Hydrothermal Convection Systems

By J. L. Renner, D. E. White, and D. L. Williams

In hydrothermal convection systems, most of the heat is transferred by the convective circulation of water or steam rather than by thermal conduction through solid rocks. Convection occurs in rocks of adequate permeability because of the buoyancy effect of heating and consequent thermal expansion of fluids in a gravity field. The heated fluid tends to rise, and the more dense, cooler fluid tends to descend elsewhere in the system. Convection, by its nature, tends to increase temperatures at higher levels as temperatures at lower levels decrease below those that would otherwise exist.

Worldwide experience gained from geothermal exploration of hydrothermal convection systems indicates that most systems contain liquid water as the dominant pressure-controlling fluid in fractures and pores. Wells drilled into such systems normally deliver at the wellhead a mixture of liquid water and 10 to 30 percent of steam, which forms in the well bore as pressures decrease upward. In a few systems, however, such as Larderello, Italy, and The Geysers, California, wells produce saturated or even superheated steam, typically with no associated liquid. Moreover, inhole pressures measured in shut-in wells of these systems normally increase only slightly with depth within the reservoir; the increase in pressure is equivalent to that of a column of steam and associated gases and is much less than the pressure gradient in a column of water. Pressures in these relatively rare systems evidently are controlled by vapor rather than by liquid, and thus the systems are called vapor-dominated systems.

VAPOR-DOMINATED SYSTEMS

There is still divided opinion on the origin and fundamental characteristics of vapor-dominated geothermal systems and on why they differ so much in their production characteristics from the more abundant hot-water systems (Truesdell and White, 1973). All successful wells in the Gevsers field, the outstanding example of this type of system in the United States, produce saturated or slightly superheated steam containing little or no liquid water and only a small percentage of other gases. Some successful wells initially discharge some water that dries up to pure vapor with time. In-hole temperatures prior to much production tend to be close to 240°C if reservoir depths are greater than about 400 m; initial wellhead pressures are close to 34 bars (James, 1968; Ramey, 1970; White and others, 1971). These characteristics are generally accepted as typical of the deeper "virgin" parts of The Geysers. Larderello, Italy, and Matsukawa, Japan.¹

The stored heat of the reservoir rocks is probably 85 percent or more of the total heat in the vapor-dominated systems (Truesdell and White, 1973). Production of steam from a reservoir results in a decline in pressures; consequently, water in the pores boils to steam, utilizing heat stored in the reservoir rocks.

Many aspects of vapor-dominated systems are

¹Other types of vapor-dominated systems exist, such as those near Monte Amiata, Italy (lower in temperature and much higher in gases other than steam; White, 1973, p. 87, 88; Truesdell and White, 1973), and those found in shullow regimes between ground surface and the water table under local topographic highs of hot-water systems. But in this report, the term "vapor dominated" refers to high-temperature low-gas systems such as The Geysers and Larderello.

not well understood, and critical observations within and below the reservoirs either have not been made, or the data have not yet been released by the operating companies. Our interpretations, however, favor steam as the continuous pressurecontrolling fluid in the reservoir, but with liquid water being locally available in small pore spaces and on fracture surfaces. Because of surface tension, this water cannot be drained completely by gravity. Below the vapor-dominated reservoir, we envision a deep water table with underlying rocks saturated with water, probably a highchloride brine (Truesdell and White, 1973). Estimates of reserves and resources of vapor-dominated systems (Nathenson and Muffler, this circular) are based on this model.

Vapor-dominated systems are considered to develop initially from hot-water systems that have a very large supply of heat but a very low rate of recharge of new water. If the heat supply of a developing system becomes great enough to boil off more water than can be replaced by recharge, a vapor-dominated system starts to form. The fraction of discharged fluid that exceeds recharge is supplied from water previously stored in large fractures and pore spaces. Heat, supplied by condensation of rising steam, is conducted outward from the near-surface, nearly impermeable margins of the reservoir and thus accounts for the high conductive heat flows of these systems. The liquid condensate is in excess of the liquid that can be retained by surface tension; the excess drains downward under gravity to the hypothesized deep water table where it is available for recycling along with newly recharged water.

Our model requires that fluid in excess of that provided by recharging water must be discharged from the system. This feature has important consequences, if true, in that it requires identifiable vent areas. A small vapor-dominated system perhaps could discharge some steam and other gases into surrounding liquid-saturated ground with no conspicuous surface evidence for its existence, but we are skeptical that a large system with high total heat flow and high rate of discharge of steam and other gases can remain concealed without developing the prominent vent areas that characterize all known vapor-dominated systems of this type. The low-temperature, high-gas systems similar to Monte Amiata, Italy (White, 1973, p. 86–87), probably have impermeable cap rocks and little or no surface evidence. Such systems can be considered as thermal natural-gas fields that are high in CO_2 and H_2S , relatively low in temperature, and at least in part characterized by water drive.

Identified systems

The Geysers, California, is the only example of a large vapor-dominated system extensively drilled in the United States (table 3). The extent of the field is not yet known, but the drilling pattern established by more than 100 wells suggests that the commercial limits may have been attained a little northwest of the Sulphur Bank section (about 2 km northwest of the first producing wells at The Geysers). Step-out wells have shown the field to extend at least 31/2 km north and $2\frac{1}{2}$ km southwest of the first wells. Drilling is not yet complete to the southeast, but a belt 2 to 5 km wide, 15 km long, and about 70 km² in total area is our present estimate of the extent of the field. Most commercial wells are $1\frac{1}{4}$ to 21/2 km deep, ranging from about 0.2 km in some of the early wells to a present maximum near 3 km. The heat reservoir is assumed to be continuous between 1 and 3 km in depth; thus, its assumed volume is 140 km³. If the average temperature is 240°C, as we assume, then the estimated total heat content is 18.9×10^{18} cal.

The Mud Volcano system in Yellowstone Park was first recognized by its surface characteristics and geochemistry as a probable vapor-dominated system and later confirmed by a single research drill hole (White and others, 1971). The area of surface activity is about 5 km². Resistivity data (Zohdy and others, 1973) suggest that the vapordominated part extends to a depth of 1 to $1\frac{1}{2}$ km and is underlain by a better electrical conductor, presumably a deep water table. The vapor-dominated part is assumed to extend from 0.2 to 1.5 km in depth, and its calculated volume is 6.5 km³. If its average temperature is 230°C, then its estimated heat content is ~0.8 $\times 10^{18}$ cal.

Outlook for new discoveries

All recognized vapor-dominated systems of the Larderello type are characterized by prominent vent areas with bleached rocks, scanty vegetation, acid-sulfate springs, and no closely associated chloride waters. If these systems do require such vent areas, then few similar unrecognized systems exist for future discovery. The principal possibilities known to us are in Yellowstone National Park and Mount Lassen Volcanic National Park.

Yellowstone Park includes several possible systems other than the Mud Volcano system. The rather young sinter of the Mud Volcano system (White and others, 1971) indicates evolution from a hot-water system soon after the last glacial stage (about 10,000 years ago). This evidence, combined with the resistivity data that suggest a relatively small system saturated with water at depths below about 11/2 km, implies a still-evolving system. During the last glacial stage, thick glacial ice and consequent deep meltwater lakes over the thermal areas may have provided high water pressures that resulted in much recharge down the present discharge channels, thereby insuring a water-saturated system. Thus, a vapor-dominated system may become a hot-water system during glaciation. If this is so, then other systems in Yellowstone Park may also have shallow vapor-dominated reservoirs that are still developing.

The thermal activity within the boundaries of Mount Lassen Volcanic National Park has the characteristics of vapor-dominated systems, with chloride waters being completely absent. However, the Morgan Spring group, just outside of the park and about 8 km south of the thermal activity in the park, is a high-temperature chloride-water system that discharges at an altitude of $\frac{1}{2}$ to 1 km below the surface springs in the park. Morgan Springs may be draining the deep chloride part of a large vapor-dominated system within the park.

HOT-WATER SYSTEMS

General characteristics

Hot-water systems (White, 1973) are dominated by circulating liquid, which transfers most of the heat and largely controls subsurface pressures (in contrast to vapor-dominated systems). However, some vapor may be present, generally as bubbles dispersed in the water of the shallow low-pressure parts of these systems.

Most known hot-water systems are characterized by hot springs that discharge at the surface. These springs, through their chemical composition, areal distribution, and associated hydrothermal alteration, have provided very useful evidence on probable subsurface temperatures, volumes, and heat contents. However, springs cannot discharge from convection systems that are capped by impermeable rocks or that exist where the local water table is below the ground surface. Both of these exceptions exist, and many other examples are likely to be discovered.

The temperatures of hot-water systems range from slightly above ambient to about 360° C in the Salton Sea system and the nearby Cerro Prieto system of Mexico. For convenience in this assessment, hot-water convection systems are divided into three temperature ranges: (1) above 150° C (table 4 and figs. 1 and 2); these systems may be considered for generation of electricity; (2) from 90°C to 150° C (table 5 and figs. 2 and 3); these systems are attractive for space and process heating; and (3) below 90° C (not tabulated); these systems are likely to be utilized for heat only in locally favorable circumstances in the United States.

Direct temperature measurements are made either in surface springs or in wells. The temperatures of springs generally do not exceed the boiling temperature at existing air pressure (100°C at sea level to 93°C for pure water at an altitude of $\sim 2,200$ m), although some springs in Yellowstone Park and elsewhere are superheated by 1° to 2°C. At depth in wells, where pressures are much higher, the boiling temperature is also much higher. Wells that tap water initially at temperatures above surface boiling yield a mixture of water and steam ("flash" steam), with proportions depending mainly on the initial water temperature and the pressure in the steamwater separator. For example, water flashed from 300°C to a separator pressure of 4.46 bars (50 lb/in^2), near a common operating pressure, yields 33 percent steam; 200°C yields 11 percent, but 150°C (just at boiling for the pressure) yields none (Muffler, 1973, p. 255, fig. 28). Obviously the favorability of a hot-water system for generation of electricity from flashed steam increases rapidly above 150°C. Binary systems may allow utilization of somewhat lower temperatures for generation of electricity.

The waters of these systems range from very low salinity to brines of extreme salinity. The most common range is from 0.1 to 1 percent

L	ocation	Temperatures °C			
Name	Lati- tude N	Longi- tude	Sur- face	Geochemical	Sub- sur- face
		W	<u>1</u> /	<u>2/</u> SiO ₂ Na-K-Ca	<u>3</u> /
The Geysers, CA	38 48	122 48	101	(not applicable)	∿240
Mt. Lassen Nat'l Park, CA	40 26	121 26	95 <u>‡</u>	(not applicable)	∿240
Mud Volcano system Yellowstone Nat'l Park, Wyoming	44 37.5	110 26	∿90	(not applicable)	∿230
Totals for 3 system	IS				

Table 3.-Identified vapor-dominated systems of the United States

Note: Yellowstone and Mt. Lassen National Parks permanently withdrawn from exploitation.

 $\frac{1}{Maximum}$ surface temperature reported from a spring or well. $\frac{2}{P}$ Predicted using geothermometers, assuming last equilibration in the reservoir.

 $\underline{3}$ /Average reservoir temperature based on geothermometry unless otherwise noted in comments.

Reservoir Assumptions				Comments
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸	
	km <u>5</u> /	km³ <u>6</u> ∕	ca1 <u>7</u> /	
70	2.0	140	18.9	Area may range from 50 to 100 km ² ; bottom of reservoir may extend below assumed -3 km. >100 well's drilled by early 1975. Present heat production ~80 times estimated natural heat flow.
∿ 47	1.0	47	6.3	Likely to be a vapor-dominated system but not confirmed.
5	1.3	6.5	0.8	Reservoir assumed ~0.2 to 1.5 km thickness underlain by hot-water system indicated by resistivity survey.
122		∿194	∿26	

with probable subsurface temperatures exceeding 200 °C

<u>4</u>/From surface manifestations, geophysical data, well records and geologic inference. Assume $\sim 1.5 \text{ km}^2$ if no data pertinent to size is available. <u>5</u>/Top assumed at 1.5 km of no data on depth available. Bottom assumed to be-3 km for all systems.

6/Calculated from area and thickness.

7/Calculated as product of assumed volume, volumetric specific heat of 0.6 cal/cm³°C, and temperature in degrees above mean annual surface temperature (assumed to be 15°C).

.

