 7,280.
25/68-500	Delanc Brothers - North well	12= 4-63	61	31	308	63	282	1,020 j	7.8	
25/45-664	Delone Brothers - South well		1.14	6a	500	174	365	2,240	7.5	
25768-16d2	Don Madsworth - No. 1 well	10-28-63	157	24	462	127	488	1,740	7.4	
28/08+1941	Dom Wedgwerth - No. 2 well	10-28=53	111	18	'4z6	71	150 .	1,330	7.5	
35/67-1b)	Crant Lee - No, 1 well	12- 4-03	73	31	328	**	310	1,010	1.7	
3 5/ 87-28c1	Ctexter Oxborrow = No. 2 4011	12- 4-63	24	7.5	183	31	91	K HO	9.2	
				<u>wer Meadou</u>						
45/66-25±1	$E \oplus pry$ Comeway - Middle well	12- 5-63	70	15	14D	37	230	793	1.7	Two miller court of Callente.
45/66-2361	Rmary Consway - Lewer well	12- 5-63	50	11	272	26	125	592	7.4	Three ciles south of Californe.
48/67-1861	Weary Concury - Upper well	12- 5-63	54	15	260	21	174	522	7.7	Nathumilerwest of Colienter
/5/6/-2101	Jamas W. Brüdshöw well	17- 3-63	43	14	340	43	105	812	я,с-	
198769-1361 172766-39d1	Mildred Breedlove sell 5. J. McCarmick Woll	17- 5-63 10-10-49	109 172	67 80	264 250	95 .32	546 538	1,540 1,450	~ 7.9 	 Near Rox, Hevedu. Af.Clondmin. Also: Silion (5102), 27; Sodium (No) + Porsentum (K), 62; Silint (502), 515; Silintu (MOr), 8,8; Dissolv solide, 981.

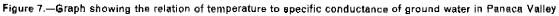
1. Morer resperature shown in table 15.

2

was the only water sampled that had a salinity-hazard classification of Cl. However, it is likely that water from other high-altitude springs of Spring Valley would have a similar classification.

Samples from Meadow Valley Wash above Condor Canyon showed a gradual increase in specific-conductance values downstream. The increase was from 575 micromhos in Spring Valley to 711 micromhos in the canyon between Dry and Rose Valleys. The samples from wells in the same area generally had slightly higher values, reflecting the concentration of salts as water was evapotranspired.


Surface water in Condor Canyon is less mineralized than water farther upstream, and had a specific conductance of 442 micromhos, indicating that the flow probably is derived in large part from a source other than the alluvium. In this case, the surface flow is largely from the thermal springs at Delmue Ranch just upstream from the canyon in Dry Valley. In Patterson Valley the single stock well sampled had a specific conductance of 374 micromhos.


Specific conductance of water from 11 wells in Panaca Valley ranged from 480 to 2,240 micromhos. The sample from 15/68-33cl, which is within a mile of Panaca Spring, had a specific conductance of 508 micromhos. The dissolved-solid content of the well water is very similar to that of Panaca Spring, as shown in table 13. This suggests a probable common source. The remaining samples from the valley had higher specific-conductance values; except for the sample from flowing artesian well 35/67-28cl at the south end of the valley, which had a specific conductance of 480 micromhos. The source of this low specific-conductance water is not known; however, it probably is from bedrock by way of the alluvium near the well. A test well drilled in the same area penetrated noncarbonate bedrock at a depth of 166 feet (Phoenix, 1948, p. 106).

A large variation in ground-water temperature was measured in Panaca Valley. (See table 15) Normally, in the absence of warm-water sources, the ground water at shallow depths has a temperature near the average annual air temperature, which at Pioche is 51° F, at Caliente is 53° F, and at Overton is 66° F. However, the temperatures of 13 ground-water samples ranged from 56° F to 78° F. It is apparent that warm water from deep circulation is mixing with the water otherwise normally in the alluvium, thus causing the higher ground-water temperatures. Panaca Spring water, having a temperature of 85° F, is assumed to be undiluted deep-circulation warm water. The coldest water sampled, 56° F at well 2S/68-18d2 just south of Panaca, probably most nearly represents the water normally in the alluvium.

The mixing should also affect the chemical quality of the water. Figure 7 is a graph showing the relation of the specific conductance to the temperature of these mixed waters. The graph suggests that two distinct sources of water are present; a warm, low mineral-content water probably transmitted to Panaca Valley in the carbonate-rock system and a cold,

28,

somewhat more mineralized water normal to the valley alluvium. These two waters mix in varying amounts in Panaca Valley, producing variations in temperature and mineral content.

In lower Meadow Valley, six ground-water samples were taken. Dissolved-solid concentrations increase southward along the wash. The values of the specific conductance of water from three wells on the Conaway Ranch near Caliente were 522, 592, and 793, respectively. The first two are classified as C2 and the latter as C3. The samples taken from wells on the three alluvial plains near Carp, Rox, and Glendale, as shown on plate 1, had high values and are classified C3.

Water from well 45/66-24al had a much higher specific conductance than wells 45/67-18bl and 45/66-25bl a few miles distant. The well is where the depth to water is small and where use of water by phreatophytes is large.

In the southern part of lower Meadow Valley, mineral content of the ground water is high for several possible reasons: (1) the length of percolation time and the amount of rock material the water has contacted in its migration downgradient are large, (2) some of the water has been recycled several times through the soil by irrigation and natural flow, and (3) a large amount of evapotranspiration takes place locally in the area, causing increased mineral concentration.

Near Glendale, the water quality seems to be deteriorating with time. Bourns (1963) reports that the specific conductance of water samples from well 14S/66-35dl has increased from 1,450 micromhos in October 1949 to 3,800 micromhos in May 1962 and 4,400 micromhos in December 1962. If this reported trend continues and the samples are representative of the ground water in the area, its use may become unsatisfactory for general irrigation purposes.

DEVELOPMENT

Present Development:

Agriculture started in the area nearly 100 years ago when settlers came to Panaca Valley from Utah. Early irrigation was limited principally to the use of Panaca Spring and flow in Meadow Valley wash. Not until 1940 was the first irrigation well drilled and used. Since then many irrigation wells have been drilled throughout the Meadow Valley area.

Surface Water: Surface water is utilized where there is flow during the growing season. The areas where such flow is used are Spring, Eagle, and Rose Valleys, along Clover Creek, and in lower Meadow Valley a few miles southwest of Caliente.

In Spring Valley, about 1,000 acres of native meadow is irrigated from the flow of local springs in the alluvial plain. The meadow area is protected by the Hollinger debris dam, located in sec. 20, T. 3 N., R. 70 E. An excess of water is available, resulting in outflow to Eagle Valley where generally all of the surface flow is diverted by ditches to irrigate about 500 acres of pasture and meadow. When needed, an irrigation well supplements the surface flow. At the south end of the valley ground water discharges into the wash where it flows through a bedrock canyon to Rose Valley. Here again the stream is diverted by ditches to irrigate about 300 acres of alfalfa and pasture. Three irrigation wells supplement the supply. Normally, flow in the wash extends into Dry Valley, only in the winter and early spring.

The flow in the wash at the canyons below each valley in late October 1963 was: Spring Valley, 4.9 cfs (cubic feet per second), Eagle Valley, 2.1 cfs; and Rose Valley, none. These data and additional streamflow measurements are summarized in table 7 and the measurement sites shown on plate 1.

The springs at the Delmue Ranch in Dry Valley are used to irrigate hay and pasture at the south end of the valley; any excess water flows through Condor Canyon and is diverted for irrigation at the north end of Panaca Valley. During the summer and fall the flow normally is small, and in late October 1963 was measured as 0, 8 cfs.

Along Clover Creek, 10 to 20 miles southeast of Caliente, springs cause continuous flow in the creek. This flow is diverted to irrigate about 300 acres of crop land. A few miles south of Caliente in lower Meadow Valley, perennial streamflow is also used to irrigate hay and pasture.

