SOURCES OF DATA FOR EVALUATION OF
SELECTED GEOTHERMAL AREAS IN NORTHERN
AND CENTRAL NEVADA
By F.H. Olmsted, P.A. Glancy, J.R. Harrill, F.E. Rush, and A.S. Van Denburgh

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 44–73

August 1973
For additional information write to:

Franklin H. Olmsted, Hydrologist
Water Resources Division
U. S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Black Rock Desert area</td>
<td>5</td>
</tr>
<tr>
<td>Carson Desert</td>
<td>10</td>
</tr>
<tr>
<td>Brady's Hot Springs area</td>
<td>14</td>
</tr>
<tr>
<td>Ruby Valley</td>
<td>16</td>
</tr>
<tr>
<td>Crescent Valley-Whirlwind Valley area</td>
<td>18</td>
</tr>
<tr>
<td>Washoe area</td>
<td>21</td>
</tr>
<tr>
<td>Pueblo Valley-Continental Lake region</td>
<td>25</td>
</tr>
<tr>
<td>Mason Valley</td>
<td>27</td>
</tr>
<tr>
<td>Grass Valley</td>
<td>29</td>
</tr>
<tr>
<td>Dixie-Fairview Valley area</td>
<td>32</td>
</tr>
<tr>
<td>Buffalo Valley and lower Reese River Valley</td>
<td>35</td>
</tr>
<tr>
<td>Northern Big Smoky valley</td>
<td>38</td>
</tr>
<tr>
<td>Smith Creek Valley</td>
<td>41</td>
</tr>
<tr>
<td>Rawhide Flats</td>
<td>43</td>
</tr>
<tr>
<td>Railroad Valley-Hot Creek Valley area</td>
<td>45</td>
</tr>
<tr>
<td>Winnemucca segment</td>
<td>48</td>
</tr>
<tr>
<td>Monitor Valley</td>
<td>51</td>
</tr>
<tr>
<td>Buena Vista Valley</td>
<td>53</td>
</tr>
<tr>
<td>Elko segment</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td>57</td>
</tr>
</tbody>
</table>
SOURCES OF DATA FOR EVALUATION OF
SELECTED GEOTHERMAL AREAS IN NORTHERN AND CENTRAL NEVADA

By F.H. Olmsted, P.A. Glancy, J.R. Harrill,
F.E. Rush, and A.S. VanDenburgh

Introduction

This report lists sources of published and unpublished data for areas in northern and central Nevada selected on the basis of geologic, geophysical, geochemical, and heat-flow evidence as being the most promising for the development of geothermal resources. Each geothermal area consists of one or more hydrographic areas, as defined by the office of the Nevada State Engineer and the U.S. Geological Survey (Scott and others, 1971, table 1, fig. 5) (see map), and contains one or more major hydrothermal discharge outlets. Not all place names in the report are shown on the map; those not shown may be found in the references cited.

The data categories are those required to define the geothermal reservoir parameters (boundaries, effective porosity, intrinsic permeability, specific storage, chemical and mineralogical composition of rocks), fluid and temperature parameters, and sources and rates of input and output of heat and fluid. The cited references are listed alphabetically by author at the end of the report. In addition to the listed published and unpublished reports, files of unpublished data may be consulted at the addresses given below.
The data categories; and a brief explanation of each, are as follows:
Hydrographic areas: Name and number [San Emidio Desert (22)] of State hydrographic areas included. (See Scott and others, 1971, table 1, fig. 5).

Geothermal land classification: Known geothermal resources areas (KGRA's) within area; also lands valuable prospectively for geothermal resources within area.

Geologic maps and other surface geologic data: County or State geologic maps; geologic quadrangle maps; other detailed maps or reports; soil maps; radiometric dates of rocks; general geologic information.

Hydrogeologic maps: Maps showing hydrogeologic units, faults having hydrologic significance, phreatophyte areas, and areas of groundwater recharge and discharge.

Subsurface geologic data: Drillers' logs and geologists' logs; cores and other sample data; structure contour maps and structure sections; isopachous maps; lithofacies maps.

Temperature and heat-flow data: Discharge temperatures of wells and springs; temperature profiles or logs of wells; temperature or temperature-gradient maps; heat-flow maps or point data.

Surface or airborne geophysical data: Gravity maps; airborne or surface magnetic maps; electrical-resistivity soundings, profiles, or maps; spontaneous-potential maps or profiles; magneto-telluric maps; reflection-seismic profiles or soundings; refraction-seismic profiles; airborne-gamma maps or profiles; miscellaneous surface or airborne geophysical data.

Passive seismic data: Microseismic records; microearthquake records.

Borehole geophysical data: Electric logs (induction, resistivity, or spontaneous-potential logs); temperature logs; fluid-resistivity (or fluid-conductivity) logs; gamma logs; acoustic logs; gamma-gamma logs; neutron-epithermal neutron logs; neutron-gamma logs; fluid-flow logs; miscellaneous borehole geophysical logs.

Geochemical data: Standard inorganic chemical analyses of spring or well waters, streamflow, or precipitation; organic chemical analyses; microbiological analyses; trace-element analyses; stable or unstable isotope analyses.
Meteorological data: Precipitation records, graphs, or maps; temperature records, graphs, or maps; miscellaneous meteorological data.

Botanical data: Phreatophyte maps; other vegetation maps.

Hydraulic data: Water-level contour maps or point data; well discharges; spring discharges; streamflow records; pumping-test or specific-capacity data; soil-moisture data.

Water-budget data: Estimates of ground-water recharge, subsurface flow, ground-water storage, ground-water discharge, or perennial ground-water yield.
Black Rock Desert area

Hydrographic areas: San Emidio Desert (22); Hualapai Flat (24); Mud Meadow (26); Summit Lake Valley (27); Black Rock Desert (28); Pine Forest Valley (29).

Geothermal land classification: Fly Ranch KGRA (in Hualapai Flat); Gerlach Hot Springs KGRA (in Black Rock and San Emidio Deserts); Double Hot Springs KGRA (in Black Rock Desert). All hydrographic areas contain some lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
Bonham, 1969, pl. 1, Washoe County, 1:250,000, fig. 29, San Emidio Prospect.
Feray and others, 1968, Highway geologic map
Hague and Emmons, 1877, Fly Ranch, Pinto Mountains, Double Hot Springs
Overton, 1947, Gerlach Hot Springs area
Russell, 1885, Gerlach Hot Springs (Mud Springs), Fly Ranch
Willden, 1963, pl. 1, Jackson Mountains, 1:250,000
1964, pl. 1, Humboldt County, 1:250,000
Willden and Mabey, 1961, giant dessication fissures on Black Rock and Smoke Creek Deserts.

Hydrogeologic maps:
Glancy and Rush, 1968, pl. 1, Smoke Creek and San Emidio Deserts, showing consolidated rocks, older and younger alluviums, playa, phreatophytes, wells, springs, and streamflow measuring sites, 1:250,000.
Harrill, 1969, pl. 1, Hualapai Flat, showing 5 geologic units, 2 hydrologic units, 4 categories of phreatophytes, playa, faults in alluvium, and water-level contours.
Mifflin, 1968, 1:1,000,000 map showing ground-water recharge, discharge, and flow direction.
Sinclair, 1962a, pl. 1, Pine Forest Valley, showing bedrock, older and younger alluviums, wells, springs, distribution of phreatophytes, and water-level contours, 1:250,000.
1962b, pl. 1, Hualapai Flat, showing bedrock, alluvium, playa lake, distribution of phreatophytes, wells, and springs, 1:125,000.
1963a, pl. 1, Black Rock Desert area (hydrographic areas 26, 27, and 28), showing bedrock, alluvium, lake deposits, wells, auger holes, springs, depth to water, and chemical quality of selected water samples, 1:250,000.
Subsurface geologic data:
Glancy and Rush, 1968, table 18, drillers' logs of 10 wells in Smoke Creek and San Emidio Deserts.
Harrill, 1969, table 20, drillers' logs of 15 wells in Hualapai Flat; table 21, geologists' logs of 11 test holes in Hualapai Flat.
Nevada State Engineer, unpublished drillers' logs of water wells
Sinclair, 1962b, table 4, drillers' logs of 14 wells in Hualapai Flat
1963a, table 4, drillers' logs of 19 wells in Black Rock Desert area.