I	Temperatures °C					
Name	Lati- Longi- tude tude		Sur- face	Geochemical		Sub- sur- face
			1/	<u>2/</u> Si0 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>
ALASKA						
Geyser Bight	53 13	168 28	100	210	236	210
Hot Springs Cove	53 14	168 21	8 9	131	154	155
Shakes Springs	56 43	132 02	52	142	175	155
Hot Springs Bay	54 10	165 50	83	152	179	180
ARIZONA						
Power Ranch Wells	33 17.1	111 41.2				180

Table 4.-Identified hot-water convection systems

^{1/} 2/

Maximum surface temperature reported from a spring or fumarole. Predicted using chemical geothermometers, assuming last equilibration in the reservoir; assumes saturation of SiO₂ with respect to quartz, and no loss of Ca from calcite deposition. Assumed average reservoir temperature based on data presently available. From surface manifestations, geophysical data, well records and geologic inference. Assumes 1.5 km² if no data pertinent to size is available. Top assumed at depth of 1.5 km if no data available. Bottom assumed at 3 km depth for all convection systems. Calculated from assumed area and thickness. Calculated as product of assumed volume, volumetric specific heat of 0.6 cal/cm³ °C, and temperature in degrees C above 15°C.

^{3/4/5/5/7/}

Rese	rvoir As	sumptions		
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	Comments
	km <u>5</u> /	km ³ <u>6</u> /		
4	2	8	.9	22 springs and geysers in 3 thermal areas in
				2 km long zone, near Ukmok Caldera; siliceous sinter deposit.
2	2	4	.3	Hot springs and geysers in area about 1 km ² near Okmok caldera.
1.5	1.5	2.25	.2	Several springs discharging ∿380 lpm; chemical data not reliable.
1.5	1.5	2.25	.2	Hot springs and fumaroles on active Akutan volcano.
2.5	(?) 1	2.5	.2	No natural springs; two wells ∿1 km apart drilled to 3 km depth with bottom-hole tem- peratures of 163°C and 184°C; discharge esti- mated 19,000 1/min. from below 2 km.

with indicated subsurface temperatures above $150 \,^{\circ}C$

. •

•

.

	Location					Temperatures °C			
Name	Lati- tude N	Longi- tude w	Sur- face	Geochemical 2/ 2/ SiO ₂ Na-K-Ca		Sub- sur- face			
			<u>1</u> /			<u>3</u> /			
CALIFORNIA									
Surprise Valley	41 40	120 12	97	174	1 <u>5</u> 9	175			
Morgan Springs	40 23	121 31	95	190	229	210			
Sulphur Bank mine	39 01	122 39	80	181	157	185			
Calistoga	38 34.9	122:34.4		157	155	160			
Skagg's H.S.	38 41.6	123 01.5	57	150	153	155			
Long Valley	37 40	118 52	94	219	238	220			
Red's Meadow	37 37	119 04.5	49	161	130	165			
Coso H.S.	36 03	117 47	95	161	238	220			
Sespe H.S.	34 35.7	118 59.9	90	133	155	155			
Salton Sea	33 12	115 36	101			340			
Brawley	33 01	115 31				200			
Heber	32 43	115 31.7				190			
East Mesa	32 47	115 15				180			
Border	32 44	115 07.6				160			

Table 4.--Identified hot-water convection systems with

Reser	voir As	sumptions					
Sub- sur- face area	Thick- ness	Vo1- ume	Heat con- tent 10 ¹⁸	Comments			
km² <u>4</u> /	km <u>5</u> /	km ³ <u>6</u> /	<u>7/</u>				
125	2	250	24	7 spring groups, in area of hydrothermal ex- plosion, 1951; minor sinter, 4 wells drilled; maximum reported 160°C, mixing models as high as 225°C.			
5	2	10	1.2	25 springs flowing 350 lpm; and considerabl€ sinter; system may be much larger, if con- nected to Lassen.			
2.5	1.5	3.75	.4	Springs discharging into water-filled open rit of large mercury deposit; 4 wells drilled, reported maximum 182°C.			
4.5	2	9	.8	4 hot springs and several flowing wells; spring discharge about 30 lpm.			
2	1.5	3	.3	3 springs, flowing 57 lpm.			
225	2	450	55	Springs and fumaroles in area of about 10 km ² . Recent caldera; about 10 wells drilled, re- ported to 181°C, extensive geology and geo- physics.			
1.5	1.5	2.25	.2	5 springs flowing 38 lpm.			
168	2	336	41	l group of hot springs; weak fumarole areas; geophysics indicates may be a very large system.			
1.5	1.5	2.25	.2	4 hot springs flowing 470 lpm.			
54	2	108	21	Many low-temperature seeps; l group to 101°C, now under Salton Sea; numerous drill holes to 2A00 m and temperatures to 360°C in hyper- saline brine.			
18	1.5	27	3	No surface discharge, reported high tempera- ture based on old oil test; size based on temperature-gradient survey.			
50	2	100	11	No surface discharge; much active explora- tion but no data released; estimated using temperature gradient data and exploration activity.			
28	2	56	5.5	No surface discharge; temperature estimated using drilling data, volume from temperature gradient data and drill-hole data.			
3	.6	1.8	0.2	No surface discharge; estimated from tempera- ture gradient data and extrapolation of East Mesa geology.			

.

L	Location				Temperatures °C			
Name	Lati- tude N	Longi- tude w	Sur- face	Geoch	emical	Sub- sur- face		
			1/	<u>2/</u> S10 ₂	<u>2/</u> Na-K-Ca	3/		
IDAHO								
Big Creek H.S.	45 18.8	114 19.2	93	160	175	175		
Sharkey H.S.	45 00.9	113 51.1	52	135	175	175		
Weiser area	44 17.9	117 02.9	77	157	142	160		
Crane Creek	44 18.3	116 44.7	92	173	166	180		
Noon Combuidan			00	110	100	100		
Near Cambridge	44 34.4	116 40.7	26	119	180	180		
Wardrop H.S.	43 23.0	114 55.9	66	120	155	155		
Murphy H.S.	42 02.2	115 32.4	51	127	160	160		
NEVADA								
Baltazor H.S.	41 55.3	118 42.7	80	165	152	170		
Pinto H.S.	41 21	118 47	93	162	176	165		
Great Boiling	40 39.7	119 21.7	86	167	205	170		
(Gerlach) Springs								
Hot Sulphur Springs	41 28.2	116 09.0	90	167	184	185		
Near Wells	41 10.9	114 59.4	61	140	181	180		
Sulphur H.S.	40 35.2	115 17.1	93	183	181	190		

Table	4.—Identified	hot-water	convection	systems	with
				-	

Rese	Reservoir Assumptions			
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸	Comments
km² 4/	km <u>5</u> /	km³ <u>6</u> ∕	<u><u>7</u>/</u>	
2	1.5	3	.3	15 springs discharging ∿280 lpm and deposit- ing travertine and sinter; mixing model sug- gests 220°C; few wells.
2	1.5	3	.3	Spring discharging ∿30 lpm; travertine and sinter(?) reported; Na-K-Ca may be inaccu- rate; mixing temperature 220°C.
35	2	70	6.1	Numerous hot springs and wells; at depth may be connected to Crane Creek. Mixing model indicates possible 228°C.
30	2	60	5.9	Springs discharging ~ 200 lpm; extensive sinter, in area of mercury mineralization; Crane Creek and Weiser may be separate in a zone from Midvale, ID to Vale, OR. Mixing model indicates possible 239°C.
1.5	1.5	2.25	.2	Flowing well; Na-K-Ca may be inaccurate.
1.5	1.5	2.25	.2	Numerous springs discharging ∿730 lpm; may be part of a larger system in Camas Prairie; mixing model suggests 160°C.
1.5	1.5	2.25	.2	2 springs discharging ∿260 lpm; mixing model suggests 200°C.
1.5	2	3	.3	Springs discharging 100 lpm; flowing well 90°C, discharging 25 lpm; the area may be large southern extension of Alvord Desert, OR. area.
5	1.5	7.5	.7	Two areas, probably interconnected; 2 springs of eastern area depositing travertine and and discharging 500 lpm; 1 well,western area, flowing 100 lpm. Na-K-Ca may be inaccurate.
10	2.5	25	2.3	2 major groups of springs and 4 others; surface discharge ${\sim}1,000$ lpm, calculated total discharge (from heat flow) ${\sim}2040$ lpm; well ${\sim}150$ m deep, ll0°C.
1.5	1.5	2.25	.2	Springs with abundant sulfur.
1.5	1.5	2.25	.2	3 springs discharging 45 lpm; may be part of a more extensive system extending for 4.8 km along the west edge of the Snake Mountairs.
4	2.5	10	1.1	Many springs and pools in an area of about .5 km²; abundant sinter.

indicated	subsurface	temperatures	above	150°	C-Continued
-----------	------------	--------------	-------	------	-------------

, t • • • •	Table	4.—Identifie	d hot-wa	ater con	vection syste	ms with
	ocation	cation Temperatures °C				
Name	Lati- tude N	Longi- tude w	Sur- face	Geoch	emical	Sub- sur- face
			<u>1</u> /	2/ Si0 ₂	<u>2/</u> Na-K-Ca	<u>3</u> /
NEVADA Con.						
Beowawe H.S.	40 34.2	116 34.8		226	242	240
Kyle H.S.	40 24.5	117 52.9	77	161	211	180
Leach H.S.	40 36.2	117 38.7	96	155	176	170
Hot Springs Ranch	40 45.7	117 29.5	85	150	180	180
Jersey Valley H.S.	40 10.7	117 29.4	29	143	182	185
Stillwater area	39 31.3	118 33.1	96	159	140	160
Soda Lake	39 34	118 49	90	165	161	165
Brady H.S.	39 47.2	119 00	98	179		214
Steamboat Springs	39 23.	119 45	96	207	226	210
Wabuska H.S.	39 09.7	119 11	97	145	152	155
Lee H.S.	39 12.6	118 43.4	88	173	162	175
Smith Creek Valley	39 21.4	117 32.8	86	143	157	160

indicated subsurface temperatures above 150 °C–Continued

Rese	servoir Assumptions						
Sub- sur- face area km ² 4/	Thick- ness km 5/	Vol- ume km ³ 6/	Heat con- tent 10 ¹⁸ cal 7/	Comments			
21	2	42	5.7	Prior to exploration, about 50 springs and small geysers discharging about 400 lpm from extensive area of sinter deposits; 6 wells drilled up to 600m depth, temperatures to 212°C, 1 deep well but no data available.			
1.5	1.5	2.25	.2	Several springs, largest flowing ~20 lpm depositing travertine. Na-K-Ca thermo- metry may be to high.			
4	2.5	10	.9	Several hot springs discharging ${\sim}760$ lpm; calculated total flow ${\sim}900$ lpm.			
1.5	1.5	2.25	.2	Several springs, largest discharging ${\sim}100$ lpm and depositing travertine so Na-K-Ca may be inaccurate.			
1.5	1.5	2.25	.2	One (3) spring discharging only 20 1pm in area of sinter and travertine; surface tem- perature low because of low discharge.			
10	2.5	25	2.2	No surface springs,but hot wells at least to ll5°C; calculated total discharge (from heat flow) ∿6,000 lpm.			
5	2.5	12.5	1.1	No surface discharge,but small area altered by gases, and 21 km ² of anomalous heat flcw. Shallow wells show 100°C near surface; be- tween 2 recent basaltic eruptive centers.			
12	2.5	30	3.6	Several former springs discharged ~200 lpm from small area of sinter; several wells; 214°C reported in 1500 m well; calculated discharge ~2,700 lpm.			
6	2.7	16	1.9	About 70 springs discharging ~250 lpm from extensive sinter deposits with ages at least as much as 1 million years, calculated total discharge ~4,300 lpm; more than 20 wells fc~ research, exploration, and spa supply.			
1.5	1.5	2.25	.2	Several hot springs of low natural discharge discharge; three wells drilled to maximum of \sim 670 m, up to 106° C; small area of travertine; area may be larger.			
1.5	1.5	2.25	.2	Several springs discharging ${\sim}130$ lpm from area of sinter.			
1.5	1.5	2.25	.2	Several springs, minor travertine.			