Ground-Water: Ground-water development initially consisted of the utilization of water from springs. Panaca Spring still is an important source of ground water (table 9). In 1940 the first successful irrigation well in the area was drilled (well 35/67-1bl, table 15) south of Panaca. It is still used by the owner, Grant Lee. In 1948, eight irrigation wells pumped an estimated 743 acre-feet of water (Phoenix, 1948, p. 71). By 1950, 16 wells pumped an estimated 2,600 acre-feet annually. In 1951 pumpage had increased to about 3,500 acre-feet. The number of wells and the amount of water pumped has continued to increase, and in 1963, 40 irrigation wells pumped an estimated 7,000 acre-feet to irrigate about 2,000 acres of land in Panaca Valley.

Wells are used to irrigate crops in all the valleys, except Patterson, Spring, and Clover Valleys. In 1963, 19,000 acre-feet of water was pumped from 60 irrigation wells and 5 public-supply wells. Most of the water was used for hay and pasture. Near Rox, well 12S/65-13bl was used to irrigate fruits and vegetables. The pumpage for this purpose was only 77 acre-feet in 1963. In 1964 the owner plans to use an additional well (12S/65-12cl).

Table 14 shows that the estimated total acreage under irrigation from both surface-water and ground-water sources in 1963 was 6, 100 acres.

Potential Development:

Surface Water: Surface runoff that reaches the mouth of Meadow Valley wash and is discharged into the Muddy River is lost for development in the Meadow Valley area. Normally the flow in the wash is too small to extend to its mouth. Generally it is diverted and used for irrigation or in part percolates into the alluvium and adds to the ground water in storage. Therefore, additional surface-water development in the area might best be directed toward preventing the loss to the Muddy River of surface water from spring snowmelt and flash floods. Because this water is in contact with the rock and soil only while it is draining off the land, the water probably is of low mineral content.

The storm and snowmelt runoff that causes flow to the mouth of the wash is not usable for systematic irrigation of crops, because the flow is intermittent and is unpredictable in frequency and duration. From a watermanagement standpoint, this water might be saved and stored by ponding it on permeable alluvium to achieve maximum infiltration to ground-water storage. Maximum infiltration could be obtained by damming the water on flood plains, where the water would be spread over a large alluvial area. The water could be recovered principally by wells for use in the area downgradient from the reservoir. During periods when water was in the reservoir, direct diversion could be utilized.

Ground Water: The local decline of ground-water levels in Panaca and lower Meadow Valleys, as shown in figures 5 and 6, indicates that the amount of ground water in storage is decreasing because the total discharge is slightly larger than the total recharge in this part of the area. Therefore, in order to salvage additional quantities for beneficial purposes within the limits of perennial yield, it would be necessary to reduce the nonbeneficial consumption or underflow from the area.

The evapotranspiration by most phreatophytes, an estimated 3,600 acre-feet a year, is generally considered to be a waste of water. Continued development of agriculture in these areas probably will have two affects: the clearing of phreatophytes for crops and the lowering of the water table beyond the reach of their roots by increased pumping for irrigation. In both cases, the effect will be the salvage of some water that is now wasting.

In Panaca Valley the growing season averages about 170 days a year. During the remainder of the year, about 200 days, Panaca Spring discharges about 4,400 acre-feet of water. It would be worthwhile to investigate the possibility of salvaging a large part of the winter discharge for use in Panaca Valley during the growing season.

Ground-water outflow to the Muddy River area could be reduced if the present gradient of about 28 feet per mile could be reduced by lowering of the water level at Rox in relation to the levels at Glendale in the Muddy River valley. The present outflow probably is several thousand acre-feet per year.

The Nevada Power Company is developing a plan to build a powergenerating plant near Glendale and has proposed the exchange of water from wells drilled by the power company in the Meadow Valley drainage area for water from the Muddy River in Moapa Valley (Bourns, 1963). The feasibility of the plan would depend in part on the long-term adequacy of the supply of satisfactory-quality water from the power company wells. At this writing, the limited data available does not permit specultation as to the future quality characteristics of the ground water in the vicinity of the potential well field near Glendale.

Table 14 summarizes the present and potential agricultural land use and the irrigation water needs for the Meadow Valley area. The data presented are modified from information in publications prepared by the Cooperative Extension Service, Max C. Fleischmann College of Agriculture, University of Nevada and the Lincoln County Rural Areas Development Committee (1963) and Shamberger (1954). With full development of all the land that can be irrigated profitably, an estimated 41,000 acre-feet a year of water would be consumed on about 11,000 acres. In 1963 the estimated irrigated land was 6,100 acres. At full development the limiting factor would be the amount of water available rather than the amount of land suitable for irrigation.

Additional water would be made available for irrigation in Lower Meadow Valley if the recommendations of the U. S. Bureau of Reclamation (1962) for an exchange of water between this area and Lower Moapa Valley are fulfilled. The proposed Moapa Valley pumping project would provide water for the presently irrigated lands in Lower Moapa Valley by pumping the required quantity of water from Lake Mead. An equivalent quantity of Muddy River water would be made available for transfer to Lower Meadow Valley for the irrigation of an estimated 3,000 acres of land in this area.

The valley of largest potential development is lower Meadow Valley, where it is estimated that 3,000 acres of additional land can be used for irrigation. Most of this land is between Rox and Glendale. The southern part of Panaca Valley still supports about 4,000 acres of greasewood and rabbitbrush, most of which could be cleared for production. Here the estimated potential irrigated land is about 1,000 acres. It is yet to be determined whether enough good quality water will be available for the full development in these two valleys and the remaining valleys of the Meadow Valley area. Further studies are proposed in a later section of this report that would help to expand the needed knowledge of the water resources of the Meadow Valley area.

32.

. .

	Irrigated	Potential irrigated	Land suitable		al annual requirements		al annual consumption
Valley	land in 1963 (acres)	land (acres)	for irrigation (acres)	Rate (acre-feet per acre)	Total (acre-feet)	Rate (acre-feet per acre)	Total (acre-feet)
Patterson	0	(unkown)					• •
Spring	1,000	0	1,000	4.0	4,000	2,5	2,500
Eagle	500	100	600	5.0	3,000	3.0	1,800
Rose	350	175	525	5.0	2,625	3.0	1,575
Dry	650	450	1,100	5.0	5,500	3.0	3,300
Panaca	2,000	1,000	3,000	5.0	15,000	3.0	9,000
Clover	300	250	550	5.0	2,750	3.0	1,650
Lower Meadov	v 1,300	3,000	4,300	7.0	30,100	5.0	21,500
TOTAL (rounded)	6,100	5,000	11,100		63,000		41,000

Table 14.--Estimates of present and potential agricultural land use

and irrigation-water needs in the Meadow Valley area $\frac{1}{2}$

÷ 1

1/ Data modified from Cooperative Extension Service, Max C. Fleischmann College of Agriculture, University of Nevada and the Lincoln County Rural Areas Development Committee (1963) and Shamberger (1954).

PROPOSALS FOR ADDITIONAL STUDIES

In accordance with the request of Hugh A. Shamberger, Director, Nevada Department of Conservation and Natural Resources, suggestions for future studies in the Meadow Valley area are listed below.

1. The reinstallation of the gaging station 4 1/2 miles south of Caliente on Meadow Valley wash is suggested. The station would provide the needed data on the amount and distribution of stream discharge, and its relationship to flow from ground-water sources and to storm and snowmelt runoff with continued increase of agricultural development in the area upstream from the gage. The data would also be useful in evaluating and managing the water resources of lower Meadow Valley.

2. To utilize fully and manage the total water resources of the Meadow Valley area, it is necessary to know the magnitude of ground- and surface-water outflow and water-quality changes near Glendale. The groundwater outflow evaluation would require test-well drilling, instrumentation, and data collection for a period of a few years. The surface-water outflow evaluation would probably require the maintenance of a gage near Caliente (as mentioned in proposal 1, above) and the installation of a gage between Rox and Glendale. Data would have to be collected for a period of several years before a satisfactory evaluation could be made. Water samples should be collected and analysed at least annually.