Temperature and heat-flow data:
Glancy and Rush, 1968, table 16, discharge temperatures of 21 wells and springs in Smoke Creek and San Emidio Deserts.
Harrill, 1969, table 11, discharge temperatures of 19 wells and springs in Hualapai Flat.
Sinclair, 1962a, table 3, discharge temperatures of 15 wells and springs in Pine Forest Valley.
1962b, table 2, discharge temperatures of 4 springs in Hualapai Flat; table 3, discharge temperatures of 5 springs and wells in Hualapai Flat.
1963a, table 3, discharge temperatures of 8 springs in Black Rock Desert.

Surface or airborne geophysical data:
McGinnis and Dudley, 1964, p. 25-27, information on depth of fill between Hualapai Flat and Black Rock Desert.
U.S. Geological Survey, 1972a, aeromagnetic map, 1:250,000
1972b, aeromagnetic map, 1:250,000

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, 1:1,000,000 map showing epicenters of earthquakes.
Slemmons, Jones, and Gilett, 1965, fig. 3, p. 529, one earthquake of magnitude 4.0 to 4.9 occurred near Double Hot Springs during 1932-50.

Borehole geophysical data: None available
Geochemical data:

Clarke, 1914, chemical analyses of hot springs at Fly Ranch and Gerlach (Hot Spring Station).
Clarke and Chatard, 1884, chemical analyses of hot springs at Fly Ranch and Gerlach.
Desert Research Institute, unpublished chemical analyses of water samples from springs and wells.
Droste, 1961, description of clay-mineral composition of playa deposits of Smoke Creek and Black Rock Deserts.
Glancy and Rush, 1968, table 16, field chemical analyses of 22 samples of ground water and surface water in San Emidio and Smoke Creek Deserts.
Harrill, 1969, table 11, chemical analyses of 25 samples of ground water and surface water in Hualapai Flat.
Sinclair, 1962a, table 1, chemical analyses of 16 samples of water in Pine Forest Valley.
Sinclair, 1962b, table 3, chemical analyses of 9 samples of ground water and surface water in Hualapai Flat.
--- 1963a, table 5, chemical analyses of 16 samples of ground water in Black Rock Desert.

Meteorological data:

Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Glancy and Rush, 1968, table 2, freeze data for 5 stations; table 3, summary precipitation data for 16 stations; table 4, monthly and annual precipitation at 6 stations; all in Smoke Creek and San Emidio Deserts region.
Hardman, 1936, precipitation map of Nevada
--- 1965, do.
Harrill, 1969, table 1, freeze data for 4 stations in or near Hualapai Flat.
Sinclair, 1962a, fig. 2, temperature and precipitation at Quinn River Crossing.
--- 1962b, fig. 2, temperature and precipitation at Gerlach
--- 1963a, fig. 2, temperature and precipitation at 4 stations in Black Rock Desert area.
U.S. Weather Bureau, 1914-72, temperature and precipitation data
Botanical data:

- Glancy and Rush, 1968, pl. 1, distribution of phreatophytes; table 11, acreage of phreatophyte species; both for Smoke Creek and San Emidio Deserts.
- Harrill, 1969, pl. 1, distribution of phreatophytes; table 9, acreage of phreatophyte species; both for Hualapai Flat.
- Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
- Sinclair, 1962a, pl. 1, distribution of phreatophytes in Pine Forest Valley.
  1962b, pl. 1, distribution of phreatophytes; p. 11, acreage of phreatophytes; both for Hualapai Flat.
- U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:

- Desert Research Institute, unpublished water-level data for Hualapai Flat.
- Glancy and Rush, 1968, table 5, measurements and estimates of streamflow; table 7, estimated average annual runoff; table 12, discharge records of selected springs; table 13, water-level data for 23 wells, yield and drawdown data for 7 wells; all in Smoke Creek and San Emidio Deserts.
- Harrill, 1969, pl. 1, fig. 10, water-level contour maps; table 19, water-level and specific-capacity data; fig. 5, tables 7 and 8, streamflow data; all for Hualapai Flat.
- Sinclair, 1962a, pl. 1, water-level contour map; table 1, yield, drawdown, and specific capacity for 8 wells; table 2, water-level data for wells; all for Pine Forest Valley.
  1962b, table 1, depth to water in 23 wells; table 2, records of springs and 4 discharge estimates; all for Hualapai Flat.
  1963a, pl. 1, table 2, depth to water in 28 wells; table 3, discharges of 10 springs; both for Black Rock Desert area.
- Waring and others, 1965, p. 32-33, references to 16 springs
Water-budget data:
Glancy and Rush, 1968, table 9, subsurface flow; table 10, estimated recharge; table 11, estimated discharge; p. 46, perennial ground-water yield; p. 49, ground-water storage; all in Smoke Creek and Emidio Deserts.
Harrill, 1969, table 4, estimated recharge; table 9, estimated discharge; table 10, ground-water storage; p. 29, subsurface flow; p. 54, perennial ground-water yield; all in Hualapai Flat.
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Sinclair, 1962a, p. 10, estimated recharge; p. 11-13, estimated discharge; p. 14, ground-water storage and perennial ground-water yield; all for Pine Forest Valley.
________. 1962b, p. 8, estimated recharge; p. 11, estimated discharge; p. 9, subsurface flow; p. 12, ground-water storage; p. 11, perennial ground-water yield; Hualapai Flat.
________. 1963a, table 1, estimated recharge; p. 11, subsurface flow; p. 17, ground-water storage; p. 16, perennial ground-water yield.
Hydrographic areas: Carson Desert (101)

Geothermal land classification: Stillwater-Soda Lake KGRA; most of remaining area classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Axelrod, 1956, fig. 7, Red Mountain area, 1:14,800
- Banaszak, 1968, southern Sand Springs Range
- Feray and others, 1968, highway geologic map
- Gale, 1913, potash deposits
- 1914, potash and other saline deposits
- Hague and Emmons, 1877, early description of geology
- Hance, 1911, potash deposits
- Jones, 1911, Lake Lahontan
- Morrison, 1959, soil profiles
- 1964, pl. 3, Carson Lake quadrangle, 1:31,680;
- pl. 4, 5, and 6, Stillwater, Fallon, and Soda Lake quadrangles, respectively, 1:18,000.
- 1966, Quaternary geology
- Morrison and Frye, 1965, regional Quaternary correlations
- Nevada Department of Conservation and Natural Resources and U.S. Department of Agriculture, 1971, soils
- Mickle, 1968, southern Buena Vista Hills
- Page, 1965, part of Stillwater Range, 1:125,000
- Reeves and Kral, 1955, Buena Vista Hills
- Russell, 1885, Lake Lahontan
- Schilling, 1965, isotope ages of 6 rocks in peripheral mountains
- Schrader, 1967, Carson Sink area
- Silberling and Roberts, 1962, pre-Tertiary stratigraphy
- Silberman and McKee, 1972, isotope ages of several rocks
- Slemmons, 1956, geologic setting of earthquakes
- 1957, geologic effects of earthquakes
- Southern Pacific Co., 1964, general mapping; economic mineral deposits.
- Speed, 1962a, gabbro in West Humboldt Range
- Speed, 1962b, do.
- 1966, Mesozoic orogeny
- Speed and Armstrong, 1971, isotope ages of several rocks
- Tatlock, 1969, Pershing County, 1:200,000
- University of Nevada and others, 1962, pl. 4, 1:31,680
- Vanderburg, 1940, mining districts in Churchill County
- Wallace and others, 1970, Unionville quadrangle, 1:62,500
- Wallace and Silberling, 1964, Mesozoic tectonic events
- Willden and Speed, 1963a, pl. 1, Churchill County, 1:200,000
- Young, 1963, part of Stillwater Range
Hydrogeologic maps:
Clyde-Criddle-Woodward, Inc., 1971, p. 45, depth to water table, 1:125,000.
Glancy and Katzer, 1973, pl. 1, wells, phreatophytes, and chemical sampling sites.
Mifflin, 1968, 1:1,000,000 map showing ground-water recharge, discharge, and flow direction.
Rush, 1972, bathymetry of Soda Lakes
Stabler, 1904, depth to water, 1:125,000
University of Nevada and others, 1962, pl. 9, 1:63,360