L	Location					Temperatures °C				
Name	Lati- tude N	Longi- tude w	Sur- face	Geoct	iemical	Sub- sur- face				
			1/	<u>2/</u> Si0 ₂	2/ Na-K-Ca	<u>3/</u>				
NEW MEXICO Valles Caldera	35 43	106 32	87			240				
Lightning Dock area	32 08.5	108 50	99	156	169	170				
OREGON										
Mickey H.S.	42 40.5	118 20.7	73	180	207	210				
Alvord H.S.	42 32.6	118 31.6	76	148	199	200				
Hot Lake	42 20.1	118 36.0	96	165	176	180				
Vale H.S.	43 59.4	117 14.1	73	153	158	160				
Neal H.S.	44 01.4	117 27.6	87	173	181	180				
Lakeview	42 12.0	120 21.6	96	157	143	160				
Crumps Spring	42 15.0	119 53.0	78	173	144	180				
Weberg H.S.	44 00	119 38.8	46	125	170	170				

indicated	subsurface	temperatures	above	150 °	,C—Coi	ntinued

Reservoir Assumptions						
Sub- sur- face area km ² 4/	Thick- ness km 5/	Vol- ume km ³ 6/	Heat con- tent 10 ¹⁸ cal 7/	Comments		
65	2	130	18	Pleistocene caldera with 1 group acid-sulfate springs (Sulphur Springs) and very extensiva hydrothermal alteration; more than 6 geother- mal wells drilled, but no detailed data avail- able; suspected as having small vapor-domin- ated cap underlain by high-chloride hot-water system with temperatures over 240°C.		
1.9	5 1.5	2.25	.2	No surface springs; shallow water wells at boiling. The area may be much more extensive. Drill hole 3 km to north showed 121°C at 2 km depth. Better estimate may be avg T = 130°C, area 4 km ² , thickness 2 km, heat content .5 x 10^{18} cal.		
6	2	12	1.4	Several springs discharging ${\sim}100$ 1pm and depositing sinter; surface manifestations over 0.1 $\rm km^2$.		
3	1.5	4.5	.5	Several springs in area of .5 km ² discharg- ing \sim 500 lpm. If Hot Lake, Mickey, and Alvord H.S. are one large system with tempera- ture as at Mickey, the heat content would be 30 x 10 ¹⁸ cal; three separate systems is pre- ferred model.		
6	2	12	1.2	Thermal springs and 1 very large pool (lake) discharging surface manifestations over 0.1 km². Small spring N.of Hot Lake, 98°C.		
50	2	100	8.7	Hot springs discharging ${\sim}75$ lpm; large area indicated.		
2	2	4	.4	1 spring discharging ${\sim}90$ 1pm.		
8	2	16	1.4	About 16 springs including Hunter's and Bar∽y Ranch discharging ∿2,500 lpm in an area of ∿5 km²; several wells at Hunter's for heating spa.		
4	2	8	.8	Spring and well (121°Cat 505 m) that thas erup- ted as a geyser; discharging 0 to 50 lpm; in small area of sinter.		
1.	5 1.5	2.25	.2	Hot spring discharging 40 lpm.		

L	ocation		Temperatures °C				
Name	Lati- tude N	Longi- tude W	Sur- face	Geochemical		Sub- sur- face	
			<u>1</u> /	$\underline{2}/$ SiO ₂	2/ Na-K-Ca	<u>3/</u>	
UTAH Roosevelt (McKean) H.S.	38 30	112 50	88	213	283	230	
Cove Fort-Sulphur- dale	38 36	112 33				200	
Thermo H.S.	38 11	113 12.2	90	144	200	200	
WASHINGTON							
Baker H.S.	48 45.9	121 40.2	42	151	162	165	
Gamma H.S.	48 10	121 02	60	161	220	165	
Kennedy H.S.	48 07	121 11.7	43	155	199	160	
Longmire H.S.	46 45.1	121 48.7	21	169	16 8	170	
Summit Creek (Soda)	46 42.2	121 29.0	13	169	161	170	
WTUMING							
Yellowstone National Park	44 36	110 30	∿ 96	250	270	250	

Table 4 - Identified	hot-water	convection	systems	with
Table 4. Identified	not-water	CONVECTION	SAPOCTTR	11 101

Totals (63 systems)

.

indicated subsurface temperatures above 150 °C–Continued

Sub- face area Thick- ume Vol- con- tent Heat con- tent Comments 4 2 8 1.0 Hot springs decreasing from 88°C (1908) to 55°C (1957), then ceased discharging from Si0 ₂ sealing; extensive siliceous sinter; area and volume may be much larger. 15 1.5 22.5 2.5 No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system. 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 16 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 2 spring discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow- stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indi- cate 330°C.	Rese	rvoir As	sumptions		
km² 4/ km 5/ km³ 6/ 7/ 4 2 8 1.0 Hot springs decreasing from 88°C (1908) to 55°C (1957), then ceased discharging from SiO2 sealing; extensive siliceous sinter; area and volume may be much larger. 15 1.5 22.5 2.5 No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system. 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 1 (?) spring discharging 26 lpm and possibly depositing calcite. 1.5 1.5 2.25 .2 1 (?) spring discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 30°C.	Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸	Comments
 4 2 8 1.0 Hot springs decreasing from 88°C (1908) to 55°C (1957), then ceased discharging from S10₂ sealing; extensive siliceous sinter; area and volume may be much larger. 15 1.5 22.5 2.5 No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system. 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 1 (?) spring discharging 26 lpm and possibly depositing calcite. 1.5 1.5 2.25 .2 1 (?) spring discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 4 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~180,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	km² <u>4</u> /	km <u>5</u> /	km³ <u>6</u> ∕	<u></u>	
 15 1.5 22.5 2.5 No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system. 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 1 (?) spring discharging 26 lpm and possibly depositing calcite. 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ∿185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	4	2	8	1.0	Hot springs decreasing from 88°C (1908) to 55°C (1957), then ceased discharging from SiO ₂ sealing; extensive siliceous sinter; area and volume may be much larger.
 1.5 1.5 2.25 .2 16 springs in 2 groups; travertine deposits. 1.5 1.5 2.25 .2 1 (?) spring discharging 26 lpm and possibly depositing calcite. 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 4 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	15	1.5	22.5	2.5	No springs but active gas seeps; altered areas mined for sulfur; no reliable chemical data; possibly a vapor-dominated system.
 1.5 1.5 2.25 .2 1 (?) spring discharging 26 1pm and possibly depositing calcite. 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 4 springs discharging ~110 1pm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 1pm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	1.5	1.5	2.25	.2	16 springs in 2 groups; travertine deposits.
 1.5 1.5 2.25 .2 1.5 1.5 2.25 .2 4 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	1.5	1.5	2.25	.2	l (?) spring discharging 26 lpm and possibly depositing calcite.
 1.5 1.5 2.25 .2 4 springs discharging ~110 lpm, in extensive travertine deposits. 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	1.5	1.5	2.25	.2	
 1.5 1.5 2.25 .2 Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable. 1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 	1.5	1.5	2.25	.2	4 springs discharging ${\sim}110$ lpm, in extensive travertine deposits.
1.5 1.5 2.25 .2 Chemical temperatures not reliable. 375 2.5 940 133 Numerous thermal phenomena, largely in Yellow-stone caldera; individual areas not itemized; total discharge 0.185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indicate 330°C. 0.1414 0.2005 0.371	1.5	1.5	2.25	.2	Spring deposits, not identified; in Mt. Ranier National Park; chemical temperatures not reliable.
375 2.5 940 133 Numerous thermal phenomena, largely in Yellow- stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indi- cate 330°C.	1.5	1.5	2.25	.2	Chemical temperatures not reliable.
01/1/ 02005 0371	375	2.5	940	133	Numerous thermal phenomena, largely in Yellow- stone caldera; individual areas not itemized; total discharge ~185,000 lpm; 13 research drill holes with maximum T 237.5°C at 332 m; other geochemical and mixing-model T's indi- cate 330°C.
	∿ <mark>1414</mark>		w 2995	∿ 371	

FIGURE 1.—Location of hydrothermal convection systems in the conterminous United States with indicated subsurface temperatures above 150°C.

FIGURE 2.—Location of hydrothermal convection systems in Alaska and Hawaii with indicated subsurface temperatures above 150°C (+) and between 90° and 150°C (dots).

23

.

	Location		Temperatures °C				
Name	Lati- tude N	Longi- tude w	Sur- face	Sur- Geochemical face		Sub- sur- face	
			1/	2/ S102	2/ Na-K-Ca	<u>3</u> /	
ALASKA Okmok caldera	53 29	168 06	100	110	75	125	
Great Sitkin Is.	52 04	176 05	99			125	
Pilgrim H.S.	65 06	164 55	88	137	146	150	
Serpentine Sprs.	65 51	164 42	77	132	161	140	
Near Lava Creek	65 13	162 54	65	128	91	130	
Clear Creek	64 51	162 18	67	119	83	125	
Granite Mtn. (Sweepstakes)	65 22	161 15	49	122	75	130	
South	66 09	157 07	50	115	72	120	
Melozi H.S.	65 08	154 40	55	124		130	
Little Melozitna	65 28	153 19	38	126		130	
Kanuti	66 20	150 48	66		136	140	
Manley (Baker) H.S	. 65 00	150 38	59	115	137	140	
Tolovana	65 16	148 50	60	122	162	130	
Chena	65 03	146 03	57	129	137	140	
Circle	65 29	144 39	54	135	143	145	
E. Cold Bay	55 13	162 29	54	117	144	145	
Near Tenakee Inlet	58 13	135 55	82	147	72	150	
Hooniah H.S.	57 48	136 20	44	136		140	
Tenakee H.S.	57 47	135 13	43	111	63	115	

Table	5.—Identified	hot-water	convection	systems	with

 $\underline{\mathcal{V}}$ Maximum surface temperature reported from a spring or fumarole.

2/ Predicted using chemical geothermometers, assuming last equilibration in the reservoir; assumes saturation of SiO₂ with respect to quartz, and no loss of Ca from calcite deposition. $\frac{3}{4}$ Assumed average reservoir temperature based on data presently available.

From surface manifestations, geophysical data, well records, and geologic inference. Assumes 1.5 km² if no data pertinent to size is available.

 $\frac{5}{100}$ Top assumed at depth of 1.5 km if no data available. Bottom assumed at 3 km depth for all convection systems.

-

 $\underline{6}^{\prime}$ Calculated from assumed area and thickness.

 $\frac{1}{2}$ Calculated as product of assumed volume, volumetric specific heat of 0.6 cal/cm^{3°}C, and temperature in degrees C above 15°C.

indicated	subsurface	temperatures	from	90°	to	150°C

	Reservoir Assumptions			Comments	
	Sub- sur- face area km ² 4/	Thick- ness km 5/	Vol- ume km ³ 6/	Heat con- tent 10 ¹⁸ cal 7/	
-				72	
	3	2	6	.4	About 18 springs near 1945 eruption in Okmok caldera; may be more extensive and higher in temperatures; sinter reported.
	1.9	5 1.5	2.25	.2	12 springs and fumaroles near recent volcanism.
	1.9	5 1.5	2.25	.2	Several hot springs in permanently thawed area of .25 km².
	1.9	5 1.5	2.25	.2	2 spring areas 1.3 km apart discharging \sim 100 lpm and depositing travertine; Na-K-Ca may be too high.
	1.9	5 1.5	2.25	.2	One main spring.
	1.9	5 1.5	2.25	.2	2 springs discharging ${\sim}1,000$ lpm.
	1.9	5 1.5	2.25	.2	Several springs.
	1.9	5 1.5	2.25	.1	Several springs.
	1.9	5 1.5	2.25	.2	One main spring discharging ${\sim}500$ lpm; chemical data not reliable.
	1.9	5 1.5	2.25	.2	Hot springs discharging ${\sim}230$ lpm.
	1.9	5 1.5	2.25	.2	Several hot springs.
	1.5	5 1.5	2.25	.2	Hot spring discharging ${\sim}560$ lpm.
	1.5	5 1.5	2.25	.2	Several hot springs, "small" discharge, possibly depositing travertine.
	1.5	5 1.5	2.25	.2	Hot springs discharging ∿840 lpm, depositing sulfur
	1.5	5 1.5	2.25	.2	ll hot springs discharging ${\sim}500$ lpm, depositing travertine.
	1.5	5 1.5	2.25	.2	In recent volcanic rocks.
	1.5	5 1.5	2.25	.2	Discharging ∿40 lpm; chemical data not reliable.
	1.9	5 1.5	2.25	.2	3 hot springs discharging ${\sim}110$ lpm; chemical data not reliable.
	1.5	5 1.5	2.25	.1	About 12 hot springs discharging ${\sim}80$ 1pm.