3. An evaluation of the two types of ground water in Panaca Valley could provide a better understanding of their sources and development potentials. This information could be used to utilize selectively the best quality of water in the area.

4. Water-level measurements should be continued in selected observation wells to provide information on changes of ground water in storage. This information will be needed in future evaluations of the water resources and of water development.

DESIGNATION OF WELLS

In this report the number assigned to a well is both an identification number and location number. It is referenced to the Mount Diablo base line and meridian.

A typical number consists of three units. The first unit is the township north or south of the Mount Diablo base line. The second unit, a number separated by a slant line from the first, is the range east of the Mount Diablo meridian. The third unit, separated from the second by a dash, is the number of the section in the township. The section number is followed by a lower case letter, which designates the quarter section, and finally, a number designating the order in which the well was recorded in the quarter section. The letters a, b, c, and d designate, respectively, the northeast, northwest, southwest,

Table 15.--Records of selected wells in the Headow Valley area

Denor and/or name: SLM, Borcou of Lund Management One of outer: DS, public supply: D, domentic; T, Swrightlow: - Menourlus point: TO, Lop of casing; HC, hold in caning; O, observation; S, stock; Ind, inductrial

AirStude: estimated from Lopographic maps

urs, hele in pump base; PC: plug to varies

Water tevel: N, meaninged; N, reported

Romarks: Number in $t_{\rm OB}$ grader in files of the Nevede State Engineer

Well number	Over and/or	Unte	Dench	Dismeter of casing	Principal water-booting	ALLINA	Serveriz Description	ig point Above land	• Wat Delow meas-	ат і M	level Date	Teaper-	Lae	
and location		drilled	(feer)	(inches)	zone (feet)	(tmet)		AUTTACA (Teat)	uring point (feet)			eture ("F)		
4N/66-2al	BLM, Bodge on 11	9-1937	301	6		5900	τ¢	2.5	197.5	н	/-18-63		5	Teg 303
4N/66-14d1	BIM, Seeding well	7•1958	303	6	230-235	5046	τc	.5	L63 166.7	я Н	7-1958 S#28-63		5	Log 6189
48/66-2621	Twenty-one Mile coll		Lée	4		1771	τα	ē.	122.7	ы	1=18+63		5	Chemical analysis, roble 1)
SN/69-1351	BLM, Spring Volley Holding Correl gell	1941	206	6		A280	TÜ	1.9	182.1 177.1	R M	7-31-46 10-25-63		5	
4N/69-36al	Unknown	1963	1.06	6		6200	TC	1.8	71.6	м	10-25-61		8	
3 0/66- 281	BIM, Fwenty-one Mile Bolding Corral well	17-1967	140	6		5725	τc	a	See recarks • 92.4	R M	4~17-16 10#23#63	61	8	Log 305. Weber level 92.4 test messured in replaced well.
38/66-841	PLM, Priotol Wash well	2054	220	в		5960	TC	1.5	dry	м	10-23-63		5	
3W/06-23d1	fifteen-mile well	11-1937	M7	v		5630	тс	-4	42.1 42,8 47,4 42,3	R N N	7-26-46 12-07-60 2-21-63 10+23+63		5	
5N/67-461	мти	1-1958	382	6	340-345	8040	·		340	к	1×1958	••	a	Log 4001
N/70-7∧1	E. Lytle		30	ĥ		6060	те	0	s.	R	1946	58	5	See Water Resources Dull, 7 p. BB for chemical analysis
30/70-761	Deknowe			24		6070	тс	1.0	â.1	н	10-25-63		5	
3m/70-7ai	Noy E. Lytle	9-1948	96	12	35+93				47	Ħ	9-1948		1	Log 576. See water.
IN/20-742	NUM, Muite Rock well	1953		в		6050	TC	1.5	23.7	м	10+20=63		Б	In Spring Vallay.
N/70-2011	BLM		77	6		6080	10	.8	51.8	н	10-25-63		5	•
n/67=16a1	Sight-mile wall		4.8	6		5580	TC	a	22.2	н	10-24-63		s	
N/68-27#1	nim.	12-1937	40	8	••	5980			16	R	12-7937		8	Leg 306.
N/67-15a1	Plação Minea Co.	1-1938	363	10	365-563	1770	τc		360.	k	3-1963		•	Test pumped 350 gpm at 500 feet.
N/69-1011	Youl Bliss	7-1958	107	12	97-107	5590	90°	n	8.2 8.0	K E	/#1958 10#25-63		1	Log Alb/. In Kagie Vallev. Chemical analyzis, cable J
N/69=21m1	NeCrosky Bros Orchard well	7-1961	114	14	34-115	9550	••		17.3 21,1	R И	7-1967 10-25-60		τ	tog 6041. Keplscement well
12/69-2182	James Roza	7-1963	110	14,10	60+88	3550			26	R	7-1907	48	7	Log 7370. Chem. mail., table 13. Replacement well. Test pomped 630 gpm. at 30 feet.
8/69-2101	McGrosky Brost, - Fast well	2941	88	10						-			T	
N/69#31c1	Chexter Ciborrow - No. 1	2-1496	1,20	14,10	82-11A	5190		1.3	46.5 52.4	R N	2-1956 10-26-63		T	1-15 3-343, Беск ромина) 900 g(m, эт 67 бест,
IN/60-ятех	Chester Oxborrow - No, 2	8-1959	170	16,10	67=98	5200			36	R	8-1959		1	tag 6785. Test proped 850 gpm at 100 fact.
15/68-1281	Civillan Convergation Corps		76	8		5250	τC	o	29,5 29,2	R M	3-21-40 10-26+63	59.5	υ	See Nuter Resources Sull. 7 p. 88 for chemical stalysi In Dry Vellay.
18/68+28±1	G. Kanneth Lee - Morth wall	12-1951	144	17,10	115-170	4907	10.	.5	45.5 44.9 44.9 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	EMHXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	$\begin{array}{c} 3-01-46\\ 6+11-06\\ 9-25-07\\ 12-20-47\\ 4-25-48\\ 9-27$		I	Tag IKIB. Test pumped 150 gpa at 90 foor, Replaced will detlied in 1942,
IS/66-3243	Kennoth D. Lev - Scoth well	12-1954	75	12,10	44+68	481U			35 39,4	R K	12-1954 12-04-63	Varm.	Ŧ	Jog 2017, Beplacompar well, Test pumped 600
18/68-3362	Kenneth D. Les - North well	12-1954	112	12	77-100	4860			38 42.0	M M	12-1954 12-04-63	••	ı	gyon at 45 foot. Log 2810. Test pumped 800 gpm at 75 feet.