Subsurface geologic data:
Garside and Schilling, 1967, 1:1,000,000 map showing locations of oil and gas test wells.
Glancy and Katzer, 1973, numerous drillers' logs of wells; some stratigraphic interpretations.
Lintz, 1957, locations of oil and gas test wells
Morrison, 1959, drillers' logs of numerous shallow and deep wells; stratigraphic interpretations.
Nevada State Engineer, unpublished well logs
University of Nevada and others, 1962, appendixes A and B, drillers' logs of 2 wells; descriptions of bedrock cores from Sand Springs Range.
U.S. Bureau of Reclamation Region II, Sacramento, Calif., unpublished well logs.
Schilling and Garside, 1968, oil and gas well data, 1953-57.

Temperature and heat-flow data:
Breese, 1968, report of thermal-spring discharge near center of Big Soda Lake.
Glancy and Katzer, 1973, discharge temperatures of several wells
Kingman, 1965, p. 19, discharge temperatures of 2 wells
Nevada State Engineer, unpublished discharge temperatures of wells reported by drillers.
Sass and others, 1971, table 8, heat flow at 5 drill-hole sites in Sand Springs area.
University of Nevada and others, 1962, table 5, discharge temperatures of 17 wells; discussion of temperature gradient in 1 well.
Waring and others, 1965, p. 34, discharge temperature of Borax Spring, 3 miles east of South Carson Lake.
Surface or airborne geophysical data:
- U.S. Geological Survey, 1972a, aeromagnetic map, 1:250,000
- Wahl, 1965, gravity map, 1:250,000

Passive seismic data:
- Environmental Research Laboratories, unpublished records of known earthquakes.
- Slemmons and others, 1965, 1:1,000,000 map shows about 20 earthquake epicenters in area.
- Slemmons, Jones, and Gimlett, 1965, fig. 3, minor historical earthquakes
- Tocher, 1956, Rainbow Mountain fault movement

Borehole geophysical data:
- University of Nevada and others, 1962, p. 113-117, gamma and neutron logs of a test well 480 feet deep in Sand Springs Range.

Geochemical data:
- Desert Research Institute, unpublished chemical analyses of water samples.
- Glancy and Katzer, 1973, numerous analyses of major ions in water samples.
- Kingman, 1959, table VII, p. 19, comparison of chemical analyses of waters from U.S. Navy test hole 3 and City of Fallon No. 1 or No. 2 well.
- Miller, Hardman, and Mason, 1953, p. 30-35, chemical analyses of 133 samples of irrigation water.
- Nevada Bureau of Environmental Health, unpublished chemical analyses of water samples.
- Nevada Bureau of Mines, unpublished chemical analyses of water from 3 wells and from Borax Spring.
- Stabler, 1904, table 2, chemical analyses of 12 samples of ground water; table 3, "partial analyses" of several hundred samples of ground water; several "iso-ionic" interpretive maps of ground-water chemistry.
- Stearns and others, 1937, several spring waters described, with references to chemical analyses by Feale (1886).
- University of Nevada, Department of Agriculture, unpublished chemical analyses of water samples.
- University of Nevada, Renewable Resources Department, unpublished chemical analyses of water samples.
- Waring and others, 1965, p. 34 and 35, mineralogical data for 3 spring waters.
Meteorological data:
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Glancy and Katzer, 1973, summary of basinwide precipitation and
estimates of precipitation for various altitude zones.
Hardman, 1936, precipitation map of Nevada
1965,
do.
Kohler, Nordenson, and Baker, 1959, evaporation maps
U.S. Weather Bureau, 1914-72, temperature and precipitation

Botanical data:
Glancy and Katzer, 1973, 1:250,000 map showing distribution of
phreatophytes and estimated rates of natural discharge by
evapotranspiration.
Nevada Resource Action Council and others, 1973, 1:1,000,000
vegetation map of Nevada.
U.S. Bureau of Land Management, unpublished range-forage maps
U.S. Geological Survey Water Resources Division District office,

Hydraulic data:
Desert Research Institute, unpublished data
Glancy and Katzer, 1973, water levels in wells, discharges of wells
and springs; streamflow records.
Stabler, 1904, 1:125,000 map of southern Carson Desert showing depth
to water.
1953-73, water levels in observation wells.
U.S. Geological Survey Water Resources Division District office,
Carson City, Nev., unpublished ground-water hydraulic data;
unpublished records of streamflow and miscellaneous measurements
of stream discharge.

Water-budget data:
Glancy and Katzer, 1973, tables of estimated recharge, discharge, and
subsurface flow, ground-water storage in upper 100 feet of deposits,
and perennial ground-water yield.
Scott and others, 1971, fig. 5, estimates of annual surface- and
ground-water flows between hydrologic areas; estimates of annual
runoff, perennial yield, and water stored in upper 100 feet of
ground-water reservoir.
Brady's Hot Springs area

Hydrographic areas: Brady's Hot Springs area (75); Fireball Valley (77).

Geothermal land classification: Brady's Hot Springs KGRA; part of area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
Anctil and others, 1960, 1:24,000 map of Brady Hot Springs and vicinity showing geology and locations of test wells.
Anctil and Schafer, 1957, geology of area in T. 23 N., R. 27 and 28 E., MDBM.
1962, appraisal of geothermal resources of Brady Hot Springs
Axelrod, 1956, fig. 5, Desert Peak area, 1:19,200
Feray and others, 1968, highway geologic map
Moore, 1969, pl. 1, Lyon, Douglas, and Ormsby Counties, 1:250,000
Oesterling, 1962, Brady Hot Springs
Oesterling and Anctil, 1960, Brady Hot Springs
Schilling, 1965, p. 56, isotope age of 1 rock sample from Hot Springs Mountains (andesite tuff, 13.9 million years).
Southern Pacific Co., 1964, geologic map, economic mineral deposits, 1:24,000.
Willden and Speed, 1968a, pl. 1, Churchill County, 1:200,000
1968b, text

Hydrogeologic maps:
Harrill, 1970, pl. 1, 1:250,000
Mifflin, 1968, 1:1,000,000,000 map showing ground-water flow direction, ground-water recharge and discharge.

Subsurface geologic data:
Harrill, 1970, table 12, drillers' log of 1 well in area

Temperature and heat-flow data:
Anctil and Schafer, 1962
Oesterling, 1962
Oesterling and Anctil, 1960

Waring and others, 1965, p. 34, discharge temperatures of Brady's (Fernley) Hot Springs.
Surface or airborne geophysical data:
U.S. Geological Survey, 1972a, aeromagnetic map, 1:250,000
Wahl, 1965, gravity map, 1:250,000

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, 1:1,000,000 map showing epicenters of earthquakes.
Slemmons, Jones, and Gimlett, 1965, data on historical earthquakes

Geochemical data:
Clarke and Chatard, 1884, chemical analysis of sample from Brady’s Hot Springs.
Harrill, 1970, table 9, chemical analyses of 6 water samples from wells; analysis of sample from steam well includes SiO₂, Na, K, Li, F, NO₃, PO₄, B, As.