L	Temperatures °C					
Name	Lati- tude N	Longi- tude w	Sur- Geochemical face			Sub- sur- face
			<u>1</u> /	2/ S10 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>
ALASKA Con. Near Fish Bay	57 22	135 23	47	143		150
Baranof H.S.	57 05	134 50	50	119	68	125
Goddard H.S.	56 50	135 22	67	148	147	150
Bailey H.S.	55 59	131 40	88	158		150
Bell Island H.S.	55 56	131 34	72	140		145
ARIZONA						
Verde H.S.	34 21.5	111 42.5	36	118	146	150
Castle H.S.	33 59.1	112 21.6	50	109	71	110
North of Clifton	33 04.7	109 18.2	59	138	174	140
Clifton H.S.	33 03.2	109 17.8	75	107	161	110
Eagle Creek Spring	33 02.8	109 28.6	36	114	104	115
Gillard H.S.	32 58.5	109 21.0	82	135	138	140
Mt. Graham	32 51.4	109 44.9	42	106	102	110
CALIFORNIA						
Kelley H.S.	41 27.5	120 50	96	144	85	130
Hunt H.S.	41 02.1	122 55.1	58	101	75	105
Big Bend H.S.	41 01.3	122 55.1	82	121	137	140
Salt Springs(1)	40 40.2	122 38.7	20	107	55	110
Wendel-Amedee area	40 18	120 11	95	135	129	140

Table 5.-Identified hot-water convection systems with indicated

Rese	rvoir As	sumptions		Comments
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	
km² <u>4</u> /	km <u>5</u> /	km³ <u>6</u> /	<u>7/</u>	
۱.	5 1.5	2.25	.2	Springs discharging ∿95 lpm; chemical data not reliable.
1.	5 1.5	2.25	.2	Springs discharging ${\sim}300$ lpm.
1.	5 1.5	2.25	.2	3 hot springs discharging ${\sim}50$ lpm.
1.	5 1.5	2.25	.2	9 hot springs discharging ∿315 lpm; chem- ical data not reliable.
۱.	5 1.5	2.25	.1	5 hot springs discharging ∿40 lpm; chem- ical data not reliable.
1.	5 1.5	2.25	.2	Several springs; indicated temperatures may be too high.
۱.	5 1.5	2.25	.1	Two springs.
۱.	5 1.5	2.25	.2	Two springs; may be depositing calcite
1.	5 1.5	2.25	.1	Several springs; may be depositing calcite.
۱.	5 1.5	2.25	.1	Two springs; indicated geochemical tempera- ture may be too high.
۱.	5 1.5	2.25	.2	5 springs
۱.	5 1.5	2.25	.1	l hot mineral well; geochemical tempera- tures may be too high.
۱.	52	3	.2	l spring flowing ∿l200 lpm; l,000 m well drilled in 1969, reported ll0°C.
۱.	5 1.5	2.25	.1	2 hot springs flowing 8 lpm
۱.	5 1.5	2.25	.2	6 hot springs, flowing 38 lpm.
1.	5 1.5	2.25	.1	Spring from travertine cone, flowing 20 lpm
7	2	14	1.1	Many flowing 3,500 lpm; 4 wells, deepest 338 m, T=107°C; possibly separate systems at Wendel and Amedee.

,

subsurface	temperatures	from	90°	to	150	°C-Continued
------------	--------------	------	-----	----	-----	--------------

L	ocation	Temperatures °C				
Name	Lati- tude N	Longi- tude W	Sur- face	Geochemical		Sub- sur- face
			<u>1</u> /	<u>2/</u> Si0 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>
CALIFORNIA Con.						
Tuscan (Lick) S.	40 14.5	122 08.4	30	137	112	140
Soda Spring	39 24.8	122 58.6	17	148	158	150
Salt Spring(2)	39 25.8	122 32.3	25	157	123	150
Crabtree H.S.	39 17.4	122 49.3	41	163	133	150
Fouts (Redeye) S.	39 21.0	122 40.1	26	150	126	150
Fouts (Champagne) S	.39 20.5	122 39.4	18	117	128	130
Orr's H.S.	39 13.8	123 21.9	40	112	67	115
Vichy Springs	39 09.9	123 09.4	32	132	145	135
Cooks Springs	39 15.2	122 31.4	17	133	187	140
Saratoga Springs	39 10.5	122 58.7	16	137	46	140
Wilbur H.S. area	39 02.2	122 25.2	60	180	240	145
Deadshot Spring	39 05.1	122 27.4	26	135	204	135
Point Arena H.S.	38 52.6	123 30.6	44	105	62	105
Ornbaun Springs	38 54.7	123 18.4	16	126	122	125
Seigler Springs	38 52.5	122 41.3	52	169	188	150
Baker Soda Spring	38 53.6	122 31.9	24	124	202	130
One-Shot Mining Co.	38 50.0	122 21.4	22	135	153	150
Aetna Springs	38 39.5	122 28.7	33	135	94	135
Walter Springs	38 39.2	122 21.4	19	135	82	135
Mark West Springs	38 32.9	122 43.2	31	140	48	140

Table 5.-Identified hot-water convection systems with indicated

Reserve	oir As	sumptions		Comments
Sub- T sur- n face area	hick- ess	Vol- ume	Heat con- tent 10 ¹⁸	
km² <u>4</u> / ki	m <u>5/</u>	km³ <u>6</u> /	<u>7/</u>	
1.5	1.5	2.25	.2	20 Springs flowing 190 lpm.
1.5	1.5	2.25	.2	High bicarbonate spring; geothermometry doubtful.
1.5	1.5	2.25	.2	Note: distinct from Salt Springs, above; geothermometry doubtful.
1.5	1.5	2.25	.2	4 springs, flowing 57 lpm; geothermometry doubtful.
1.5	1.5	2.25	.2	4 springs, flow 7.5 lpm; geothermometry doubtful.
1.5	1.5	2.25	.2	4 springs, geothermometry doubtful.
1.5	1.5	2.25	.1	7 springs flowing 95 lpm.
1.5	1.5	2.25	.2	7 springs flowing 113 lpm; Na-K-Ca may be inaccurate due to travertine deposition.
1.5	1.5	2.25	.2	Geothermometry doubtful.
1.5	1.5	2.25	.2	5 springs, flow 9 lpm; geothermometry doubtful
16	2	32	2.5	l2 springs, flow 80 lpm; well drilled to l,100 m, 141°C; should be in table 4?
1.5	1.5	2.25	.2	4 springs flowing 4 lpm; geothermometry doubtful.
1.5	1.5	2.25	.1	2 springs flowing 19 lpm.
1.5	1.5	2.25	.2	l spring flowing less than 1 lpm.
2	1.5	3	.2	13 springs flowing 132 lpm; geothermometry doubtful.
1.5	1.5	2.25	.2	Numerous springs; geothermometry doubtful.
1.5	1.5	2.25	.2	Flow 189 lpm; sinter and travertine reported.
1.5	1.5	2.25	.2	6 springs flowing 75 lpm; geothermometry doubtful.
1.5	1.5	2.25	.2	Flow 6 lpm; geothermometry doubtful.
1.5	1.5	2.25	.2	${\sim}9$ hot springs in a group flowing 113 lpm.

L	ocation	Temperatures °C				
Name	Lati- tude	Longi- tude	Sur . face	Geoch	Su - sur- face	
		·	<u>1</u> /	2/ S10 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>
CALIFORNIA Con.						
Napa Soda S. Rock (Priest)	38 31.1	122 15.6	26	143	81	145
Los Guilicos W.S.	38 23.7	122 33.0	31	129	184	135
(Jackson's) Napa Soda Springs	38 23.4	122 16.7	16	149	60	150
Brockway (Corne- lian) H.S.	39 13.5	120 0.4	60	119	94	121
Grovers H.S.	38 41.9	119 51.6	63	135	126	140
Fales H.S.	38 20	119 24	62	147	165	150
Buckeye H.S.	38 14.3	119 19.6	64	122	138	140
Benton H.S.	37 48	118 31.8	57	113	79	115
Travertine H.S.	38 14.8	119 12.1	70	114	172	121
Near Black Pt.	38 2.4	119 5	63	122	124	125
Paoha Island	37 59.8	119 01.2	83	186		125
Mono H.S.	37 19.5	119 01.0	44	110	80	115
Blayney Meadows H.S	.37 14.1	118 53	43	102	57	105
Mercey H.S.	36 42.2	120 51.6	46	122	94	125
Randsburg area	35 23.0	117 32.2	115			125
Arrowhead H.S. area	34 08.6	117.15.2	94	132	147	150
Pilger Estates H.S.	33 26.0	115 41.1	82	125	145	145
Warner H.S.	33 17.0	116 38.4	64	141	100	145
Glamis (E. Brawley)	32 58	115 11				135
Glamis (East)	33 59	115 04				135
Dunes	32 49	115 01				125

Rese	rvoir As	sumptions		Comments				
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal					
km² <u>4</u> /	km <u>5</u> /	km ³ <u>6</u> /	<u>7/</u>					
1.9	5 1.5	2.25	.2	2 springs flowing 60-85 lpm; geothermometry doubtful.				
1.9	5 1.5	2.25	.2	3 springs flowing 75 lpm; Na-K-Ca may be inaccurate due to travertine deposition.				
1.9	5 1.5	2.25	.2	27 springs; geothermometry doubtful.				
1.9	5 1.5	2.25	.1	6 springs flowing 570 lpm.				
1.9	5 1.5	2.25	.2	12 springs flowing 378 lpm.				
1.9	5 1.5	2.25	.2	20 springs flowing 95 lpm, possibly depositing travertine.				
1.9	5 1.5	2.25	.2	l spring flowing 75 lpm.				
1.9	5 1.5	2.25	.1	2 springs flowing 1,500 lpm.				
1.9	5 1.5	2.25	.1	3 main springs flowing 38 lpm; extensive travertine.				
1.9	5 1.5	2.25	.1					
1.9	5 1.5	2.25	.1	Several springs flowing 370 lpm; non-quartz equilibration of SiO_2 likely.				
1.9	5 1.5	2.25	.1	Four springs flowing 95 lpm.				
1.9	5 1.5	2.25	.1	Eight springs flowing 150 lpm.				
1.9	5 1.5	2.25	.2	3 hot springs flowing 23 lpm.				
1.9	5 2.5	3.75	.3	l well reported 115°C at 235 m.				
2	1.5	3	.2	2 groups of hot springs flowing 190 lpm.				
1.9	5 1.5	2.25	.2	Near Salton Sea; possibly more extensive.				
1.9	5 1.5	2.25	.2	6 springs flowing 570 lpm.				
2	1.5	3	.2	Estimated using temperature gradient data; a part above 150°C?				
4	1.5	6	.4	Temperature gradient data; a part above 150°C?				
6	1.5	9	.6	Temperature gradient data: a part above 150°C?				

l	ocation		Temperatures °C				
Name	Lati- tude	Longi- tude	Sur- face	Geoch	Sub- sur- face		
	N	· ·	<u>1</u> /	2/ S102	<u>2/</u> Na-K-Ca	<u>3</u> /	
COLORADO							
Routt H.S.	40 33.6	106 51	64	131	168	135	
Steamboat Springs	40 29.1	106 50.3	66	129	195	135	
Idaho Springs	39 44.2	105 30.2	50	109	208	115	
Glenwood Springs	39 33	107 19.3	66	137	190	140	
Avalanche Springs	39 13.9	107 13.5	57	136	125	140	
Cottonwood Springs	38 48.7	106 13.5	62	107	83	110	
Mt. Princeton S.	38 43.9	106 10.2	66	112	52	115	
Poncha H.S.	38 29.9	106 04.5	76	129	143	145	
Mineral H.S.	38 10.1	105 55.0	63	103	91	105	
Waunita H.S.	38 31.0	106 29.1	71	129	87	130	
Cebolla H.S.	38 16.5	107 05.9	46	125	233	130	
Orvis H.S.	38 08	107 44	58	109	231	110	
Wagon Wheel Gap	37 45	106 49.2	66	129	188	135	
Pagosa H.S.	37 15.5	107 00.5	70	165	278	150?	

Table	5	-Ide	entif	ĭied	hot	-water	convection	systems	with	indicated	
-------	---	------	-------	------	-----	--------	------------	---------	------	-----------	--

Reser	voir As	sumptions		Comments				
Sub- sur- face area km ² 4/	Thick- ness km <u>5</u> /	Vol- ume km ³ 6/	Heat con- tent 10 ¹⁸ cal 7/					
1.5	1.5	2.25	.2	Three hot springs; Chemical data not reliable.				
1.5	1.5	2.25	.2	Many hot springs; chemical data not reliable; some travertine.				
1.5	1.5	2.25	.1	8 springs, total discharge 190 lpm depositing travertine; probably fault- controlled; chemical data not reliable.				
1.5	1.5	2.25	.2	ll springs discharging about ll,400 lpm; chemical data not reliable; some travertine.				
1.5	1.5	2.25	.2	5 springs discharging ∿54 lpm; chemical data not reliable.				
4	1.5	6	.3	5 springs discharging ∿570 lpm; extensive zeolitization.				
5	1.5	7.5	.5	4 main springs, 30 others; extensive zeoli- tization, present deposition of opal, calcite, and phillipsite reported.				
1.5	1.5	2.25	.2	3 springs depositing travertine and discharging ∿1,900 lpm; associated with flourite deposits; Na-K-Ca temperature may be too high.				
1.5	1.5	2.25	.1	30 springs discharging \sim 190 lpm, reported with travertine and sinter (?); wells to 354 m depth and 60°C.				
1.5	1.5	2.25	.2	2 groups, more than 100 springs discharging 3785 lpm.				
1.5	1.5	2.25	.2	20 springs discharging ${\sim}380$ lpm; travertine reported; chemical data not reliable.				
1.5	1.5	2.25	.1	l spring discharging ∿1,140 lpm; chemical data not reliable.				
1.5	1.5	2.25	.2	3 springs depositing travertine and associated with flourite deposits; Na-K-Ca temperature probably too high.				
1.5	1.5	2.25	.2	Springs discharging ∿380 lpm and depositing travertine; I well for space heating; chem- ical data not reliable.				