Well number	Owner and/or	Valu	Depth	Disacter of essing	Trincipal water-bearing	Airinude	Description	ag poinn Above land	Below meas-	ret 7 M	Tiore	Теврел -	U.u.	Remarks
and location	neme	drilled	(iest)	(inches)	zone (test)	(fear)	Description	Aortoec (feet)	urthe scho- urthe polet (feet)		jan r	atura (F)	0040	
1607-3361	taron Phillips		120	10		4870	1 0 0	- 3	77.8 73.7 73.7 73.7 73.7 73.7 73.7 73.7	RNEVERSENTENTENTEN	7-01-66 7-28-66 11-02-74 5-23-67 8-23-67 8-23-67 9-21-63 9-21-63 9-21-51 9-21-51 9-21-51 9-21-51 9-21-51 9-21-51 9-24-54 10-23-57 9-10-59 9-22-57 9-10-59 9-22-1-62		-	Acc Hoter Repources boll. p. 102 for log.
18/68-33e1	C. Kaunsth Las - South wall	6=1952	106	12	6-40	4860			6,2 14.1	R M	6-1952 12-04-63	76	L	iog 1946. Replayersen well. Test pumped 1400 gpm.
15/66-3362	Rufus Rurar	3-1959	176	17	100-122	4920	••		26	ĸ	3-1939		L	Бод 44/1.
15/69-641	Chearer Oshoryow - Yo, 3	10-1967	174	14	40-89	5180			27	ĸ	10+1965		T	Log 6811. Test pumped 900 gpm at 80 feet.
15/69-601	Delmié Prothèrs - Nest well	1963		14		\$190	rc	ڌ.	21.6	н	10-26-63		τ	To Day Valley.
18/60-641	Deimum Brothers - North wall	10-1952	100	12	42-92	5190			17	Ħ	10-1952	49	7	Log 208). Chem. anal., gaile 15. Test parged 800 gpm at 60 fact.
15/69-741	Delmue Dyorbeyn - Sourh well	8-1954	100	12	63-89	5170			12 14.a	H F.	8+1934 12+1963		T	Log 2691. Test pumped 906 gpm at 60 feet.
9/67-7401	Roy Fort - No. 2			14		4700	HC	- 8	9.1	м	10-2/-63		I	··· /
1 5/6/- 24d1	Roy Xurt - No. i									-		69	S, I	Chemical analysis, table
5/67-2581	Thomas Elay - No. 2	10-1960	(an		143-100	4660			28	к	10-1960		L	10g 5471.
5/67-2542	Parcell Andhers	1-1961	150	12,6	179-132	4670			28.5	5	3-1961	. -	T	Log 3808.
28/67-25el	Themas Cley - No. 6	2-1961	135	14	77490	4650			27.5	R	2-0961		1	156 bb2b. Text pumped 900 gpm ar 70 feet.
28767=25ez	Chemmas Clay - No. 7	2=1961	187	14	145-185	4650	прв	0	26.7 28.8	R M ·	2-1961 IG-25-63		Ţ	Leg 5708. Tase pumped 700 gpm as 70 test.
29767–264 t	Thomas Clay - No. 5	12-1950	115	15	75-101	46.50			29	R	17-1960		Ţ	Log 5625. Text pomped 350 gpm of 70 feet.
25/67-2642	Thumas Clay - No. R	4-196)	65	10	28-47	4650			28.5	ĸ	4-1963	••	27,1	Log /145. Test pumped 120 gpm at 50 feet.
28/67-35-1	Thomas Clay - No. 4		193	14						-			T	
29/6 0- 5al	Lester Mothews - Pastore well	7-1959	160	14	60=75	4790		••	3.9	ĸ	7-1959		1	Log 4/65. Test pumped 325 gpm st 36 fuct.
28/68-561	Navyy II. Torlackar	1948				4800			5,8 4,7 3,7 1,6 4,6 1,1 4,6 3,1 8,1 8,1 8,1 8,1 8,7 4,8 7,3	MARANNANANANAN	$\begin{array}{c} 12 - 30 - 47 \\ 9 - 97 - 58 \\ 9 - 15 - 69 \\ 12 - 14 - 59 \\ 3 - 20 - 30 \\ 3 - 12 - 50 \\ 3 - 12 - 50 \\ 3 - 12 - 50 \\ 3 - 12 - 50 \\ 3 - 12 - 50 \\ 3 - 12 - 50 \\ 10 - 12 - 51 \\ 10 - 51 $	6.5	т	Tote prograf (OR gyda, Provinci wenny wat), L. Conne(11,
76/6H-5x4	Lotter Marheux - Dainy kana Seriganian well	6-1949	158	14,10		4765	Môß	1,4	18 19.6 19.9 17.4 20.9 18.6 17.1 18.6 21.6 21.6 21.6 21.7 21.7 21.7 21.8 21.5 22.4 22.8	REFERENCE MARKEN NUMBER	$\begin{array}{c} 0 - 1949\\ 0 + 19 + 49\\ 3 - 20 + 50\\ 3 - 20 + 50\\ 3 - 12 - 50\\ 3 - 14 - 51\\ 3 - 7 - 57\\ 3 - 14 - 51\\ 3 - 7 - 57\\ 3 - 14 - 51\\ 3 - 7 - 57\\ 1 - 7 - 57\\ 3 - 17 - 56\\ 3 - 10 - 75\\ 3 - 19 - 59\\ 1 - 7 - 59\\ 5 - 19 - 59\\ 1 - 20$	72	±.	Log 973
8/68-501	Panaca Formstead Water Compuny	1-1053	170	12	120-170	4760			12.2	R	1-1953		rs.	Log 2148. lest pumped 1800 gpm st /C teel.
15/68-5cl	Lester Mathews - Reservoir well	4-1957	117	12	67-78	4780			26,0	R	4-1957		т	Tag 1710,
5/65-641	Leoner Mathews - Wear weil	5-1962	160	14	20-03	4790			48 0.3	K K	5-19%2 5-1942		1	10g 6552.
G/66-7	There is follow	10-1961	90	6	7.2 - 9D				6.7	R	16-1961		5	Tag 6168,

.

.

الجور 1 مار ال الله المحمد والا ال

•

				Diameter	Principul		Mensurin	n yvint			eve)	~		
Wali number and location	Chiner and/or name	Deta drilled	Depth (test)	of casing (inches)	water-bearing rong (feat)	Altilude (fmat)	Description	Above land surface (test)	Below meas- uring point (feet)	H DE R	Dáte	Traper- atore ("r)	Use	Bornetz le 4
8/68-7al	Panaca LDS Church	5-1960	135	14	60-9 M	4730	ĦC	0.5	18 21.1	R M	5-1960 12-05-60	74	T	log 3177 Test pumped 900 gpm at 50 fest.
28/68-743	Russay Lee	5-1948	105	8	17-105	4730	тс	1,0	15.8 13.2 15.6	м м н	10-06-48 3-21-69 9-19-49		τ	Log 113. Test pumped 300 gpm with 17 fest drawdown.
									13.1 16.3 13.5 16.6 17.0 16.0 17.2 13.9 16.5 17.8 17.8 17.1 17.8 17.1 17.8	м и и и и и и и и и и и и и и и и и и и	3 + 20 + 50 6 - 22 + 50 3 - 14 - 51 9 - 13 - 51 9 - 11 - 52 9 - 11 - 52 9 - 11 - 52 3 - 18 - 54 9 - 09 - 56 3 - 23 - 55 3 - 18 - 54 9 - 23 - 55 3 - 18 - 54 9 - 23 - 55 3 - 18 - 54 10 - 21 - 57 9 - 07 - 58 12 - 07 - 58 12 - 07 - 58			
:808-6N7	Pioche LDS Church			10								72	Т	
15/68-853	U.S. Geological Survey	6-1949	110		105-110	4720	тс	٩.0	17.6 14.7	M M	6-28-49 9-19-49		- D	Log V54. Chem. modi., rable 13.
									11.7 15.7 76.1 12.8 16.4 12.7 16.4 12.7 16.4 12.7 13.44 15.4 16.8 19.0 15.7 16.8 19.0 15.3 16.8 19.0 15.3 10.4 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	нии и и и и и и и и и и и и и и и и и и	$\begin{array}{c} 3 \ge 20 > 52 \\ 6 \ge 22 > 50 \\ 9 = 12 > 50 \\ 9 = 12 > 51 \\ 3 \ge 12 > 51 \\ 5 \ge 12 = 51 = 51 \\ 5 \ge 12 = 51 = 51 = 51 = 51 \\ 5 \ge 12 = 51 = 51 = 51 = 51 = 51 = 51 = 51 =$			
Y5/6 0−8 ×1	lirban Gole					4715	ΠΕΝ	1.0	21.0 7.6 10.4 7.3 11.7 7.3 11.7 11.0 11.0 11.0 11.0 12.2 12.6 12.5 14.2 10.9 9.34	M M M M M M M M M M M M M M M M M M M	9-19-49 3-20-50 6-79-50 3-24-51 9-13-51 9-13-51 9-13-51 9-13-51 9-08-54 10-23-57 9-05-58 9-10-59 12-07-60 2-21+63		ı	Proviously constd by D. J Konnow.
8/68-8c2	Crout Lee - North Well			8				-•		•			I	
5/68-8c0	Delawe Drochers - Nogth well	12-1959	120	14	/4-90	4720			11	R	12-1999	75	Ŧ	Log 6994. Chem. anal., Lable 13.
5/68-864	Delmue Brothers - Sauth well	11-1960	180	14	117-147	4710			$^{6.1}_{11.8}$	R M	11-1480 12-03-63	ья	1	Tag 5620. Teel pumpud 700 gam of 70 feet.
5/68=1761	John Wadsworth	11-1905	197	12	1/30-152	4710			2.2	R.	11-1935	••	T	Log 3241.
5/68-1841	Don Audbers	1-1952	170	12	130-160	4700			4.4	R	1-1957		T	Log 1644. Test pumped 7100 gpm wird 44 test dzawdowa.
'S/66-18d2	Don Madaworth - No. 1	4-1957		14	148-184	4705			7,3	R	4-1957	56		Log 3756, Chem. anal., Table 10,
S/66≖19±1	Don Wadsworth - No. 2	6-1961		14	75-105	46.95			в	R	6-2061	62		Lag 3934. Chem. andl., Eable 13.
15/68-19e1	Any Sathews • West well		125	12	85-125	6685			Sam Tamprky		1+1936	••		Lag 3301. Flowed 50 gym in 1955. 1 - 5014
S/68+19e2	Any Mathews - East well	1-19AD	178	12	1.17 - 158	4675	'		4.9	ĸ	1=1960	61		Log 5014.
8/69-611	R <u>LM</u> - Demonssiell		300	ħ		5450	тс	د.	See remarks	м	12-03-63		s	Dopoh no waref greater Linas 200 Govt.