Meteorological data:
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada 1965, do.
Harrill, 1970, table 2, precipitation at 13 stations in west-central Nevada; table 3, freeze data at 4 stations in west-central Nevada; pl. 1 (inset map), locations of weather stations.
U.S. Weather Bureau, 1914-1972, temperature and precipitation records

Botanical data:
Harrill, 1970, pl. 1, distribution of phreatophytes
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:
Harrill, 1970, pl. 1, water-level altitudes in 7 wells
Waring and others, 1965, discharge of Brady’s Hot Springs

Water-budget data:
Harrill, 1970, table 6, ground-water recharge; table 7, ground-water evapotranspiration; table 5, average annual runoff; table 10, ground-water storage.
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrographic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Ruby Valley

Hydrographic areas: Ruby Valley (176); Clover Valley (177)

Geothermal land classification: Part of Ruby Valley is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
Collinson, 1966, Medicine Range
Eakin and Maxey, 1951, p. 75-78, discussion of general geology
Feray and others, 1967, pl. 1, Elko County, 1:250,000
Hope, 1970, Elko County, 1:200,000
Hose and Blake, 1970, White Pine County, 1:150,000
Howard, 1971, northern Ruby Mountains
Rigby, 1960, fig. 4, Buck Mountain area, 1:125,000; fig. 5, Bald Mountain area, 1:125,000.
Sharp, 1939a, structure of Ruby Mountains and East Humboldt Range
Schilling, 1965, isotope ages of rocks in peripheral mountains
Thorman, 1970, Wood Hills and Pequop Mountains
Willden, Thomas, and Stern, 1968, Jiggs Quadrangle, 1:62,500
Willden, Thomas, and Stern, 1969, Jiggs Quadrangle, 1:62,500

Hydrogeologic maps:
Eakin and Maxey, 1951, pl. 2, Ruby Valley 1:125,000
Horton, 1964, locations of three hot springs in valley
Mifflin, 1968, 1:1,000,000 map showing ground-water recharge, discharge, and flow direction.

Subsurface geologic data:
Eakin and Maxey, 1951, table 6, logs of one well
Nevada State Engineer, unpublished well logs

Temperature and heat-flow data:
Eakin and Maxey, 1951, p. 84, brief description of Sulphur Hot Springs
Nevada State Engineer, unpublished well and spring-discharge temperature data.
Waring and others, 1965, p. 33, discharge temperatures of two hot springs.

Surface or airborne geophysical data:
Gibbs, Willden, and Carlson, 1968, gravity maps

Passive seismic data: Environmental Research Laboratories, unpublished records of known earthquakes.
Borehole geophysical data: None available.

Geochemical data:
Eakin and Maxey, 1951, table 5, chemical analyses of three water samples.

Meteorological data:
Eakin and Maxey, 1951, table 1, precipitation at four stations; table 2, snowfall at 16 stations.
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada
Kohler, Nordenson, and Baker, 1959, evaporation maps
U.S. Weather Bureau, 1914-72, temperature and precipitation records

Botanical data:
Eakin and Maxey, 1951, table 4, evapotranspiration by phreatophytes
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:
Desert Research Institute, unpublished data for springs
Eakin and Maxey, 1951, table 7, records for 23 wells
Snyder, 1963, table 4, records for 7 springs and 3 wells

Water-budget data:
Eakin and Maxey, 1951, discussion of ground-water-budget items
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Crescent Valley-Whirlwind Valley area

Hydrographic areas: Crescent Valley (54); Whirlwind Valley (60)

Geothermal land classification: Beowawe KGRA; adjacent area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Edwards and McLaughlin, 1972, p. 4, isotope ages of 2 rocks in peripheral mountains.
- Feray and others, 1968, highway geologic map
- Gilluly and Masursky, 1965, pl. 1, Cortez Quadrangle, 1:62,500
- McKee and Silberman, 1971, p. 29, 32, 40, isotope ages of 16 rocks in peripheral mountains.
- Muffler, 1964, pl. 1, Frenchie Creek Quadrangle, 1:62,500
- Nevada Department of Conservation and Natural Resources and U.S. Department of Agriculture, 1964a, soils map of Whirlwind Valley.
- 1964b, soils map of Crescent Valley
- Nolan and Anderson, 1934, description of geologic setting and deposits related to geothermal activity.
- Roberts, Montgomery, and Lehner, 1967, pl. 3, Eureka County, 1:25,000
- Schilling, 1965, p. 36, 37, 62
- Shawe, Reeves, and Kral, 1962, pl. 15, 1:125,000
- Silberman and McKee, 1971, p. 23-24, isotope ages of 8 rocks in peripheral mountains.
- Southern Pacific Co., 1964, files include 1:24,000 maps for part of area.
- Stewart and Carlson, 1972, north-central Nevada
- U.S. Department of Agriculture, Soil Conservation Service, unpublished detailed soils maps for area north of T. 30 N.

Hydrogeologic maps:
- Eakin and Lamke, 1966, pl. 1, 1:500,000; pl. 1A, 1:1,000,000
- Mifflin, 1966, 1:1,000,000 map showing ground-water flow direction, ground-water recharge and discharge.
- Nolan and Anderson, 1934, fig. 2, map of Beowawe geyser area
- Rinehart, 1968, fig. 1, map of Beowawe geyser area
- Zones, 1961, pl. 1, Crescent Valley, 1:250,000; fig. 6, well yields
Subsurface geologic data:
Nevada State Engineer, unpublished drillers' logs of wells in Hot Springs Point area of Crescent Valley. Zones, 1916, table 5, drillers' logs of 18 water wells; fig. 3, grain size of fill in Crescent Valley.

Temperature and heat-flow data:

Surface or airborne geophysical data:
Mabey, 1964, gravity map of Eureka County and adjoining areas.

Passive seismic data:

Borehole geophysical data: None available

Geochemical data:
Meteorological data:
- Fritts, 1965, tree-ring evidence for climatic changes
- Gifford and others, 1967, precipitation probabilities
- Hardman, 1936, precipitation map of Nevada
- 1965, precipitation map of Nevada
- Zones, 1961, p. 6, 7, fig. 2, description of climate; fig. 4, monthly precipitation at Beowawe (?), 1949-57.

Botanical data:
- Nevada Department of Conservation and Natural Resources and U.S. Department of Agriculture, 1964a, map showing irrigated and phreatophyte areas in Whirlwind Valley; table 2, ground-water use.
- 1964b, map showing irrigated and phreatophyte areas in Crescent Valley; table 3, ground-water use.
- Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
- Zones, 1961, pl. 1, distribution of phreatophytes in Crescent Valley

Hydraulic data:
- Nolan and Anderson, 1934, fig. 2 and text, information on flow and geysering at Beowawe.
- Zones, 1961, table 3, water levels and discharge data for 35 wells; table 4, water levels in 12 observation wells; fig. 4, water-level hydrographs for 5 wells; table 2, single discharge measurements for several streams.

Water-budget data:
- Eakin and Lamke, 1966, table 12, water budgets for Crescent and Whirlwind Valleys included with those for several other hydrographic areas.
- Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
- Zones, 1961, (Crescent Valley only), p. 20, recharge and surface inflow; p. 21, evapotranspiration; p. 22-23, ground-water outflow and pumpage; p. 23-24, water budget.
Washoe area

Hydrographic areas: Truckee Meadows (87); Pleasant Valley (88)

Geothermal land classification: Steamboat Springs KGRA; Moana Springs KGRA. Both hydrographic areas classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Bonham and Papke, 1969, pl. 1, Washoe and Storey Counties, 1:250,000
- Feray and others, 1968, highway geologic map
- Hill, 1915, pl. 19, mining districts, 1:125,000
- Silverman and McKee, 1972, p. 11, isotope age of one rock sample
- White, 1967, fig. 5, map of Lower Terrace near Geyser well
- 1968, pl. 3, geology, wells, springs, drill and auger holes, 1 in. = 100 ft.
- White, Thompson, and Sandberg, 1964, pl. 1, Steamboat Springs thermal area, 1:3,600.