Lo	Temperatures °C					
Name	Lati- tude	Longi- tude	Sur- face	Geoch	emical	Sub- sur- face
	N	w		2/	2/	
			<u>l</u> /	Sī0 ₂	Na-K-Ca	<u>3/</u>
HAWAII						
Steaming Flats (Sulphur Bank area)	19 26.5	155 16	97	No	Data	∿150?
Upper Kau area	19 23.7	155 17.3	∿22			100
1955 eruption area, East Rift	19 26.5	154 57	hot	No	Data	∿150?
Puulena area, East Rift	19 28.3	154 53	?	No	Data	∿150?
IDAHO						
Red River H.S.	45 47.3	115 08.8	55	123	80	125
Riggins H.S.	45 24.7	116 28.5	47	120	95	125
Burgdorf H.S.	45 16.7	115 55.2	45	121	57	125
Zim's (Yoghann) H.S.	.45 02.6	116 17.0	65	115	85	120
Krigbaum H.S.	44 58.1	116 11.4	43	121	96	125
Starkey H.S	44 51.2	116 25.8	56	108	70	115
White Licks H.S.	44 40.9	116 13.8	65	143	145	150
Near Cove School	44 35.0	116 37.7	70	120	78	125
Near Deer Creek	44 32.4	116 45.0	50	107	63	110
Near Midvale	44 28.3	116 43.9	28	128	243	135
Near Midvale Airprt	.44 28.2	116 45.9	28	121	51	125
Hot Creek Springs	44 38.5	116 02.7 34	34	111	62	115

Reserv	oir As	sumptions		Comments
Sub- T sur- n face area	hick- ess	Vol- ume	Heat con- tent 10 ¹⁸ cal	
 km² <u>4</u> / k	m <u>5</u> /	km³ <u>6</u> /	<u>7/</u>	
1.5	1.5	2.25	.2	Nearly constant fumarolic activity, no water discharge; area may be larger.
5	0.7	3.5	.2	Resistivity anomally drilled by N.S.F. grant to G. V. Keller, 1973; low-tempera- ture convection system identified top at water table, $\sim 80^{\circ}$ C at -490 m; bottom of convection near -1,150 m, $\sim 100^{\circ}$ C, then steep gradient to basaltic magma chamber (?).
2	2	4	.3	Steaming area; three wells drilled 1961, deepest \sim 210 m, \sim 113°C; NSF grant 1975 to University of Hawaii for deep test.
2	2	4	.3	No surface manifestations; geophysical anomalies identified.
1.5	1.5	2.25	.2	9 springs discharging ∿130 lpm; mixing model T=190°C.
1.5	1.5	2.25	.2	4 springs discharging ∿190 lpm; mixing model T=220°C.
1.5	1.5	2.25	.2	2 springs discharging ∿610 lpm.
1.5	1.5	2.25	· .1	Discharging hot well.
1.5	1.5	2.25	.2	2 springs discharging 150 lpm; mixing model T=200°C.
1.5	1.5	2.25	.1	7 hot springs discharging 490 lpm.
1.5	1.5	2.25	.2	Numerous springs discharging 113 lpm; may be part of larger system including hot springs near Cove School; mixing model T=220°C.
1.5	1.5	2.25	.2	Numerous springs discharging 1,630 lpm.
1.5	1.5	2.25	.1	Hot springs discharging 219 lpm.
1.5	1.5	2.25	.2	Flowing well; may be part of single system including Deer Creek and Midvale.
1.5	1.5	2.25	.2	Flowing well; geochemical temperatures unreliable.
1.5	1.5	2.25	.1	Springs discharging ∿3,000 lpm; mixing model suggests 195°C.

L	ocation	Temperatures °C				
Name	Lati- tude N	Sur- face	Sur- Geochemical face			
			1/	2/ S102	<u>2/</u> Na-K-Ca	3/
IDAHO Con.						
Molly's H.S.	44 38.3	115 41.6	59	130	83	135
Vulcan H.S.	44 34.1	115 41.5	87	148	135	150
Cabarton H.S.	44 25	116 01.7	71	124	99	130
Boiling Springs	44 21.9	115 51.4	86	134	89	140
Near Payette River	44 05.1	116 03	80	148	139	150
Near Grimes Pass	44 02.8	115 51.1	55	110	74	115
Kirkham_H.S.	44 04.3	115 32.6	65	118	79	120
Bonneville H.S.	44 09.5	115 18.4	85	138	142	145
Stanley H.S.	44 13.5	114 55.6	41	107	47	110
Sunbeam H.S.	44 16.1	114 44.9	76	133	130	140
Slate Creek H.S.	44 10.1	114 37.5	50	129	91	130
Roystone H.S.	43 57.2	116 18	55	148	150	150
N.E. Boise Thermal area	43 36.1	116 09.9	75	124	79	125
Neinmeyer.H.S.	43 45.5	115 34.7	76	138	126	140
Dutch Frank Springs	43 47.7	115 25.5	65	120	72	125
Paradise H.S.	43 33.2	115 16.3	56	118	72	120
Worswick H.S.	43 33.5	114 47.2	81	135	93	140

Table 5.-Identified hot-water convection systems with indicated

Rese	rvoir As	sumptions		Comments				
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal					
<u>km² 4/</u>	km <u>5</u> /	km ³ <u>6</u> /	7/					
1.5	1.5	2.25	.2	7 springs discharging 76 lpm; mixing model suggests 195°C.				
1.5	1.5	2.25	.2	13 springs discharging ${\sim}$ 1,900 1pm; sinter reported.				
1.5	1.5	2.25	.2	Numerous springs discharing ∿265 1pm; mixing model T = 165°C.				
1.5	1.5	2.25	.2	Numerous vents discharging \sim 600 lpm and depositing minor zeolites, calcites, and mercury minerals.				
1.5	1.5	2.25	.2	One spring discharging ∿75 lpm; mixing model suggests 200°C.				
1.5	1.5	2.25	.1	Spring(s?) discharging ${\sim}260$ lpm.				
1.5	1.5	2.25	.1	Numerous springs discharging ${\sim}950$ lpm.				
1.5	1.5	2.25	.2	8 springs and seeps discharging \sim 1,900 lpm; mixing model suggests 175°C.				
4	1.5	6	.3	6 springs discharging ~420 lpm; south- western of a possible 10-km line extend- ing NE to Sunbeam; mixing T = 180°C.				
1.5	1.5	2.25	.2	Numerous vents discharging ${\sim}$ 1,700 lpm.				
1.5	1.5	2.25	.2	8 springs and seeps discharging ∿700 lpm; mixing T = 210°C.				
2	1.5	3	.2	5 springs discharging ${\sim}75$ lpm.				
4	2	8	.5	Linear zone of springs and associated thermal wells on the NE edge of Boise; used for space heating.				
1.5	1.5	2.25	.2	l3 springs discharging ∿l,300 lpm with gas, mixing model suggests 190°C.				
1.5	1.5	2.25	.2	Numerous springs, gassy, discharging ~1,150 lpm.				
1.5	1.5	2.25	.1	Several springs.				
1.5	1.5	2.25	.2	Numerous springs discharging ${\sim}$ 1,750 lpm.				

1	Location			Temper	atures °C	
Name	Lati- tude	Longi- tude	Sur- face	Geoch	emical	Sub- sur-
	N	w				Tace.
			<u>1</u> /	<u>2/</u> Si0 ₂	<u>2/</u> Na-K-Ca	<u>3</u> /
IDAHO Con.						
Guyer H.S.	43 40.5	114 24.6	71	129	88	135
Clarendon H.S.	43 33.6	114 24.9	47	125	114	130
Hailey H.S.	43 30.3	114 22.2	63	129	83	135
Near Brockie Airpt	43 32.4	113 30.1	41	107	91	110
Elk Creek H.S.	43 25.4	114 37.6	54	113	80	120
Near Punkin Corner	43 18.1	114 54.4	35	123	71	125
Barron's H.S.	43 18.1	114 54.4	71	124	91	130
Near Magic Reservoir	43 19.7	114 23.2	71	138	163	140
Near Bennett Creek	43 06.9	115 27.9	68	129	71	135
Latty H.S.	43 07.0	115 18.3	55	138	137	140
Near Ryegrass Creek	43 05.8	115 24.6	62	129	81	135
Near Radio Towers	43 02.2	115 27.5	38	129	125	130
White Arrow H.S.	43 02.9	114 57.2	65	136	113	140
Near Chalk Mine	43 02.9	114 55	47	133	98	140
Near Clover Creek	43 01.4	115 00.6	43	113	70	120
Near Gravel Pits	42 54.3	115 29.5	34	109	144	145
Bruneau-Grandview	42 56	115 56	84	138	93	145
Near Banbury	42 41.4	114 50	59	136	108	140

Table 5.-Identified hot-water convection systems with indicated

38

Resei	rvoir As	sumptions		Comments				
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal					
km² _4/	km <u>5</u> /	km ³ <u>6</u> /	<u>7/</u>					
1.5	1.5	2.25	.2	Numerous springs discharging ${\sim}3\!$				
_1.5	1.5	2.25	.2	Numerous springs discharging ~380 1pm; mixing model suggest 215°C.				
1.5	1.5	2.25	.2	Numerous springs discharging ~265 lpm; mixing model suggests 190°C.				
1.5	1.5	2.25	.1	l well flowing ${\sim}45$ lpm.				
1.5	1.5	2.25	.1	5 springs discharging ${\sim}55$ lpm.				
1.5	1.5	2.25	.1	Flowing well discharging 15 lpm; may be part of extensive system underlying a large portion of the Cames Prairie, and including Elk Creek, Barrons, and Waldrop.				
1.5	1.5	2.25	.2	Numerous springs discharging ${\sim}120$ lpm.				
1.5	1.5	2.25	.2	One well flowing 51 lpm; mixing models indicate temperatures as high as 275°C.				
1.5	1.5	2.25	.2	Flowing well discharging ${\sim}2\!\!,600$ lpm.				
1.5	1.5	2.25	.2	One spring; may be part of extensive system that includes Bennett Creek and Ryegrass Creek; SiO ₂ temperature of all may be too high because of equilibration with diatomite.'				
1.5	1.5	2.25	.2	Flowing well.				
1.5	1.5	2.25	.2	l flowing well discharging 30 lpm.				
1.5	1.5	2.25	.2	4 springs discharging ∿3,100 lpm; mixing model indicates 200°C.				
1.5	1.5	2.25	.2	l flowing well.				
1.5	1.5	2.25	.1	l flowing well.				
1.5	1.5	2.25	.2	l flowing well discharging ∿8 lpm. Na-K-Ca temperature may be inaccurate carbonate deposition reported. May be diatomaceous earth at depth.				
2250	1.5	3375	263	An extensive area with many warm and hot artesian wells; mixing model temperatures up to 275°C.				
8	1.5	12.0	.9	l flowing well discharging ~225 lpm; mix- ing T =215°C; includes Miracle and 1 other spring.				