Table 11.-- (continued)

, **r**

•

Well number	Owner and/or	Date	Depth	Discerer of casing	Principal warey-bearing	Alciente	Heasuri Descripti-	ig point	Man Selow stars	<u>er</u> 1	evel Date	Temper -	Uz o	Report
and location	0.0 MP	dvillec	(test)	(inches)	zone (feet)	(feet)		AUTTACA AUTTACA (feer)	uring point (feet)		TALC	Longer- store ("r)	Qui.	BUCKEY F C
JS/67-161	Grant Iag - No. j	1340	225	10		4630			17.2 21.8 10.5 21.8 17.0 20.1 19.1 18.5 18.5 71.0 16.5 19.2 20.8	New New Yorks and a sec	$\begin{array}{c} 7-01-4b\\ 6-13+4b\\ 11-02+4b\\ 4-27+4b\\ 3+21+49\\ 9-19-40\\ 17-14-49\\ 3-20-50\\ 3-20-50\\ 3-14-31\\ 4-12-51\\ 3-25-52\\ 3-18-54\\ 0+28+54\\ \end{array}$	64	T	Chem. anni., tabia iš.
	I N. A	14 1014			16 198	14 m			71.3 22.4 21.5 20.9 21.2 21.7	м M н м м н м н	10-23-57 9-07-50 12-07-60 2-70-62 2-21-63 12+05-60			ton 2024 Munit
35/67-162	Grant Lee = No. <u>2</u>	10-1955	103	12	94-13E	4620	••		27,9	R	10-1455	cold	Ţ	Log 3224. Replacentar Tast pumped 250 gpu of 105 feat.
35/57-241	Grant Les	4-1958	158	12	132-156	••	••		24.3	R	4-1958		Ι	Lo <u>x</u> 4067.
3867=202	William M. Plerce - No. 1	4-1963	16.9	10	137-148	4610			21	H	4-1963		I	<pre>Log 7143, Test pumped 480 gpm at 90 feet,</pre>
38/67=11ui	Million H. Pierra - No. 2	4-1983	204	14	130-182	4600			15	к	4-1563		I	T.ng 7146.
35/67-2261	Chesrer Oxborrow - No.)	4=1962	175	14	138-155					-			2	Log 6551. Test pomped 600 gpm st 70 fast.
38/67-2801	Cheargy Oxborrow - No. 2	11-1962	118	14	45-9A	0460		•-	`See renatr≽s	R	11-1962	6/	1	Log 6/67. Flows 100 gr Test pumped 1,000 gpm og 60 foor.
38/71-31h)	лтм	3-1963	265	6	725-265	6100		••	214	Ŗ	1-1963		5	Log 7087.
45/65-34a t	Emory Conswey - Middle well	4-1952	91	12	30-95	4300			4	а	4=1952	59	I	<pre>bog 1905, Chem, anal., table 13</pre>
48/66 *25 01	Buory Condexy - Leet will	в-1940	108	10	20-300	4270			15	x	6-1949	62	T	Log 966. Chem. ancl., rable 13.
48/67-5.1	Galicate Poblic Chility - No. 4	1945	130	12		4410			10.3	м	4-1946	104	I	At Ryan Street and T.S Used for Lyrigarion by Cyril Bastian Sco Watar Resources Boll, p. 66 for chamical and
45/67-741	Coliente Public Utility - No. 7	12-1953	190	12	135-190	4380			14,7	Π	- 12- (984		. ""	Log 2606. Yest pumped 1,025 gpm with 100 fee drawdown. Located at A and Second Segmens,
45/67-861	Callente Poblie Utility - No. 6	31-1952	185	12,10,7	143+165	4390			×	ĸ	L1-1952		PS	τας 2104.
45/67 -8 01	Galiente Poblik DETTEC - No. 3	1967	181							-			PS	
49/67-18/1	Charles W. Colvernall	3-1049	ův	10	32-90	4385			21.5	8	8-1940		L	Log 853. Text pomped 700 gpm.
45/57-1861	Emory Conservy - Upper well	11-1959	165	, ¹⁰	129-165	4060	HC	1.0	26 24.2	R M	11-1959 12-05+63		T	Log A943. Pumping lev 80 feer, Chem. anal. Lable 13.
45/20-1181	Recomber Cattle Co.	5-1951	197	в	175-197	3860			175	н	3+1051		8	1 ₀₀₅ 372B,
98768-9141	мля	2-1963	200	6	160-200	5600		•-	195	R	1-196%		5	ьод 9046.
55759-1181	Robert C. Percunster	10-1962	127	К	85-12/	5300			62	я	10-1062		ъ	Ing AMO2, Tesr pumped 30 gpm.
75767-00 a 1	Otiver Schlarman	11-1961	120	14	96-120	3240			21	н	11-1961		т	Ing 6296.
78/67 - 21v1	Jones V. Bradshaw	8-1462	115	14	70-115	3200	пс	1.0	20 20.6	В М	л-1967 12-05-63	63	ſ	<pre>Assg 5717. Dumping less - 6t feet. Chem shel. - Joble 13.</pre>
95/67+1161	log ₁ β ₂ βildele	11-1961	:50	14	70-150	2725	PC	1.3	51 36.3 47.6 48.8 49.6 50.1 45.6 50.1 45.6 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.5 50	RENTING	11-1960 3-1955 6-1955 11-1455 2-1957 4-1957 11-1455 3-1958 6-1958 6-1958 12-1958 12-1958 12-1958 12-1958 12-1958 12-1958 12-1950 3-1950 3-1960 12-1960		T	Tor 6109. Pumped 2200 -5-06-61, Mrasurement prior r. 1941 wora man prevexisting 6-16th dismeter wolf.
									51.7 50.1 49.9 49.6	и М М М М М М М М М М М М М М М М М М М	9=1939 12-1959 2-1960 5-1560			

.