Hydrogeologic maps:
- Cohen and Loelitz, 1964, pls. 1 and 2, Truckee Meadows Area, showing 3 alluvial and 1 Pliocene units, bleached and unbleached consolidated rocks, wells, springs, test-boring sites, and water-level contours; 1:62,500.
- Guyton & Associates, 1970, fig. 5, Truckee Meadows, showing irrigated acreage and ditches; about 1 in. = 1 1/2 mi.
- Mifflin, 1968, 1:1,000,000 map showing ground-water flow direction, ground-water recharge and discharge.
- VanDenburgh, Lamke, and Hughes, 1973, pl. 1, Truckee River basin, showing 2 alluvial units, bedrock, phreatophytes and irrigated areas, wells, and springs.
- White, 1967, fig. 5, Lower Terrace area of Steamboat Springs 1968, pl. 3, Steamboat Springs area, showing geology, wells, springs, drill and auger holes.
- White, Thompson, and Sandberg, 1964, pl. 1, Steamboat Springs thermal area, showing detailed geology, wells, springs, drill and auger holes, 1:3,600.

Subsurface geologic data:
- Nevada State Engineer, unpublished well logs
- VanDenburgh, Lamke, and Hughes, 1973, table 22, logs of 26 wells
- White, Thompson, and Sandberg, 1964, table 3, logs of 27 wells and drill holes; pl. 2, geologic sections.
Temperature and heat-flow data:
- Cohen and Loeltz, 1964, table 5, discharge temperatures of 66 wells; p. 47 and 56, discussions of temperature.
- Guyton & Associates, 1970, table 3, temperature of water from different zones in 6 wells; see also fig. 26 and p. 28-29.
- Sass and others, 1971, heat flow for several drill holes in nearby areas.
- Sierra Pacific Power Co., unpublished temperature data for company wells and test holes.
- VanDenburgh, Lamke, and Hughes, 1973, table 18, discharge temperatures of 17 wells.
- Waring and others, 1965, p. 34, discharge temperatures of Moana Springs, Steamboat Springs, and several other hot springs in the area.
- White, 1967, temperature data for Geyser well.
- 1968, table 4, discharge temperatures of 71 springs; tables 13-24, discharge temperatures of 8 wells; tables 27-34, discharge temperatures of 8 drill holes; table 37, discharge temperatures of 21 springs; table 39, discharge temperatures of many wells; some duplication of Cohen and Loeltz (1964) data.

Surface or airborne geophysical data:
- Thompson and Sandberg, 1958, structural significance of regional gravity surveys.
- U.S. Geological Survey, 1972a, aeromagnetic map of part of area, 1:250,000.
- White, Thompson, and Sandberg, 1964, pls. 3-5, magnetic, electrical-resistivity, natural-potential, and gravity profiles of Steamboat Springs area.

Passive seismic data:
- Environmental Research Laboratories, unpublished records of known earthquakes.
- Slemmons and others, 1965, shows many earthquake epicenters of magnitude < 6 between 1854 and 1960.
- Slemmons, Jones, and Gimlett, 1965, data on historical earthquakes.

Borehole geophysical data:
- Sierra Pacific Power Co., unpublished logs of company test holes.
Geochemical data:
Cohen, 1962a, sulfate in ground water of Truckee Meadows
Cohen and Loeltz, 1964, table 5, chemical analyses of waters from 91 wells, 8 springs, and 14 stream sites.
Desert Research Institute, unpublished chemical analyses of water samples.
Guyton & Associates, 1970, tables 3 and 4, chemical analyses of water samples from 25 wells, including samples from different zones in 6 wells.
Nevada Bureau of Environmental Health, unpublished chemical analyses of water samples from several stream sites.
VanDenburgh, Lamke, and Hughes, 1973, table 18, chemical analyses of waters from 27 wells and 9 stream sites.
White, 1968, tables 18-21, 27-39, numerous partial chemical analyses of water samples from Steamboat Springs area.

Meteorological data:
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1962, precipitation map of Nevada
Kohler, Nordenson, and Baker, 1959, evaporation maps
U.S. Weather Bureau, 1914-72, temperature and precipitation records
VanDenburgh, Lamke, and Hughes, 1973, table 4, average annual precipitation at stations in and near study area; table 12, precipitation by altitude; text, lake-surface evaporation.
White, 1968, p. 20-42, figs. 10-23, tables 6-16, effects of barometric pressure and precipitation on thermal activity at Steamboat Springs.

Botanical data:
Guyton & Associates, 1970, fig. 5, irrigated areas in Truckee Meadows
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
VanDenburgh, Lamke, and Hughes, 1973, pl. 1, irrigated and phreatophyte areas.
Hydraulic data:
Cohen and Loeltz, 1964, table 14, pumping-test data for 14 wells; figs. 1 and 2, water-level hydrographs for 6 wells.
Desert Research Institute, unpublished data
Guyton & Associates, 1970, table 1, specific capacity and transmissivity; table 2, monthly pumpage, 1960-69; figs. 6-25, monthly pumpage and water levels in wells; all in Truckee Meadows.
VanDenburgh, Lamke, and Hughes, 1973, table 21, water-level and discharge data for 38 wells; table 23 and fig. 2, water levels in 5 observation wells; table 24, discharge of 8 springs; tables 6 and 7, annual streamflow of Truckee River and tributaries; table 11, ground-water pumpage for Sierra Pacific Co. wells; text, ground-water pumpage for smaller public-supply and industrial wells.
White, 1967, water-level and discharge data for Geyser well and adjacent geyser and vents.

Water-budget data:
Cohen and Loeltz, 1964, budget estimates, for the most part superseded by those of VanDenburgh, Lamke, and Hughes (1973).
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
VanDenburgh, Lamke, and Hughes, 1973, tables 16, 17, and text, budgets; table 11, surface-water inflow and outflow; table 12, potential recharge; table 13, ground-water inflow and outflow; text and table 20, stored ground water and available supply of ground water.
Hydrographic areas: Pueblo Valley (1); Continental Lake Valley (2)

Geothermal land classification: Part of area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Blake, 1873, diatoms in a hot spring in Pueblo Valley
- Feray and others, 1968, highway geologic map
- Peale, 1886, lists and analyses of mineral springs
- Willden, 1964, Humboldt County, pl. 1, 1:250,000

Hydrogeologic maps:
- Mifflin, 1968, 1:1,000,000 map showing ground-water flow direction, ground-water recharge and discharge.
- Sinclair, 1963b, pl. 1, 1:250,000

Subsurface geologic data:
- Nevada State Engineer, unpublished drillers' logs of wells drilled since 1963.
- Sinclair, 1963b, table 4, drillers' logs of 14 wells.

Temperature and heat-flow data:
- Sinclair, 1963b, table 5, discharge temperatures of 2 wells and 1 spring.
- Waring and others, 1965, p. 32, discharge temperatures of 2 springs

Surface or airborne geophysical data: None available

Passive seismic data: None available

Borehole geophysical data: None available

Geochemical data:
- Sinclair, 1963b, table 5, chemical analyses of water samples from three wells and from Bog Hot Springs (Si, Ca, Mg, Na, and K).

Meteorological data:
- Fritts, 1965, tree-ring evidence for climatic changes
- Gifford and others, 1967, precipitation probabilities
- Hardman, 1936, precipitation map of Nevada
- 1965, precipitation map of Nevada
- Sinclair, 1963b, fig. 2, temperature and precipitation at Virgin Valley and Denio.
- U.S. Weather Bureau, 1914-72, temperature and precipitation

25
Botanical data:
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
Sinclair, 1963b, pl. 1, distribution of phreatophytes
U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:
Sinclair, 1963b, table 3, records of wells, depth to water in 17 wells.