L	ocation			Temper	atures °C	
Name	Lati- tude N	Longi- tude w	Sur- face	Geoch	emical	Sub- sur- face
			<u>1</u> /	<u>2/</u> S10 ₂	2/ Na-K-Ca	<u>3</u> /
IDAHO Con.						
Near Cedar Hill	42 24.9	114 18.1	38	116	65	120
Near Bridger Springs	42 28.7	113 37.5	60	111	89	115
Oakley Warm Springs	42 10.4	113 51.7	47	119	92	120
Raft River thermal area	42 06.1	113 22.8	96	136	139	140
Maple Grove H.S.	42 18.2	111 42.2	76	107	236	110
Near Riverdale	42 09.9	111 50.4	45	126	170	125
Wayland H.S.	42 08.2	111 56.9	77	126	270	130
Near Newdale	43 53.2	111 35.4	36	122	84	125
Ashton Warm Springs	44 05.7	111 27.5	41	143	91	145
MONTANA						
Helena (Broadwater) Hot Spring	46 36.5	112 05	65	136	135	140
White Sulphur Springs	46 32.8	110 54.2	57	103	148	150
Alhambra H.S.	46 27	111 59	59	115	111	120
Boulder H.S.	46 12	112 05.6	76	143	135	145
Gregson (Fairmont) H.S.	46 02.6	112 48.4	74	128	126	130
Pipestone H.S.	45 53.8	112 13.9	61	115	113	120
Barkels (Silver Star) H.S.	45 41.5	112 17.2	72	143	139	145
Norris (Hapgood) H.S.	45 34.6	111 41	52	130	153	150
Jardine (Big Hole or Jackson) H.S.	45 21.8	113 24.7	58	104	148	150

Table 5.-Identified hot-water convection systems with indicated

Reservoir Assumptions				Comments				
Sub- Thick- Vol- sur- ness ume face area		Heat con- tent 10 ¹⁸						
km² <u>4</u> /	km <u>5/</u>	km³ <u>6</u> /	<u></u>					
6	1.5	9	.6	l flowing well discharging ∿2050 lpm.				
1.5	1.5	2.25	.1	l flowing well discharging 7,900 lpm; mixing T = 150°C.				
1.5	1.5	2.25	.1	l spring discharging 38 lpm; mixing T = 195°C.				
20	1.5	30	2.3	Area of flowing hot wells recently explored by ERDA; 140°C measured at depth of 1,400 m in well flowing ~3,800 lpm.				
2	1.5	3	.2	Numerous springs discharging ∿1,300 lpm; Na-k-Ca possibly inaccurate due to deposition of carbonate.				
1.5	1.5	2.25	.2	l flowing well; Na-K-Ca possibly inaccurate from deposition of carbonate.				
5	1.5	7.5	.5	Numerous springs discharging ~3,400 lpm and depositing travertine; Na-K-Ca thermometry may be inaccurate.				
1.5	1.5	2.25	.2	Flowing well.				
1.5	1.5	2.25	.2	Springs discharging 📲 lpm from Pleistocene basalt.				
1.5	1.5	2.25	.2	2 hot springs discharging 110 lpm.				
1.5	1.5	2.25	.2	About 9 springs discharging ∿2000 lpm; mixing model suggests 150°C.				
1.5	1.5	2.25	.1	About 22 springs				
1.5	1.5	2.25	.2	Many springs in two groups; siliceous sinter; large discharge.				
1.5	1.5	2.25	.2	Several springs				
1.5	1.5	2.25	.1	Several springs.				
1.5	1.5	2.25	.2	4 springs discharging 200 lpm.				
1.5	1.5	2.25	.2	5 springs discharging 200 lpm.				
1.5	1.5	2.25	.2	About 100 springs ~5,700 lpm; mixing model indicates 150°C.				

Location				Temperatures °C				
Name	Lati- tude	Longi- tude W	igi- Sur- le face w '		Geochemical			
			<u>1</u> /	<u>2/</u> Si0 ₂	<u>2/</u> Na-K-Ca	<u>3/</u>		
NEVADA								
Bog H.S.	41 55.5	118 48.1	88	108	109	115		
Howard H.S.	41 43.3	118 30.3	56	128	81	130		
Dyke H.S.	41 34.0	118 33.7	66	129	137	140		
Near Soldier Meadow	41 21.5	119 13.2	54	113	65	115		
Double H.S.	41 03.0	119 02.8	80	140	127	145		
Near Black Rock	40 57	118 58	90	148	116	150		
Fly Ranch H.S.	40 52.0	119 20.9	80	127	154	130		
Butte Sprs.	40 46	119 07	86	129	120	130		
Mineral H.S.	41 47.3	114 43.3	60	127	129	130		
Hot Hole (Elko)	40 49.1	115 46.5	89	115	127	115		
Near Carlin	40 42.0	116 08.0	79	119	81	120		
Hot Sulphur Sprs.	41 9.4	114 59.1	90	128	191	140		
Hot Springs Point	40 24.2	116 31.0	54	116	233	125		
Walti H.S.	39 54.1	116 35.2	72	117	78	120		
Spencer H.S.	39 19	116 51	72	123	210	125		
Hot Pot	40 55.3	117 06.5	58	125	195	125		

Table 5.-Identified hot-water convection systems with indicated

Reser	rvoir As	sumptions		Comments
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal	
 km² <u>4</u> /	km <u>5</u> /	km³ <u>6</u> /	<u></u>	
2	2	4	.2	2 springs discharging ${\sim}4,000$ lpm at 54°C.
1.9	5 1.5	2.25	.2	Several springs.
1.9	5 1.5	2.25	.2	1 (?) spring discharging ${\sim}100$ lpm.
6	2	12	.7	Several springs in area of ∿6 km ² dischar- ging ∿50 lpm.
10	2	20	1.6	Several springs along linear zone 20 km north from Black Rock Point; largest group discharging ~175 lpm; minor travertine.
1.	5 1.5	2.25	.2	
8	2	16	1.1	Area of large spring pools and two aban- doned wells discharging ∿500 lpm and depos- iting travertine, so Na-K-Ca may be too high.
1.9	5 1.5	2.25	.2	
1.	5 1.5	2.25	.2	Several springs and shallow wells.
2	1.5	3	.2	Several springs depositing travertine, so Na-K-Ca temperature may be high.
1.	5 1.5	2.25	.1	
1.5	5 1.5	2.25	.2	3 springs discharging ∿190 lpm; paleozoic limestone at depth; Na-K-Ca geothermometer may be inaccurate; may be part of more extensive area extending 4.8 km along west edge of Snake Mtns.
5	1.5	7.5	.5	Hot springs, discharging ∿125 lpm; depos- iting travertine; Na-K-Ca may be inaccurate.
2	1.5	3	.2	6 springs discharging 300 lpm and depos- iting travertine.
1.	5 1.5	2.25	.2	Several hot springs discharging 50 lpm and depositing travertine so Na-K-Ca thermom- etry may be inaccurate.
1.	5 1.5	2.25	.2	One spring discharging ∿270 1pm; depositing travertine; Na-K-Ca may be inaccurate.

Ĺ		Temperatures °C				
Name	Lati- tude	ati- Longi- ude tude		Geochemical		Sub- sur- face
			<u>l</u> /	2/ S10 ₂	2/ Na-K-Ca	<u>3/</u>
NEVADA Con.						
Buffalo Valley H.S.	40 22.	1 117 19.5	5 79	125	140	130
Hot Springs	41 25.	4 117 23.0) 58	107	209	110
Golconda H.S.	40 57.	7 117 29.6	5 74	116	201	125
Sou (Gilberts) H.S.	40 05.	4 117 43.5	i 93	115	99	115
Dixie H.S.	39 47.	9 118 04.0) 72	143	143	150
The Needles	40 08.	8 119 40.5	9 8	137	214	145
Walleys H.S.	38 58.	9 119 49.9) 71	109	85	110
Nevada H.S.	38 54.	0 119 24.7	61	104	86	105
Darrough H.S.	38 49.	3 117 10.8	8 97	136	127	140
Warm Springs	38 11.	3 116 22.5	61	111	192	125
Bartholomae H.S.	39 24.	3 116 20.8	8 54	129	72	130
NEW MEXICO						
Jemez (Ojos Calien- tes) H.S.	35 47	106 41	73	134	197	135
Radium H.S.	32 30	106 55.5	52	124	222	130
Lower Frisco	33 15	108 47	37	128	150	150
Gila H.S.	33 12	108 12	68	121	114	125

Table 5.-Identified hot-water convection systems with indicated

Reser	voir As	sumptions		Comments				
Sub- sur- face area	Thick- ness	Vo1- ume	Heat con- tent 10 ¹⁸					
km² <u>4</u> /	km <u>5</u> /	km ³ <u>6</u> /	<u>7/</u>					
4	2.5	10	.7	More than 200 hot springs with largest discharging 61 lpm; in travertine area so Na-K-Ca thermometry may be inaccurate.				
1.5	1.5	2.25	.1	Discharging from travertine so Na-K-Ca thermometry may be inaccurate.				
1.5	1.5	2.25	.2	About 12 springs discharging 750 lpm and depositing manganiferous travertine; area may be considerably larger.				
1.5	1.5	2.25	.1	Several hot springs depositing travertine.				
2	1.5	3	.2	Several hot springs discharging ${\sim}200$ lpm.				
2	1.5	3	.2	Two lines of springs that have deposited travertine cones in Pyramid Lake; two wells on eastern line, 116°C at 450 and 1,800 m depth; may be considerably larger system.				
1.5	5 1.5	2.25	.1	Many hot springs discharging ${\sim}75$ lpm along base of recent faultscarp.				
1.5	1.5	2.25	.1	Several springs in travertine area dischar- ging ∿200 lpm.				
1.5	5 1.5	2.25	.2	Several springs and well discharging ~350 lpm; one well 129°C at 230 m depth discharging $\sim4,000$ lpm; area may be considerably larger.				
1.5	5 1.5	2.25	.2	2 springs.				
1.5	5 1.5	2.25	.2	Spring discharging ${\sim}400$ lpm.				
1.5	5 1.5	2.25	.2	About 10 springs depositing travertine and discharging ~750 lpm; Na-K-Ca probably not reliable; 9.7 km SSW of Valles Caldera.				
1.5	5 1.5	2.25	.2					
1.5	5 1.5	2.25	.2	Discharge ${\sim}75$ lpm; Na-K-Ca probably not reliable.				
1.5	5 1.5	2.25	.2	Four hot springs discharging ∿3400 lpm; area may be somewhat larger.				

L	Temperatures °C					
Name	Lati- tude	ati- Longi- cude tude		Sur- Geochemical face		
	N	•	<u>1</u> /	2/ ST0 ₂	2/ Na-K-Ca	<u>3/</u>
OREGON						
Mt. Hood	45 22.5	121 42.5	90	No	Data	125
Carey (Austin) H.S.	45 01.2	122 00.6	86	126	118	125
Kahneetah H.S.	44 51.9	121 12.9	52	140	103	140
Breitenbush H.S.	44 46.9	121 58.5	92	127	149	150
Belknap H.S.	44 11.6	122 03.2	71	135	114	140
Klamath Falls	42 15	121 45	74	136	130	120
Summer Lake H.S.	42 43.5	120 38.7	43	134	112	140
Radium H.S.	44 55.8	117 56.4	58	124	108	130
Hot Lake (2)	45 14.6	117 57.6	80	100	115	120
Medical H.S.	45 01.1	117 37.5	60	125	125	130
Ritter H.S.	44 53.7	119 08.6	41	119	92	125
Fisher H.S.	42 17.9	119 46.5	68	123	165	130
Blue Mountain H.S.	44 21.3	118 34.4	58	99	126	130
Near Little Valley	43 53.5	117 30.0	70	145	119	150
Beulah H.S.	43 56.7	118 08.2	60	169	86	130
Near Riverside	43 28.0	118 11.3	63	143	138	150
Crane H.S.	43 26.4	118 38.4	78	127	124	130
Near Harney Lake	43 10.9	119 06.2	68	133	130	135
Near Trout Creek	42 11.3	118 09.2	52	140	144	145
Near McDermitt	42 04.1	117 30.0	52	120	100	120

Table 5.—Identified	hot-water	convection	systems	with	indicated

Reserv	voir As	sumptions		Comments
Sub- Thick- Vol- sur- ness ume face area		Heat con- tent 10 ¹⁸ cal		
km² <u>4</u> / k	(m <u>5</u> /	km ³ <u>6</u> /	<u></u>	
2	2	4	.3	Many fumaroles but not water discharge; semiactive volcano; temperatures may be higher; area may be larger.
1.5	1.5	2.25	.1	Several hot springs in 0.1 km discharging ${\sim}950$ 1pm.
1.5	1.5	2.25	.2	Hot spring discharging ${\sim}200$ lpm.
1.5	1.5	2.25	.2	40 to 60 springs in 0.1 km area discharging 3,400 lpm.
1.5	1.5	2.25	.2	3 springs discharging ${\sim}300$ lpm.
240	2	480	30	Numerous springs and shallow wells dischar- ging from fault zones; largest spring ~2CO lpm; well temperatures 60° to 115°C used for domestic heating; large area indicated.
4	1.5	6.0	.4	3 springs discharging ${\sim}75$ lpm.
1.5	1.5	2.25	.2	2 flowing wells discharging ${\sim}$ 1,100 lpm.
1.5	1.5	2.25	.1	l large spring pool discharging ~1,500 lpm.
1.5	1.5	2.25	.2	2 springs discharging ${\sim}200$ lpm.
1.5	1.5	2.25	.1	l hot spring discharging ${\sim}130$ lpm.
3	1.5	4.5	.3	Hot spring discharging ${\sim}70$ lpm; some ${ m H_2S}$.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}250$ lpm.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}550$ lpm.
1.5	1.5	2.25	.2	l (?) spring discharging \sim 50 lpm from vitric tuff so SiO $_2$ temperature may not La reliable; sinter and travertine reported.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}200$ lpm.
1.5	1.5	2.25	.2	2 springs discharging ${\sim}550$ lpm.
3	1.5	4.5	.3	Spring discharging ${\sim}550$ lpm.
1.5	1.5	2.25	.2	Several springs discharging ${\sim}200$ lpm.
2	1.5	3.0	.2	Hot spring discharging ${\sim}750$ lpm.