¥

Ξ

2

١

fell number und location	Camer and/or neme	Detc drilled	Dapth (test)	Diamutar of casing (inches)	Frincips1 water-beaxiag Bonc (feet)	Altitude (fest)	Neasuring Description	Above land Above land Aurface (feet)			evel Detc	Temper- ature ("T)	Uze	Benacko
15/67-3461	Charles Roundy		עני	12		2550			15	ж	2+1964		τ	
28/65+12e1	G. P. Breedlove		105	10		1950		••	22	R	12-1963	68	I	Test pumped 2,000 gpm,
35/ 65-13 61	Mildred Breedlove	11-1462	115	12	85-105	19 <u>3</u> 0	TC	-3.0	12 5.3	H M	11-1962 12-05-63	70	. I	Log 6900. Test pumped 1,100 gpm. Chem, anal. table 13,
75/63-13h2	U.S.U.S Rox No. I	1994	78	t		1430	τ Γ	4.2	18.7 18.8 17.3 16.9 17.7 17.3 16.6 16.8 16.8 17.3 16.5 16.8 16.8 16.8 16.8 16.6 16.6 16.6 16.6	nn a smìrth ann ann ann ann ann ann ann ann ann an	6-16-55 11-195 2-1957 4-1957 4-1957 11-2957 11-2957 11-2957 11-2957 12-1958 17-1958 17-1958 17-1958 17-1958 17-1958 12-1957 12-1958 12-1957 12-1958 12-1958 12-1957 12-1958 12-1957 12-1958 1		0	
39766-1861	Doyne Cole	4-1963	88	15,12	60-88	. 1770			50	R	4-1963	•-	1	Tag 7141. Tear pomped 500 gpm at 75 feet.
45/66-23d1	Nevena Power Company	10-1962	4 8 0	16,14	95-195	1500	••		17	R	10-1967		Ind	Log 5306. Test pumped L.VOO gpm at 70 feet,
42/66-391	u,s,C,s, - Cieµ√ale 'Ma. 1	1955	28	3/8		1495	<i>t</i> C	1.4	19.3 20.1 20.3 10.4 18.8 21.0 20.1 20.9 18.9 18.7 21.3 20.3 18.7 21.3 20.2 18.9 21.3 20.2 18.9 21.3 20.2 18.9 21.3 20.2 18.9 21.0 21.0 22.5 20.5	MREMARIES MANANANANANANANANANANANANANANANANANANAN	$\begin{array}{c} n-10-53\\ 114055\\ 114055\\ 11-1056\\ 2-1957\\ 3-1057\\ 2-1057\\ 2-1058\\ 5-1050\\ 2-1058\\ 2-1058\\ 12-1058\\ 2-1058\\ 12-1058\\ 2-1059\\ 2-1059\\ 2-1060\\ 3-1061\\ 3-1061\\ 3-206-61\\ 3-206-1\\ 3$			
43/66–31dl	1., J. McCore(c)	10-1947	118	16	62-ки	1490	¥0	.8	15 13.5 17.6 12.4 12.0 16.6 12.0 15.4 12.0 15.4 12.0 15.4 12.5 20.8 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	r m m m m m m m m m m m m m m m m m m m	$\begin{array}{c} 10-1447\\ -172-48\\ 9-12-50\\ 12-12-50\\ 3-76-51\\ 9-13-51\\ 12-12-50\\ 12-12-51\\ 12-12-51\\ 12-12-51\\ 12-12-51\\ 12-10-52\\ 12-1$		т	Log 243. Post pumped 1,400 gmn s2th 60 Last drymednem,

.

4

•

and southeast quarter of the section.

Wells on plate 1 are identified only by the section number, quartersection letter, and serial number. The township in which the well is located can be determined by the township and range numbers shown on the margin of plate 1. For example, well 4N/66-2al is shown on plate 1 as 2al and is within the rectangle designated as T. 4 N., R. 66 E.

<u>)</u>	hickness	Depth		Thickness	Depth
	(feet)	(feet)		(feet)	(feet)
4N/66-14d1 BLM, See	ding well		<u>2N/68-27al</u> BI	LM	
Soil	2	2	Soil	8	8
Gravel, cemented	228	230	Sand, gray,	• .	
Sand and gravel	5	235	cemented	8	16
Gravel, cemented	15	250	Sand, red; grave	1 14	30
Sand and gravel	4	254	Rock, red	10	40
Gravel, cemented	46	300			
Sand and gravel	3	303			
			1N/67-15al Pio	che Mines	Co.
3N/67-4b1 BLM					
			Deposits, surfac	ce 80	80
Soil	5	5	Alluvium, quart-		
Gravel, cemented	335	340	zite and lime-		
Sand and gravel	5	345	stone boulders	360	440
Gravel, cemented	23	368	Limestone,		
Clay	12	380	fractured	47	487
Sand and gravel	2	382	Limestone, blac	k 76	563
3N/70-7d1 Roy E. Ly	41 0		1N/69-10dl Pa	ul Bliss	
3N/70-7d1 Roy E. Ly	це		Clay, black	37	37
Clay, gray	20	20	Sand	5	42
Clay, blue	10	30	Clay	1	43
Clay, sandy	5	35	Gravel	31	74
Gravel	5	40	Boulders in clay	22	96
Gravel, some coarse	20	60	Clay, red	1	97
Clay	10	70	Sand, coarse re	d 10	107
Gravel, coarse	20	90	-		
Hardpan and cemented					
gravel	3	93			
Clay	3	96			

Table 16. -- Selected drillers' logs of wells in the Meadow Valley area

. .

*

;

:

	Thickness (feet)	Depth (feet)		Thickness (feet)	Dep‡ (feet
	(1861)	(reer)		(Teet)	lieer
1N/69-21a2 Jame	s Rosa		25/67-25c3 Thomas	Clay - No.	7
Sand	27	27	Clay, sandy	92	92
Clay	25	52	Gravel	4	96
Gravel	5	57	Sand	12	108
Clay	3	60	Gravel	4	112
Gravel	28	88	Clay	4	116
Ledges	20	108	Gravel	22	138
Bedrock	2	110	Sand	7	145
			Gravel	40	185
1N/69-31c2 Chesto	er Oxborrow - 1	No. 2	Gravel, cemented	2	187
Clay	6	6	28/68-5c4 Lester M	athews - Da	iry
Gravel	2	8	and the second	igation well	
Clay	30	38		-	
Gravel and sand	27	65	Clay, orange, sandy	18	18
Sand	2	67	Clay	17	35
Gravel	31	98	Sand, gray; stratified	1	
Clay	14	112	with clay	90	125
Gravel	6	118	Sand and gravel	33	158
"Panaca bed"	2	120	0		
			25/68-8b5 U.S. Ge	ological Sur	vey
15/68-33b2 Kennet	h D. Lee - Nor	th Well		~ ~	<u>.</u>
		-	Silt, orange, sandy	34	34
Silt, sandy	3	3	Clay, gray	29	63
Gravel, coarse	12	15	Sand and clay	12	75
Silt, sandy	35	50	Gravel	3	78
Gravel	7	57	Clay, gray	7	85
Sand	8	65	Gravel	3	88
Gravel	7	72	Clay	3	91
Sand	5	77	Gravel	4	95
Gravel	27	104	Clay	10	105
Clay and gravel,			Gravel	5	110
mixed	8	112			
			2S/68-8c3 Delmue B		
15/69-7al Delmue	Brothers-South	n Well	North	well	
Clay	35	35	Gravel	12	12
Sand	8	43	Clay	4	16
Clay, sandy	5	48	Gravel	14	30
Gravel	8	56	Clay, sandy	6	36
Sand	7	63	Gravel	16	52
Gravel	26	89	Clay	18	70
Clay	11	100	Gravel	3	73
			(continued next pa		

Table 16. -- (continued)