Water-budget data:
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Sinclair, 1963b, table 1, ground-water recharge; table 2, ground-water discharge; p. 17, ground-water storage and perennial ground-water yield.
Mason Valley

Hydrographic areas: Mason Valley (108)

Geothermal land classification: Wabuska KGRA in northern part of valley; most of surrounding area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Bingler, 1972, isotope ages of 1 rocks in or near the valley
- Feray and others, 1968, highway geologic map
- Hill, 1915, mining districts
- Knopf, 1918, Yerington District
- Moore, 1969, pl. 1, Lyon, Douglas, and Ormsby Counties, 1:200,000
- Reeves, Shawe, and Kral, 1958, pl. 11, Minnesota Mine, 1:4,800
- Ross, D.C., 1961, Mineral County
- Schilling, 1965, isotope age of a rock near the valley
- Silberman and McKee, 1972, isotope ages of 3 rocks in or near the valley.

Hydrogeologic maps:
- Horton, 1964, 1:1,000,000 map showing location of one spring in valley.
- Huxel, 1969, pl. 1, seven lithologic units and faults, 1:62,500; pl. 2, wells, springs, and water-level contours, 1:125,000; pl. 3, distribution of phreatophytes, cropland, and pasture, 1:125,000; fig. 4, transmissivity map of valley-fill reservoir
- Mifflin, 1968, 1:1,000,000 map showing ground-water recharge, discharge, and flow direction.

Subsurface geologic data:
- Garside and Schilling, 1967, map shows location of one oil test well in area.
- Huxel, 1969, table 26, drillers' logs of 13 wells; fig. 3, isopach map of sand and gravel in upper 100 feet of saturated alluvium.
- Lintz, 1957, p. 14, log of a 262-ft test well
- Nevada State Engineer, unpublished well logs

Temperature and heat-flow data:
- Huxel, 1969, table 20, discharge temperatures for 28 wells and springs
- Nevada State Engineer, unpublished temperature data
- Sass and others, 1971, table 8, heat flow for 3 drill holes near Yerington.
- Waring and others, 1965, p. 34, discharge temperature of springs at Wabuska.
Surface or airborne geophysical data:
U.S. Air Force, 1968, Bouguer gravity map

Passive seismic data:
Environmental Research Laboratories, unpublished records of all known earthquakes.
Slemmons and others, 1965, map shows two epicenters of earthquakes in valley.

Borehole geophysical data: Nevada Oil and Gas Commission, unpublished data on one oil test well in valley.

Geochemical data:
Huxel, 1969, table 20, chemical analyses for 18 water samples; table 21, chemical analyses for 20 water samples; table 22, chemical analyses for 21 water samples.
Nevada Division of Health, unpublished data

Meteorological data:
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada
1965, precipitation map of Nevada
Huxel, 1969, table 2, monthly temperature at Yerington; fig. 2, precipitation at Yerington.
U.S. Weather Bureau, 1914-72, temperature and precipitation records

Botanical data:
Huxel, 1969, pl. 1, distribution of phreatophytes
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:
Desert Research Institute, unpublished data
Huxel, 1969, fig. 5, depth to ground water map; fig. 7, average monthly flow into Mason Valley table 7, surface-water inflow, outflow, and water loss; table 8, miscellaneous streamflow measurements; table 9, surface-water flow; table 25, records for about 270 wells.
Waring and others, 1965, p. 34, discharge of springs at Wabuska

Water-budget data:
Huxel, 1969, water budgets
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Grass Valley

Hydrographic areas: Grass Valley (71)

Geothermal land classification: Leach Hot Springs KGRA; entire valley is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Dreyer, 1940, figs. 3 and 5, Goldbanks Mining District
- Feray and others, 1968, highway geologic map
- Ferguson, Miller, and Roberts, 1951, Winnemucca quadrangle, 1:125,000
- Gilluly, 1967, Winnemucca quadrangle, 1:62,500
- Hawley and Wilson, 1965, pls. 1 and 2, Quaternary geology of Winnemucca area.
- Nevada Department of Conservation and Natural Resources and U.S. Department of Agriculture, 1965, soils maps.
- Nichols, 1972, part of Tobin Range
- Roberts, 1943, Rose Creek tungsten mine, pl. 1, 1:24,000
- Silberman and McKee, 1971, p. 28, one isotope age of a granite
- Southern Pacific Co., 1964, geologic maps, economic mineral deposits, 1:24,000.
- Tatlock, 1969, Pershing County, 1:200,000
- Willden, 1964, pl. 1, Humboldt County, 1:250,000

Hydrogeologic maps:
- Cohen, 1964a, pl. 1, bedrock-alluvial contact, three alluvial units, wells and springs, phreatophytes, water-level contours, 1:250,000; p. 4, reference to several reports that describe the hydrogeologic aspects of the far northern part of the valley.
- Mifflin, 1968, 1:1,000,000 map showing ground-water flow direction, ground-water recharge and discharge.

Subsurface geologic data:
- Cohen, 1964a, table 9, logs of 26 wells and U.S. Geological Survey auger holes, all but 3 of which are in or north of north part of valley.
- Hawley and Wilson, 1965, pl. 3, geologic cross sections
- Nevada State Engineer, unpublished drillers' logs of 22 wells south of T. 35 N. since Cohen's (1964a) tabulation.
Temperature and heat-flow data:
Cohen, 1964a, table 7, discharge temperatures of 33 wells and 4 springs, all in or north of north part of valley; table 8, discharge temperatures of 4 additional wells, all but one of which are as above.
Dreyer, 1940, fig. 9, discharge temperatures of 15 orifices in the Leach Hot Springs group.
Sass and others, 1971, table 8, heat flow for 3 drill holes
Waring and others, 1965, p. 3h, discharge temperatures of Leach's Hot Springs and Nelson (Guthrie) Springs.

Surface or airborne geophysical data:
Wilson, 1970, aeromagnetic map of area that includes north half of valley, 1:62,500.

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, data on earthquakes

Borehole geophysical data: None available

Geochemical data:
Cohen, 1964a, table 7, chemical analyses of water from 36 wells, 4 springs, all in or north of north part of valley.
Dreyer, 1940, p. 23, chemical analysis of Leach Hot Springs
Miller, Hardman, and Mason, 1953, p. 4h, chemical analyses of water from 1 wells and 1 hot spring.
U.S. Geological Survey Water Resources Division District office, Carson City, Nev., unpublished chemical analyses of many samples from Humboldt River, several ground-water analyses.

Meteorological data:
Cohen, 1964a, p. 5, table 1, climate; table 5, precipitation by altitude zones.
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada
1965, precipitation map of Nevada
U.S. Weather Bureau, 1914-72, records of precipitation and temperature at Winnemucca, Buffalo Ranch, Paris Ranch, Golconda, Rye Patch Dam, and Imlay stations; precipitation storage gages at Pole Creek, Clear Creek Canyon, Sheep Ranch Canyon, Spaulding Canyon, Dun Glen; other data at now-abandoned stations also may be available.
Botanical data:
- Cohen, 1964a, pl. 1, distribution of phreatophytes.
- Nevada Department of Conservation and Natural Resources and U.S. Department of Agriculture, 1965, map shows irrigated and phreatophyte lands, scale 1 in = 6 mi; table 2, ground-water use by phreatophytes.
- Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
- U.S. Bureau of Land Management, unpublished range-forage maps.

Hydraulic data:
- Cohen, 1964a, pl. 1, water-level contours; table 8, water-level and discharge data for 61 wells in or north of Grass Valley; p. 22, discharge of springs.
- Desert Research Institute, unpublished hydraulic data.
- U.S. Geological Survey, 1953-73, water levels for several observation wells.