L	Temperatures °C					
Name	Lati- tude	Longi- tude	Sur- face	Geochemical		Sub- sur- face
	N	w.	<u>1</u> /	2/ S102	<u>2/</u> Na-K-Ca	<u>3/</u>
UTAH		<u></u>				
Hooper H.S.	41 08	112 11.3	60	101	223	105
Crystal H.S.	40 29	111 54	58	103	135	135
Baker (Abraham, Crater) H.S.	39 36.8	112 43.9	87	118	122	125
Meadow H.S.	38 51.8	112 30	41	100	68	105
Monroe(Cooper) H.S.	38 38.2	112 06.4	76	110	118	120
Joseph H.S.	38 36.7	112 11.2	64	133	141	140
WASHINGTON						
Sol Duc H.S.	47 58.1	123 52.1	56	148	92	150
Olympic H.S.	47 58.9	123 41.2	52	126	87	130
Sulphur Creek H.S.	48 15.3	121 10.8	37	122	113	125
Garland (San Juan)	47 20.5	121 53.4	38	148	185	150
Ohanapecosh H.S.	46 44.2	121 33.6	49	126	164	130
WYOMING						
Huckleberry H.S.	44 07	110 41	71	150	141	150
Auburn H.S.	42 49.5	111 0	62	143	209	150
Totals (224 Systems)					

Table 5.—Identified hot-water	convection	systems	with	indicated
-------------------------------	------------	---------	------	-----------

Reservoir Assumptions				Comments		
Sub- sur- face area	Thick- ness	Vol- ume	Heat con- tent 10 ¹⁸ cal			
km² <u>4/</u>	km <u>5</u> /	km³ <u>6</u> /	<u>7/</u>			
1.5	1.5	2.25	.1	4 saline hot springs in 2 groups 0.6 km apart; geothermometry may not be reliable.		
1.5	1.5	2.25	.2	4 hot springs discharging ${\sim}230$ lpm.		
1.5	1.5	2.25	.1	4 hot springs depositing travertine and M^n oxides at edge of young basalt flows.		
1.5	1.5	2.25	.1	3 springs on 1.6 km trend; includes Hatton Hot Springs (Black Rock or Wiwepa) Hot Springs; analyzed spring discharges 226 lpm		
5	1.5	7.5	.5	9 springs in 3 groups on 48 km trend along Sevier fault; includes Red Hill and Johnson Hot Springs; depositing travertine.		
1.5	1.5	2.25	.2	Springs depositing travertine and dischar-ging ${\sim}110$ 1pm.		
1.5	1.5	2.25	.2	11 springs discharging ${\sim}500$ lpm.		
1.5	1.5	2.25	.2	17 springs discharging ${\sim}500$ lpm along fault zone.		
1.5	1.5	2.25	.1	Springs discharging 15 lpm; minor precipi- tation (carbonate?).		
1.5	1.5	2.25	.2	3 springs discharging ∿95 lpm; extensive travertine; chemical temperatures not reliable.		
1.5	1.5	2.25	.2	5 springs discharging ∿225 lpm; extensive precipitation (carbonate?).		
1.5	1.5	2.25	.2	2 small groups of hot springs discharginເ ∿380 lpm.		
1.5	1.5	2.25	.2	More than 100 vents; discharging \sim 140 lpm and depositing travertine.		
∿2938		∿4564	∿345			

FIGURE 3.—Location of hydrothermal convection systems in the conterminous United States with indicated subsurface temperatures between 90° and 150°C.

dissolved salts (1,000 to 10,000 mg/kg), but a few contain 2 to 3 percent. The Salton Sea geothermal system is especially saline, having about 26 percent dissolved salts at reservoir temperatures exceeding 340° C.

Much attention has been given recently to constituents whose contents are strongly dependent on temperature. A few of these are useful in predicting subsurface temperatures from chemical analyses of water samples from springs or shallow wells. SiO_2 (Fournier and Rowe, 1966) and Na-K-Ca relations (Fournier and Truesdell, 1973) have been especially useful in providing most of the predicted temperatures in this report.

The basic assumptions involved in chemical geothermometers need to be emphasized. The most important (Fournier and others, 1974) are: (1) temperature-dependent reactions exist between constitutents in the water and the rocks of a reservoir; (2) all constituents involved in the reactions are sufficiently abundant so that supply is not a limiting factor; (3) chemical equilibrium is attained at the reservoir temperature; (4) little or no equilibration or change in composition occurs at lower temperatures as the water flows from the reservoir to the surface; and (5) the water from the reservoir does not mix with any other water at intermediate levels. Assumptions 1, 2, and 3 commonly seem to be valid for the SiO₂ and Na-K-Ca geothermometers. Nearly all reservoir rocks contain quartz, and residence times of a few days or weeks are sufficient to saturate the water in SiO₂ with respect to quartz at temperatures much above 150°C. Also, most waters seem to attain equilibrium in Na, K, and Ca with respect to the common clay minerals and feldspars. However, some indicated temperatures of our tabulated data are not reliable, at least in part because waters high in free CO₂ may not have attained equilibrium with the rocks or because they attained equilibrium with mineral assemblages other than those assumed for the geothermometers. In order to gain internal consistency, the SiO_2 temperatures reported in the tables are based on equilibrium with quartz rather than chalcedony or amorphous forms of silica. However, some reported systems, especially those of low temperature, may have equilibrated with one of these more soluble forms of silica. The predicted temperatures of such systems will be too high. Assumption 4, that water flows to the surface

without chemical change, is probably never strictly true, but useful minimum temperatures can be predicted. Assumption 5, that no mixing occurs with cool shallow waters, may frequently be invalid. Mixing, formerly considered to be a major obstacle in predicting subsurface temperatures, has recently been utilized to advantage by Fournier and Truesdell (1974). In favorable circumstances, temperatures higher than those indicated by the SiO₂ on Na-K-Ca geothermometers can be predicted at deeper levels in a stacked series of reservoirs (Truesdell and Fournier, 1975). These mixing models are still so new that they have been applied only to a few systems. Other chemical and isotopic methods of temperature prediction are also being developed by Truesdell and others.

Experience has shown that natural geyrers and active deposition of siliceous sinter are reliable indicators of subsurface temperatures at least as high as 180°C. On the other hand, travertine deposits (CaCO₃) and opaline residues r roduced by sulfuric acid leaching (from oxidation of H₂S) are commonly identified incorrectly as siliceous sinter but actually have no reliable relation to reservoir temperature.

The origin of the heat has major importance in predicting the geothermal resources of individual convection systems. Two principal origins are considered here: (1) heat directly related to volcanic sources localized as "hotspots" in the shallow crust of the Earth (Smith and Shaw, this circular) and (2) heat related to geothermal gradient, or the general increase in temperature with depth as a consequence of conductive heat flow (Diment and others, this circular). For both types, the ultimate source of most of the heat is from deep within the Earth, probably resulting in large part from natural radioactivity. As indicated by Smith and Shaw, the basalts and andesites that form most volcanoes have probably risen rapidly from the mantle to the surface in volcanic eruption. As a result, their heat is dispersed rather than stored and does not provide useful geothermal concentrations. However, the high-silica varieties of volcanic rocks, perhaps because of their very high viscosities, commonly are associated with magma chambers at shallow levels in the crust (perhaps 2 to 10 km but most commonly about 4 km; Smith and Shaw, this circular) and can sustain high-temperature convection systems for many thousands of years. Many large geothermal systems appear to be associated with young silicic volcanic rocks. Some hotspring systems that have no direct association with young silicic volcanic systems may derive their heat from older volcanic systems or from very young igneous systems with no surface expression.

Other hot-spring systems are probably not related to silicic volcanic rocks. The heat of their systems is related to the regional geothermal gradient, which is higher in some regions such as the Great Basin than in others (Diment and others, this circular). Many hot springs of the Great Basin emerge from steeply dipping faults that may extend to depths of at least a few kilometres (Hose and Taylor, 1974; Olmsted and others, 1975). The water may be entirely of surface origin, circulating downward, being heated by thermal conduction with consequent decrease in density, and then rising and discharging from surface springs. In such systems, the normal conducted heat is being removed; temperatures immediately adjacent to the deep recharge channels are lower than those at similar depths not affected by convective heat losses. Temperatures should decline with time as rocks adjacent to channels are cooled and as new heat is supplied by conduction through increasing distances from channel walls. In our opinion, the abundant fault-controlled spring systems of low temperature throughout the Great Basin are likely to be of this origin. We suspect, however, that systems such as Beowawe, Leach, and Bradys in Nevada require volcanic heat and are not supplied only by geothermal gradient, even though located within the Battle Mountain high where conductive heat flow is considerably higher than the normal heat flow of the Great Basin (Diment and others, this circular). We, with R. L. Smith (oral commun. 1975), are skeptical that geothermal gradient alone can sustain high temperatures for the long durations of time indicated for these systems.

Identified systems

The accompanying tables are based on the scanty data available to us early in 1975. Sixty-three systems have indicated temperatures above 150° C (table 4 and figs. 1 and 2), and 224 have indicated temperatures between 90° C and 150° C

(table 5 and figs. 2 and 3). Numerous hot springs in the range of 50° to 90°C (Waring, 1965) have not been included because geochemical and other evidence is lacking to suggest reservoir temperatures greater than 90°C. As additional data become available, some of these will no doubt qualify for higher temperature categories.

The more prominent systems have wellestablished names from local usage and literature. In most instances the name appearing on the topographic map of the area or the name given by Waring (1965) is used. If more than one name is available locally or in the literature for a particular spring, the additional names are shown in parentheses in the tables. Other springs or wells without established names ε re identified by some nearby geographic feature on available maps, which also provide latitude and longitude.

Measured surface temperatures provide minimum reservoir temperatures. Where the chemical temperatures T_{si02} and $T_{Na-K-Ca}$ both indicate temperatures above about 125°C, we are confident that most subsurface temperatures will equal or exceed the predicted temperature. The user of these tables, however, should be especially skeptical of temperatures that are below 125°C, as well as temperatures that differ between the two chemical methods by more than about 20°C. Other systems whose predicted temperatures warrant skepticism are those of moderately high discharge (more than about 50 lpm from a single spring or obout 200 lpm from a system) that also have surface temperatures much below boiling (70°C or less). An indicated high subsurface temperature is credible for a cool spring of low discharge where excess heat can be lost by conduction but is much less credible for a system combining a low surface temperature and a high rate of discharge. Geochemical temperatures in most but not all cases provide minimal estimates of subsurface temperatures. Note that we have predicted some reservoir temperatures that are near the average rather than the maximum geochemical temperature. In most cases, our predicted temperature is at least as high as the preferred geochemical temperature (generally T_{8i02}); however, in some systems where subsurface temperature projections have been made (most notably by Olmsted and others, 1975), the assumed reservoir volume includes a substantial part that may be less than the indicated geochemical temperature.

The subsurface area assumed to be underlain by a reservoir of the indicated average temperature is derived from all available data. These include, as minimum, the surface area containing springs, spring deposits, and bleaching from attack by sulfuric acid derived from oxidation of H₂S. Geophysical data (Combs and Muffler, 1973), where available, provided the principal means for estimating the area and, in a few cases, the indicated depth of the reservoir, even though sufficient drilling has not yet been done to document carefully the relation between a geophysical anomaly and geothermal potential. Parts or all of some electrical resistivity anomalies may be caused by hydrothermal alteration, rocks rich in clay minerals, or saline ground waters, particularly in many areas of the Basin and Range province. Other types of geophysical surveys may also indicate anomalies that are not closely related to geothermal reservoirs. In most instances where surface expression and geology were used to indicate reservoir dimensions and geophysical data were then examined, the reservoir dimensions either remained the same or, more commonly, were significantly increased.

Although the pattern of industry exploration and drilling activity is viewed as highly significant in indicating the extent of a reservoir in several areas, in general only scanty data are available now from private industry. The lack of reliable data concerning areal extent is a serious constraint in this assessment because many estimates of the subsurface areas shown in tables 3 to 5 differ by more than three orders of magnitude; in contrast, all other parameters vary by less than one order of magnitude. Thus, the areal extent is the most critical single parameter in estimating the heat content of a system. Temperature, however, is of critical importance in determining how a system may be utilized. Systems with minimal surface evidence, such as a single spring, a restricted group of springs, or a single thermal well without other evidence, and systems for which geology or geophysics do not suggest a larger subsurface area are arbitrarily assigned a subsurface area of 1.5 km² (assumed to be $1\frac{1}{2}$ km long on the dominant structural trend, even if unknown in direction, and 0.5 km on each side of this trend). Many of the separate systems we have indicated may be interconnected at depths greater than 2 or 3 km.