	Thickness	Depth		Thickness	Deptl
	(feet)	(feet)		(feet)	(feet)
2S/68-8c3 (continued))		35/67-28c1 Cheste	r Oxborrow.	•No•Z
Clay	1	74	Clay, blue	45	45
Gravel	16	90	Gravel	53	98
Clay, orange, sandy	16	106	Gravel, cemented	6	104
Clay, orange; gravel	11	117	Sand and gravel	14	118
Clay	3	120			
			45/66-25bl Emory	Conaway -	
25/68-18d2 Don Wadsworth - No. 1		1	Lo	wer Well	
Silt, sandy	25	25	Silt, sandy and larg	e	
Clay, blue	7	32	boulders	20	20
Sand, fine	26	58	Sand, fine	8	28
Sand	3	61	Sand and gravel	12	40
Sand, fine and clay,			Sand and Clay,		
stratified	17	78	stratified	40	80
Şand	11	89	Sand and gravel	5	85
Gravel	23	112	Sand and clay,		
Clay	36	148	stratified	20	105
Gravel	36	184	Gravel	3	108
25/68-19c2 Amy Math	news - East	well	4S/67-7dl Caliente	Public Util	ity -
			No.	7	-
Clay, gravely	22	22			
Clay, blue	26	48	Clay	15	15
Gravel	8	56	Sand and clay	60	75
Clay, sandy	14	70	Sand	5	80
Silt, sandy	52	122	Sand and clay	35	115
Sand	15	137	Sand	20	135
Gravel	21	158	Gravel	7	142
Clay	20	178	Clay	5	147
			Gravel	20	167
35/67-2d2 William M. Pierce - No. 1		Clay	4	171	
			Gravel, coarse	19	190
Clay, orange	45	45			
	80	125			
• •					
Clay, gray					
• •	12	137			
Clay, gray Clay and gravel,	12 11	137 148			

t

Table 16. -- (Continued)

÷

	Thickness (feet)	Depth (feet)		Thickness (feet)	: Dept (feet
	(1000)	(1661)			(1001
4S/67-18bl Emory Conaway - Upper well			<u>75/67-21c1</u> James	Bradshaw	
			Sand and gravel	35	35
Silt, sandy	37	37	Sand, fine; some		
Sand, fine	3	40	gravel	25	60
Clay, sandy	20	60	Gravel	3	63
Clay	10	70	Clay	2	65
Gravel	6	76	Sand	5	70
Clay	4	80	Gravel; large bould	lers 35	105
Gravel and boulders	6	86			
Clay	12	98	95/67-11b1 Don B:	radshaw	
Sand and clay	24	122			
Gravel	5	127	Silt, sandy	70	70
Clay	2	129	Gravel	80	150
Gravel	33	162			
Bedrock	3	165	12S/65-13b1 Mildred Breedlove		ve
45/70-11dl Headwater Cattle Co.			Silt	22	22
			Sand and gravel	2	24
Silt, sandy	35	35	Clay	3	27
Sand; some gravel	50	85	Sand and gravel	15	42
Gravel, cemented	50	135	Gravel	18	60
Sand and clay	62	197	Sand, fine	12	72
	•	-,-	Sand and gravel	8	80
55/68-961 BLM			Clay	5	85
			Gravel	20	105
Loam, sandy	3	<i>.</i> 3	-		
Sand and gravel	5	8	135/66-18bl Wayn	e Cole	
Clay, orange, sandy	22	30			
Sand	80	110	Silt	60	60
Tuff, gray	50	160	Sand, fine	5	65
Tuff, brown	15	175	Sand and gravel	9	74
Tuff, light gray	3	178	Gravel, cemented	4	78
Tuff, brown	22	200	Sand, gravel, and		
			boulders	10	88
55/69-11d1_Robert C.	Formaster		Clay, red		at 88
Sand and gravel	28	28			
Gravel, cemented	57	85			
Sand and gravel,		÷ -			

Table 16. -- (continued)

	Thickness	-		Thickness	-
	(feet)	(feet)	· · · · · · · · · · · · · · · · · · ·	(feet)	(feet)
145/66-25d1 Nevada	Power Co.		145/66-35d2 Nevad	a Power Co	D. ↓
Clay, brown, sandy	30	30	Soil, sandy	5	5
Sand, gray	60	90	Sand and clay	25	30
Clay, gray	5	95	Sand	5	35
Sand and gravel	85	180	Clay, sandy	15	50
Sand, brown	15	195	Sand, gray	10	60
Clay, brown	10	205	Clay, red with sand	ļ	
Sand and gravel	12	217	fetreaks	20	80
Clay, brown	5	222	Sand, gray	10	90
Gravel, cemented	48	270	Clay, red	15	105
Clay, brown	3	273	Gravel, large	85	190
Clay, brown	3	283	Li mestone, pink	22	212
Gravel, cemented	7	290	-		
Clay, brown	3	293			
Gravel, cemented	22	315			
Clay, brown	3	318			
Gravel, cemented	47	365			
Lime, red	63	428			
Clay, brown	20	448			
Gravel, cemented	22	470			
Clay, brown	10	480			

145/66-35dl L. J. McCormick

.

2

Ī

Clay	18	18
Sand	10	28
Sand and gravel	2	30
Sand	17	47
Gravel	5	52
Sand	10	62
Gravel	26	88
Clay, sandy	6	94
Clay	24	118

- Bourns, Charles T., 1963, Feasibility of exchange of waters from the Muddy River and wells of the Nevada Power Company at Glendale, Nevada: University of Nevada, Rept. Series No. 5, 11 p.
- Bowyer, Ben, Pampeyan, E. H., and Longwell, C. R., 1958, Geologic map of Clark County, Nevada: U.S. Geol. Survey Mineral Inv. Field Studies Map MF-138.
- Carpenter, Everett, 1915, Ground water in southeastern Nevada: U.S. Geol. Survey Water-Supply Paper 365, 86 p.
- Cooperative Extension Service, Max C. Fleischmann College of Agriculture, University of Nevada and Lincoln County Rural Areas Development Committee, 1963, Economic development plan for Lincoln County, Nev: Nevada Univ. Ext. Circ. 183 (revised), 41 p.
- Eakin, Thomas E., 1963, Ground-water appraisal of Dry Lake and Delamar Valleys, Lincoln County, Nevada: Nevada Dept. Conserv. Nat. Resources, Ground-Water Resources - Reconnaissance Ser. Rept. 16, 26 p.
- Eakin, Thomas E., 1963, Ground-water appraisal of Pahranagat and Pahroc Valleys, Lincoln and Nye Counties, Nevada: Nevada Dept. Conserv.
 Nat. Resources, Ground-Water Resources Reconnaissance Ser. Rept. 21, 36 p.
- Eakin. T. E., and others, 1951, Contributions to the hydrology of eastern Nevada: Nevada State Engineer, Water Resources Bull, 12, 171 p.
- Hardman, George, 1936, Nevada precipitation and acreages of land by rainfall zones: Nevada Univ. Agr. Exp. Sta. Mirneo. Rept. and Map, 10 p.
- Houston, C. E., 1950, Consumptive use of irrigation water by crops in Nevada: Nevada Univ. Bull. 185, 27 p.
- Lee, C. H., 1912, An intensive study of the water resources of part of Owens Valley, California: U.S. Geol. Survey Water-Supply Paper 294, 135 p.
- Parks, C. F., Gemmill, Paul, and Tschanz, C. M., 1958, Geologic map and sections of the Pioche Hills, Lincoln County, Nevada: U.S. Geological Survey Mineral Inv. Field Studies Map MF-136.
- Phoenix, David, 1948, Geology and ground water in the Meadow Valley Wash drainage area, Nevada, above the vicinity of Caliente: Nevada Water Resources Bull. No. 7, 117 p.