Water-budget data:
- Cohen, 1964a, p. 23, water budget; p. 19 and table 5, ground-water recharge; p. 20, ground-water outflow; p. 21 and table 6, evapotranspiration; p. 22, spring discharges and pumpage; p. 23, perennial yield.
- Eakin and Lamke, 1966, table 12, fig. 33, water budgets.
- Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Dixie-Fairview Valley area

Hydrographic areas: Fairview Valley (124); Stingaree Valley (125); Cowlick Valley (126); Eastgate Valley (127); Dixie Valley (128); Pleasant Valley (130); Jersey Valley (132).

Geothermal land classification: Part of area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
Axelrod, 1956, fig. 10, 1:30,000
Burke, 1967, Holocene faults in Dixie Valley
Feray and others, 1968, highway geologic map
Ferguson and others, 1951, Mt. Moses quadrangle, 1:125,000
Ferguson, Muller, and Roberts, 1951, Winnemucca quadrangle, 1:125,000.
Gilluly, 1967, Winnemucca quadrangle, 1:62,500
Moore, 1962, isotope ages of rocks
Muller, Ferguson, and Roberts, 1951, Mt. Tobin quadrangle, 1:125,000
Page, 1965, part of Stillwater Range, 1:125,000
Roberts, 1965a, Paleozoic and Mesozoic facies, 1:200,000
Southern Pacific Co., 1964, geologic maps, economic mineral deposits, 1:24,000.
Speed and Jones, 1969, fig. 2, Boyer Ranch Formation, 1:250,000
Staatz and Bauer, 1954, radioactive deposits
Tatlock, 1969, Pershing County, 1:250,000
Thorstenson, 1968, Chalk Mountain
Willden, and Speed, 1968a, Churchill County, 1:200,000

Hydrogeologic maps:
Cohen and Everett, 1963, pl. 1, shows consolidated rocks, older alluvium, younger alluvium, phreatophytes, playa, generalized water-level contours, wells, flowing wells, and springs, 1:250,000.
Mifflin, 1968, 1:1,000,000 map showing ground-water flow direction, ground-water recharge and discharge.
University of Nevada and others, 1962, Sand Springs Range, Fairview Valley, and Four Mile Flat.

Subsurface geologic data:
Cohen and Everett, 1963, table 9, drillers' logs of 25 water wells
Nevada State Engineer, unpublished drillers' logs
Temperature and heat-flow data:
Cohen and Everett, 1963, table 7, discharge temperatures of 39 water wells, with depths of wells; table 8, discharge temperatures of 6 springs.
Lawrence, 1971, Senators Fumaroles, Dixie Valley

Surface or airborne geophysical data:
Thompson and others, 1967, Dixie Valley
U.S. Geological Survey, 1972a, aeromagnetic map, 1:250,000
Wahl, 1965, gravity map of part of area, 1:250,000

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Ryall, 1972, seismic potential
Savage, 1972, microearthquakes near Fairview Peak
Slemmons and others, 1965, earthquake epicenters
Slemmons, Jones, and Gimlett, 1965, records of numerous historic earthquakes.

Borehole geophysical data:
University of Nevada and others, 1962, p. 118-125, gamma and neutron logs of a test well 935 feet deep in Fairview Valley.

Geochemical data:
Cohen and Everett, 1963, table 6, chemical analyses of water samples from 13 wells.
Desert Research Institute, unpublished chemical analyses of ground waters and surface waters.
Miller, Hardman, and Mason, 1953, p. 50, chemical analyses of 20 samples of irrigation water (major ions only).
Nevada Bureau of Environmental Health, unpublished chemical analyses of numerous samples of ground waters and surface waters (major ions only).
University of Nevada and others, 1962, appendix G, chemical analyses of about 20 water samples.

University of Nevada, Department of Agriculture, unpublished chemical analyses of ground waters and surface waters.
University of Nevada, Renewable Resources Department, unpublished chemical analyses of ground waters and surface waters.
Meteorological data:

Cohen and Everett, 1963, table 1, monthly and annual precipitation at Eastgate, Fallon, and Lovelock; table 3, estimated average annual precipitation and ground-water recharge; table 2, monthly and annual temperature at Eastgate, Fallon, and Lovelock.

Fritts, 1965, tree-ring evidence for climatic changes

Gifford and others, 1967, probability of precipitation

Hardman, 1936, precipitation map of Nevada

Kohler, Nordenson, and Baker, 1959, evaporation maps

Botanical data:

Cohen and Everett, 1963, pl. 1, areal extent of phreatophytes

Nevada Resources Action Council and others, 1973, vegetation map, 1:1,000,000.

U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:

Cohen and Everett, 1963, pl. 1, generalized water-level contours; table 7, pressure heads or water levels in 66 wells, discharges of 145 wells; table 8, discharges of 10 springs (9 or 10 are thermal).

University of Nevada and others, 1962, p. 56-66, pumping-test data, summaries of transmissivity, permeability, and storage coefficient by pumping tests; estimates of ground-water velocity.


Water-budget data:

Cohen and Everett, 1963, table 3, ground-water recharge; table 4, ground-water discharge by wells, springs, and natural evapotranspiration; table 5, annual subsurface ground-water flow from valleys tributary to Dixie Valley; p. 24, ground-water storage; p. 24-25, perennial yield.

Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Buffalo Valley and lower Reese River Valley

Hydrographic areas: Lower Reese River Valley (59); Buffalo Valley (131)

Geothermal land classification: Part of area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
  Feray and others, 1968, highway geologic map
  Gates, 1956, Shoshone Range
  Gilluly, 1954, Roberts Thrust
  1960, Roberts Thrust
  Gilluly and Gates, 1965, pl. 1, 1:31,680; pl. 2, 1:15,840; both in northern Shoshone range.
  McKee, 1970, Fish Creek Mountains
  Roberts, 1949, Antler Peak quadrangle
  1951, Antler Peak quadrangle
  1965a, Paleozoic and Mesozoic facies map, 1:200,000
  1965b, Antler Peak quadrangle, pl. 1, geologic map, 1:62,500;
  pl. 3, geologic map of southeastern part of quadrangle, 1:31,680
  (pls. 1 and 6 reprinted as pls. 1 and 2 in U.S. Geol. Survey Prof. Paper 459-B).
  Roberts and Arnold, 1952, thrust faults in Antler Peak quadrangle
  Schilling, 1965, fig. 7, location of four sites where isotope ages
  of rocks were determined.
  1971a, fig. 1, location of 15 sites where isotope ages of rocks
  were determined.
  1971b, fig. 1, location of 13 sites where isotope ages of rocks
  were determined.
  Shaw, Reeves, and Kral, 1962, fig. 35, McCoy District, 1:43,000
  Silberling and Roberts, 1962, pl. 2, Sonoma Range 1-degree quadrangle,
  1:375,000.
  Southern Pacific Co., 1964, geologic maps, economic mineral deposits,
  1:240,000.
  Stewart, 1969, Battle Mountain quadrangle and part of Dunphy quadrangle
  Stewart and Carlson, 1972, north-central Nevada
  Stewart and McKee, 1970, Lander County, 1:250,000
  Tatlock, 1969, Pershing County, 1:200,000
  Wallace and others, 1959, Buffalo Mountain quadrangle
  Willden, 1964, pl. 1, Humboldt County, 1:250,000; fig. 11, northern
  part of Battle Mountain, 1:125,000.
Hydrogeologic maps:
Eakin and Lamke, 1966, pl. 1, Humboldt River basin, 1:500,000, shows valley-fill deposits, consolidated rocks, area where annual runoff exceeds 5 inches, area where depth to water is 10 feet or less and where depth is 10 to 25 feet, and approximate water-level contours.
Mifflin, 1968, 1:1,000,000 map showing ground-water flow direction, ground-water recharge and discharge.
Waring, 1918, pl. VIII, Reese River basin and adjacent parts of Humboldt River basin; shows generalized geology, locations of wells and springs, depth to water, irrigated areas, and areas where depth to water is less than 10 feet, 1:250,000.