The heat reservoir of all convection systems is arbitrarily assumed to extend to 3 km in depth, which is the current limit of geothermal drilling. Heat at greater depths in volcanic systems is included in the volcanic system resources (Smith and Shaw, this circular); heat below 3 km in depth in other areas is included in the resource base calculations for conduction-dominated regions (Diment and others, this circular). A convection system in the latter environment has removed heat, relative to surrounding ground, as previously noted.

The top of a convective reservoir is generally not well defined but is generally assumed to have an average depth of 1, 1 $\frac{1}{2}$, or 2 km, depending on assumed shape of the convection system and inferred similarities to drilled areas. A lthough the differences among our various depth estimates (tables 3 to 5) clearly affect drilling costs, the tables show that assumed thickness introduces much less variation in calculated volumes and heat contents than the assumed areas.

The tabulated volumes are simple multiplications of the assumed areas and thicknesses. Estimated stored heat is then calculated from reservoir temperatures (less 15°C, ambient surface temperature; for simplicity, assured constant for all of the United States), volume, and volumetric specific heat assumed as 0.6 cal/ cm^{3°}C. Volumetric specific heats are known to differ slightly by rock type, porosity, ard water content (Diment and others, this circular), but the assumption of a single volumetric specific heat introduces only slight errors relative to the great uncertainties of other parameters.

Little is known about the specific intermediatetemperature systems of table 5 and figures 2 and 3. Most of these systems are included in this category because of their chemically indicated temperatures but are listed with minimal reservoir areas, volumes, and heat contents. One notable exception is the Bruneau-Grandview area of Idaho, shown on table 5 as having an area of 2,250 km² and 263×10^{18} cal of stored heat. This large area in the southwestern part of the Snake River Plain is characterized by hot springs of modest temperature (commonly 35° to 45°C; Waring, 1965) and many shallow thermal wells that discharge at temperatures as high as 84°C. In addition to this broad distribution of thermal springs and wells, the regional heat flow is probably high to very high (Diment and others, this circular), and geophysical surveys show no sharp boundaries for the area known to be anomalous. This geothermal area is likely to be huge, and it may even extend under a large part of the Snake River Plain.

Even less is known about our low-temperature hydrothermal resources ($<90^{\circ}$ C). Many spring systems tabulated by Waring (1965) are probably in this category, and the warmer ones may be useful in space heating. For example, Iceland and Hungary make extensive use of water at temperatures below 100°C, and 80°C is actually the preferred distribution temperature in Reykjavik, Iceland (Einarsson, 1970).

Pattern of distribution of identified convection systems

Figures 1 and 3 confirm the well-known abundance of thermal systems in the Western United States and their scarcity elsewhere. Most of the high-temperature systems occur in the areas of anomalously high conductive heat flow (Diment and others, this circular, figs. 9 to 11); many of these systems also occur in or near areas of young volcanic rocks (Smith and Shaw, this circular, figs. 5 to 7).

The numerical data of tables 4 and 5 are summarized in table 6, which also divides the systems into two categories, depending on whether the predicted magnitude of their heat reservoirs exceeds the minimum assumed value.

Note that the heat contained in identified hotwater systems is about 30 times that in vapordominated systems, and total heat contained in systems with indicated temperatures above 150°C is about the same as that in systems between 90°C and 150°C. Such comparisons of systems of different types must be tempered by the extent of our knowledge of each type; for obvious reasons, much more attention has been given to the more attractive large high-temperature systems. Six of the high-temperature systems (Surprise Valley, Long Valley, Coso Hot Springs, Salton Sea, and Heber, California, and Yellowstone National Park, Wyoming) are each predicted to contain more than 10×10^{18} cal of stored heat; they total about 75 percent of the total estimated heat of all of the identified high-temperature systems. Even more striking is the dominance of a few large systems in the intermediate-temperature range. Only two identified systems are predicted

to contain more than 10×10^{18} cal each, and only seven contain more than 1×10^{18} cal. The dominance of the Bruneau-Grandview area of Idaho is especially startling; this may be more a reflection of a lack of adequate data and reliable predictive technique than of fact. However, geothermal convection systems may have the same log-normal relation between grade and frequency that metalliferous deposits and hydrocarbon reservoirs have. If this is so, relatively few systems contain most of the resources.

Undiscovered convective systems

Good reasons exist for optimism that abundant geothermal resources in hot-water convective systems are available for future discovery. Our use of the term "discovery," however, must be defined; a geothermal discovery is considered to result from any of the following:

- 1. New knowledge of the extent of an already identified system that increases its tabulated volume appreciably; the difference is considered to be the newly discovered part (but this may be offset in part by decreased estimates for individual systems).
- 2. The temperature of an identifed system is found to be higher than first estimated enough for the system to qualify for a higher temperature category and more valued potential utilization (but increases may also be offset, probably in small part, by decreases).
- 3. A previously unknown system is discovered, commonly with no obvious surface evidence for its existence.

Most of the tabulated convection systems of this report (tables 4 and 5) should be viewed as targets for future exploration and discovery.

Our reasons for being optimistic that many exploitable hot-water systems exist for future discovery are:

- 1. Many of the young silicic volcanic systems tabluated by Smith and Shaw (this circular) have no recognized convection systems.
- 2. Other young silicic systems may still be developing, with no direct evidence for their existence in the shallow crust.
- 3. With few exceptions, old, deeply eroded volcanic systems are associated with exten-

	Number	Subsurface area, km ²	Volume, km ³	Heat Content, 10 ¹⁸ cal
Vapor-dominated systems (~240°C)	3	122	_194	26
Hot-water systems, identified				
High-temperature systems (<150°C)				
Systems each with heat content >0.2 x 10 ¹⁸ cal	38	1374	2939	366
Systems each with heat content $\leq 0.2 \times 10^{18}$ cal	25	40	56	5
Total high-temperature systems	63	1414	2995	371
Intermediate-temperature systems (90°-150°C)				
Systems each with heat content >0.2 x 10 ¹⁸ cal	28	2638	4112	311
Systems each with heat content <0.2 x 10 ¹⁸ cal	196	300	452	34
Total intermediate-temperature system	224	2938	4564	345
Total identified hot-water systems	287	4352	7559	714
Total hydrothermal convection systems	290	4474	7753	740

Table 6.-Summary of identified hydrothermal convection systems

sive hydrothermal alteration. Until recently, such alteration was interpreted as the effect of magmatic fluids, perhaps much different from the large convection systems of Larderello, The Geysers, Wairakei, and the Imperial Valley fields. However, extensive isotope studies of waters and rocks of both the old and the presently active systems have shown that local waters of surface origin are generally the dominant fluid (Taylor, 1974; White, 1974); the active systems are probably the present-day equivalents of old oreforming systems. The volumes of altered rocks of the ore-forming systems are commonly many tens or hundreds of cubic kilometres. Furthermore, the isotope studies also demonstrate that each volume of altered rock commonly required the flow of 1 to 10 volumes of water through the system. The isotopic and other data also indicate that temperatures of these old systems most frequently ranged from 200° to 400° C at probable depths of 1 to 4 km below the ground surface of the time. If this analogy is correct, many active systems should have similar volumes and temperatures in their deeper parts.

- 4. Many old volcanic systems probably still sustain moderate- to high-temperature convection systems that may not have surface expression. Most of these volcanic systems are too old or poorly known to be evaluated in detail (Smith and Shaw, this circular).
- 5. Recent major progress has been made in applying several kinds of chemical, isotopic, and thermodynamic mixing models to convection systems that differ from the simple model (Fournier and Truesdell, 1974; Truesdell and Fournier, 1975). Different levels of mixing with dilute, cool meteoric waters are probably involved. With proper sampling of springs and shallow wells, evidence for high temperatures at deeper levels can be obtained; such evidence is normally lost by re-equilibration in a hot reservoir of a simple system. Reassessment of data from many of the systems of tables 4 and 5 and from

other inconspicuous systems of low surface temperature is likely to result in many new discoveries, as we have defined the term.

We are fully aware that some ertensively explored areas are better known to some others than to us, especially in light of the recent rapid rate of accumulation of proprietary data by industry. In time, some of these data will become available, and our techniques, estimates, and assumptions will improve enough to justify a new assessment.

We estimate that five times the volume and heat contents of the high- temperature (>150°C) systems of table 4 (excluding Yellowstone Park) are not presently recognized and exist as targets for future discovery. We cannot specifically justify this number other than to emphasize our previously stated reasons for optimism; a factor of 2 is almost certainly too small, and 20 is likely to be too large. We estimate that about three times the volume and heat content of the intermediatetemperature resources of table 5 are unrecognized, but this may be conservative.

ACKNOWLEDGMENTS

Many predicted reservoir temperatures are based on chemical data from R. H. Mariner, Theresa S. Presser, John Rapy, and Ivan Barnes of the U.S. Geological Survey. Essential assistance was provided by F. H. Olmstead, H. W. Young, T. P. Miller, A. H. Truesdell, and geophysicists familiar with specific systems. C. A. Brook, J. P. Calzia, J. A. Crowley, G. L. Galyardt, E. A. Johnson, Peter Cberlindacher, E. D. Patterson, G. B. Shearer, F. W. Smith, and K. E. Telleen assisted in assembling all of the data for our use.

REFERENCES CITEI

- Combs, Jim, and Muffler, L. J. P., 1973, Exploration for geothermal resources, *in* Kruger, Paul, and Otte, Carel, eds., Geothermal energy-resources, production, stimulation: Stanford, Calif., Stanford Univ. Press, p. 95–128.
- Einarsson, S. S., 1970, Utilization of low enthalpy water for space heating, industrial, agricultural and other uses: Geothermics, Special Issue 2, v. 1, p. 112–121.
- Fournier, R. O., and Rowe, J. J., 196€, Estimation of underground temperatures from the silica content of water from hot springs and wet-stream wells: Am. Jour. Sci., v. 264, p. 685–697.

Fournier, R. O., and Truesdell, A. H., 1973, An empirical Na-K-Ca geothermometer for natural waters: Geochim. et Cosmochim. Acta, v. 37, p. 1255-1275.
— 1974, Geochemical indicators of subsurface temperatures, Pt. 2, Estimation of temperature and fraction of hot water mixed with cold water: U.S.

Geol. Survey Jour. Research, v. 2, no. 3, p. 263-270. Fournier, R. O., White, D. E., and Truesdell, A. H., 1974,

- Geochemical indicators of subsurface temperatures, Pt. 1, Basic assumptions: U.S. Geol. Survey Jour. Research, v. 2, no. 3, p. 259–262.
- Hose, R. K., and Taylor, B. F., 1974, Geothermal systems of northern Nevada: U.S. Geol. Survey open-file rept. 74–271, 27 p.
- James, Russell, 1968, Wairakei and Larderello; geothermal power systems compared: New Zealand Jour. Sci. and Technology, v. 11, p. 706-719.
- Muffler, L. J. P., 1973, Geothermal resources, in United States mineral resources: U.S. Geol. Survey Prof. Paper 820, p. 251–261.
- Olmsted, F. H., Glancy, P. A., Harrill, J. R., Rush, F. E., and Van Denburgh, A. S., 1975, Preliminary hydrogeologic appraisal of selected hydrothermal systems in northern and central Nevada: U.S. Geol. Survey open-file rept. 75-56, 267 p.
- Ramey, H. J., Jr., 1970, A reservoir engineering study of The Geysers geothermal field: Evidence Reich and Reich, petitioners vs. commissioner of Internal Revenue, 1969 Tax Court of the United States, 52, T.C. No. 74, 36 p.

- Taylor, H. P., Jr., 1974, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition: Econ. Geology., v. 69, p. 843–883.
- Truesdell, A. H., and Fournier, R. O., 1975, Calculations of deep temperatures in geothermal systmes from the chemistry of boiling spring waters of mixel origin: United Nations Symposium on Geothermal Resources, 2d, Proc. (in press).
- Truesdell, A. H., and White, D. E., 1973, Production of superheated steam from vapor-dominated reservoirs: Geothermics, v. 2, p. 145–164.
- Waring, G. A., 1965, Thermal springs of the United States and other countries of the world—A summary: U.S. Geol. Survey Prof. Paper 492, 383 p.
- White, D. E., 1973, Characteristics of geothermal resources and problems of utilization, in Kruger, Paul and Otte, Carel, eds., Geothermal energy-resources, production, stimulation: Stanford, Ca., Stanford Univ. Press, p. 69–94.
- ——— 1974, Diverse origins of hydrothermal ore fluids: Econ. Geology, v. 69, p. 954–973.
- White, D. E., Muffler, L. J. P., and Truesde¹¹. A. H., 1971, Vapor-dominated hydrothermal systems compared with hot-water systems: Econ. Geology., v. 66, no. 1, p. 75–97.
- Zohdy, A. A. R., Anderson, L. A., and Muffler, L. J. P., 1973, Resistivity, self-potential, and induced polarization surveys of a vapor-dominated geothermal system: Geophysics, v. 38, p. 1130–1144.