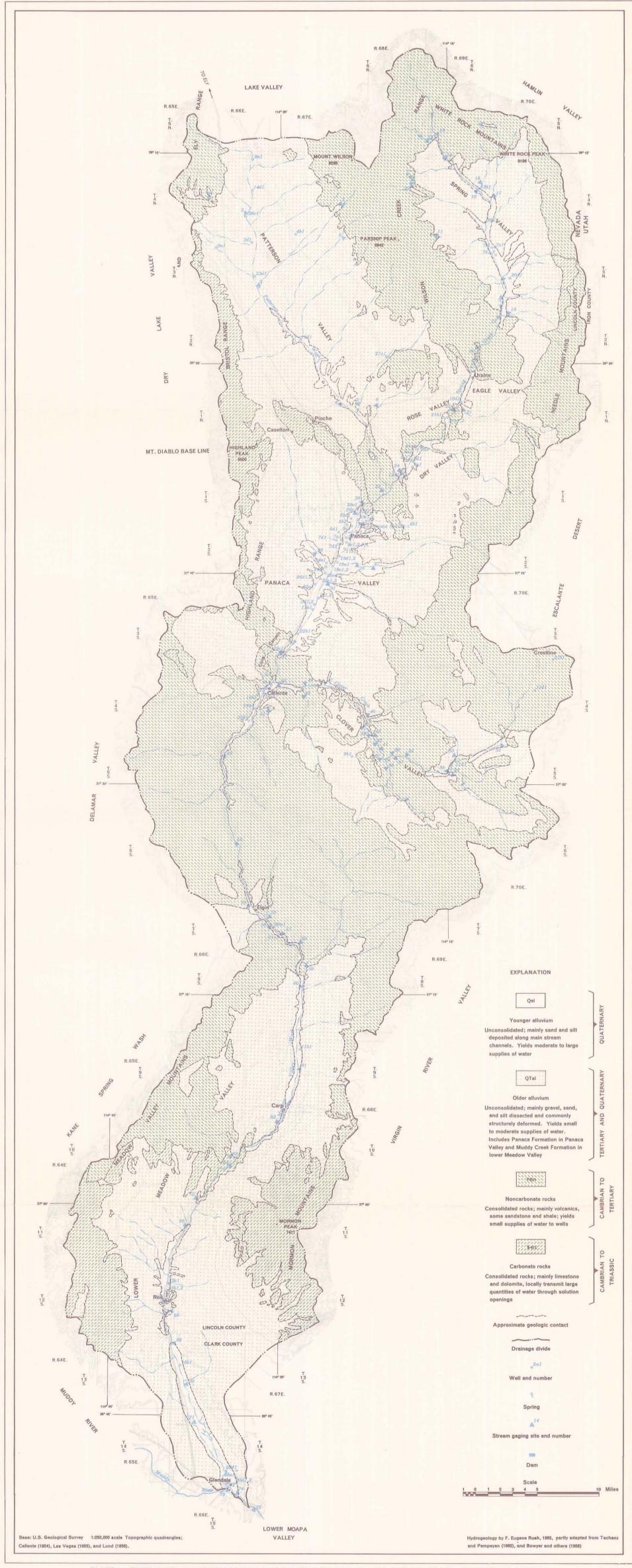
- Rush, F. Eugene and Eakin, Thomas E., 1963, Ground-water appraisal of Lake Valley in Lincoln and White Pine Counties, Nevada: Nevada Dept. Conserv. Nat. Resources, Ground-Water Resources - Reconnaissance Ser. Rept. 24, 29 p.
- Shamberger, Hugh A., 1954, Present and potential use of the waters of the Colorado River and tributaries within Nevada together with related matters: Carson City, Nevada, State Printing Office, 140 p.
- Tschanz, C. M., and Pampeyan, E. H., 1961, Preliminary geologic map of Lincoln County, Nevada: U.S. Geol. Survey Mineral Inv. Field Studies Map MF-206.
- U.S. Bureau of Reclamation, 1962, Moapa Valley pumping project, Nevada: Bureau of Reclamation Reconnaissance Report, Boulder City, Nevada, 84 p.
- U.S. Department of Agriculture, 1954, Diagnosis and improvement of saline and alkaline soils: Agricultural Handbook No. 60, 160 p.
- White, W. N., 1932, A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: U.S. Geol. Survey Water-Supply Paper 659-A, 165 p.
- Young, A. A., and Blaney, H. F., 1942, Use of water by native vegetation: California Dept. Pub. Works Bull. 50, 154 p.

PREVIOUSLY PUBLISHED REPORTS OF THE GROUND-WATER RESOURCES - RECONNAISSANCE SERIES ******

Report

No.

- 1. Ground-Water Appraisal of Newark Valley, White Pine County, Nevada. Dec. 1960, by Thomas E. Eakin. (Supply Exhausted)
- 2. Ground-Water Appraisal of Pine Valley, Eureka and Elko Counties, Nevada. Jan. 1961, by Thomas E. Eakin. (Supply Exhausted)
- 3. Ground-Water Appraisal of Long Valley, White Pine and Elko Counties, Nevada. June 1961, by Thomas E. Eakin. (Supply Exhausted)
- 4. Ground-Water Resources of Pine Forest Valley, Humboldt County, Nevada. Jan. 1962, by William C. Sinclair.
- 5. Ground-Water Appraisal of the Imlay Area, Humboldt River Basin, Pershing County, Nevada. Feb. 1962, by Thomas E. Eakin.
- 6. Ground-Water Resources of Diamond Valley, Eureka and Elko Counties, Nevada. Feb. 1962, by Thomas E. Eakin. (Supply Exhausted)
- 7. Ground-Water Resources of Desert Valley, Humboldt County, Nevada. April 1962, by William C. Sinclair.
- 8. Ground-Water Appraisal of Independence Valley, Western Elko County, Nevada. May 1962, by Thomas E. Eakin.
- 9. Ground-Water Appraisal of Gabbs Valley, Mineral and Nye Counties, Nevada. June 1962, by Thomas E. Eakin.
- Ground-Water Appraisal of Sarcobatus Flat and Oasis Valley, Nye County, Nevada. Oct. 1962, by Glenn T. Malmberg and Thomas E. Eakin.
- 11. Ground-Water Resources of Hualapai Flat, Washoe, Pershing and Humboldt Counties, Nevada. Oct. 1962, by William C. Sinclair.
- Ground-Water Appraisal of Ralston and Stonecabin Valleys, Nye County, Nevada. Oct. 1962, by Thomas E. Eakin.
- 13. Ground-Water Appraisal of Cave Valley in Lincoln and White Pine Counties, Nevada. Dec. 1962, by Thomas E. Eakin.
- 14. Ground-Water Resources of Amargosa Desert, Nevada-California. March 1963, by George E. Walker and Thomas E. Eakin.


List of Previously Published Reports (continued)

Report	
No.	

- 15. Ground-Water Appraisal of the Long Valley-Massacre Lake Region, Washoe County, Nevada, by William C. Sinclair; also including a section on The Soils of Long Valley by Richard L. Malchow, May 1963.
- 16. Ground-Water Appraisal of Dry Lake and Delamar Valleys, Lincoln County, Nevada. May 1963, by Thomas E. Eakin.
- 17. Ground-Water Appraisal of Duck Lake Valley, Washoe County, Nevada, June 1963, by William C. Sinclair.
- 18. Ground-Water Appraisal of Garden and Coal Valleys, Lincoln and Nye Counties, Nevada. July 1963, by Thomas E. Eakin.
- 19. Ground-Water Appraisal of Antelope and Middle Reese River Valleys, Lander County, Nevada. September 1963 by E. G. Crosthwaite.
- 20. Ground-Water Appraisal of the Black Rock Desert Area, Northwestern Nevada. October 1963, by William C. Sinclair.
- 21. Ground-Water Appraisal of Pahranagat and Pahroc Valleys, Lincoln and Nye Counties, Nevada. October 1963, by Thomas E. Eakin.
- 22. Ground-Water Appraisal of the Pueblo-Valley Contenental Lake Region, Humboldt County, Nevada. November 1963, by William C. Sinclair.
- A Brief Appraisal of the Ground-Water Hydrology of the Dixie-Fairview Valley Area, Nevada. November 1963, by Philip Cohen and D. E. Everett.
- 24. Ground-Water Appraisal of Lake Valley in Lincoln and White Pine Counties, Nevada. December, 1963, by F. Eugene Rush and Thomas E. Eakin.
- 25. Ground-Water Appraisal of Coyote Spring and Kane Spring Valleys and Muddy River Springs Area, Lincoln and Clark Counties, Nevada, February 1964, by Thomas E. Eakin.
- 26. Ground-Water Appraisal of Edwards Creek Valley, Churchill County, Nevada, April 1964, by D. E. Everett.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

STATE OF NEVADA DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

PLATE 1.--GENERALIZED HYDROGEOLOGIC MAP OF THE MEADOW VALLEY AREA, LINCOLN AND CLARK COUNTIES, NEVADA