Subsurface geologic data:
Nevada State Engineer, unpublished drillers' logs of most of wells in area.

Temperature and heat-flow data:
Sass and others, 1971, table 6, fig. 10, locations and values of heat flows within the Battle Mountain heat-flow high.
Waring, 1918, p. 124-127, discharge temperatures of 7 wells and springs.

Surface or airborne geophysical data:
Erwin, 1967, gravity map of Battle Mountain and adjacent areas

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, locations of six earthquake epicenters in area; also historic fault displacements.
Slemmons, Jones, and Gimlett, 1965, data on earthquakes.

Borehole geophysical data:

Geochemical data:
Waring, 1918, p. 125 and 127, chemical analyses of about 20 water samples from wells and springs.

Meteorological data:
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada
1965, precipitation map of Nevada
U.S. Weather Bureau, 1914-72, temperature and precipitation records for Battle Mountain.
Botanical data:
Nevada Department of Conservation and Natural Resources and
U.S. Department of Agriculture, 1964b, area no. 59,
vegetation and phreatophyte maps.
Nevada Resource Action Council and others, 1973, 1:1,000,000
vegetation map of Nevada.

Hydraulic data:
Eakin and Lamke, 1966, pl. 1, approximate water-level contours
Nevada State Engineer, unpublished water-level data and well-
discharge data as reported on drillers' logs.
Waring, 1918, p. 124 and 126, data for about 50 wells, including
water levels and yields.

Water-budget data:
Scott and others, 1971, fig. 5, estimates of annual surface- and
ground-water flows between hydrologic areas; estimates of annual
runoff, perennial yield, and water stored in upper 100 feet of
ground-water reservoir.
Northern Big Smoky Valley

Hydrographic area: Big Smoky Valley, northern part (137B)

Geothermal land classification: Darrough Hot Springs KGRA in southern part of valley; most of surrounding valley is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
Edwards and McLaughlin, 1972, one isotope age of a rock in the area
Peray and others, 1968, highway geologic map
Ferguson and Cathcart, 1954, Round Mountain quadrangle
Kay and Crawford, 1964, pl. 1, Peters Summit and Market Peak sheets, 1:35,000; pl. 2, Northumberland sheet.
Kleinhampl and Ziony, 1967, northern Nye County, 1:200,000
Krueger and Schilling, 1971, isotope ages of 3 rocks in the valley
McKee, 1968a, Spencer Hot Springs quadrangle, 1:62,500
McKee and others, 1971, isotope ages of 13 rocks in or near the valley.
McKee and Ross, 1969, description of a window in Roberts Mountains Thrust at Peters Summit.
McKee and Silberman, 1970, isotope ages of Tertiary igneous rocks
McKee and Stewart, 1971, stratigraphy and isotope ages of Tertiary volcanic rocks.
Means, 1962, pl. 1, central Toiyabe Range, 1:20,000
Ross, 1953, pl. 1, 1:24,000; pl. 2, 1:4,800, Reese River district
Sargent and McKee, 1970, Bates Mountain Tuff
Silberman and McKee, 1971, isotope ages of 3 rocks
Stewart and McKee, 1968a, Mount Callaghan quadrangle, 1:62,500
Stewart and McKee, 1968b, southeastern part of Lander County
Stewart and Palmer, 1967, Callaghan window
Washburn, 1970, Paleozoic stratigraphy of Toiyabe Range, fig. 2, 1:100,000.

Hydrogeologic maps:
Horton, 1964, 1:1,000,000 location of six springs in valley
Meinzer, 1915, 1:250,000 map
Meinzer, 1917, pl. 1, bedrock, alluvium, and springs, 1:250,000; pl. 2, wells, contours of water depth, and water-use areas.
Mifflin, 1968, 1:1,000,000 map showing ground-water recharge, discharge, and flow direction.
Rush and Schroer, 1970, pl. 1, 1:250,000 map showing 7 rock units, 4 phreatophyte units, wells, springs; fig. 4, map showing transmissivity of valley alluvium.
Subsurface geologic data:
Elliott, 1966
Koschmann and Bergendahl, 1968
Kral, 1951
Meinzer, 1915
1917, p. 159, analyses of soil samples for grain size
Nevada State Engineer, unpublished well logs
Robinson, 1953
Rush and Schroer, 1970, table 30, logs of 16 wells; fig. 3, map
showing thickness of alluvium.
U.S. Geological Survey Water Resources Division District office,
Carson City, Nev., unpublished well logs.

Temperature and heat-flow data:
Meinzer, 1917, p. 153, discharge temperatures of 8 springs; p. 155,
discharge temperature of 4 wells.
Nevada State Engineer, unpublished discharge temperatures of wells
Rush and Schroer, 1970, table 29, discharge temperatures of 48 wells;
fig. 2, map showing areas of warm ground water.

Surface or airborne geophysical data:
Davis and Stewart, 1970, aeromagnetic map of Austin area
Healey, 1968, gravity map, 1:250,000
Robinson, 1970, relations between geologic structure and aeromagnetic
anomalies.
U.S. Air Force, 1968, Bouguer gravity map
U.S. Geological Survey, 1967, aeromagnetic map of parts of Austin,
Spencer Hot Springs, and Wildcat Peak quadrangles.
1971, aeromagnetic map, 1:250,000

Passive seismic data:
Douglas, Ryall, and Williams, 1970, spectral characteristics of
microearthquakes.
Environmental Research Laboratories, unpublished records for all
known earthquakes.
Slemmons and others, 1965, four epicenters in valley

Borehole geophysical data: None available
Geochemical data:
Hardman and Miller, 1934, chemical analyses of water samples
Meinzer, 1915,
do.
1917,
do.
Miller, Hardman, and Mason, 1953, chemical analyses of irrigation waters.
Nevada Division of Health, unpublished chemical analyses of water samples.
Rush and Schroer, 1970, table 32, chemical analyses of water samples

Meteorological Data:
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, probability of precipitation
Hardman, 1936, precipitation map of Nevada
1965,
do.
Rush and Schroer, 1970, fig. 13, table 8, fig. 14, summary of precipitation; table 15, growing-season data.
U.S. Weather Bureau, 1914-72, temperature and precipitation records

Botanical data:
Meinzer, 1917, phreatophyte map
1927, description of some vegetation in valley
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
Rush and Schroer, 1970, pl. 1, distribution of phreatophytes
U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:
Cooley, 1968, seepage from streams crossing alluvial fans
Desert Research Institute, unpublished data
Meinzer, 1917
Robinson, 1953
Rush and Schroer, 1970, fig. 5, map showing depth to ground water; table 7, streamflow; fig. 11, graph showing streamflow in basin area; table 28, streamflow data; table 29, well records.
Waring and others, 1965, p. 35 and 36, discharge data for 7 springs

Water-budget data:
Rush and Schroer, 1970, extensive discussion of budgets
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Smith Creek Valley

Hydrographic area: Smith Creek Valley (13h)

Geothermal land classification: Most of valley is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Boham, 1970, part of Shoshone Mountains, 1:62,500
- Feray and others, 1968, highway geologic map
- Gilluly and Gates, 1965, northern Shoshone Range
- Ketner, 1965, economic geology
- Krueger and Schilling, 1971, isotope age of a rock in the valley
- McKee and others, 1971, isotope ages of 17 rocks in or near the valley
- McKee and Silberman, 1970, isotope ages of Tertiary igneous rocks in or near the valley.
- McKee and Stewart, 1971, isotope ages of Tertiary volcanic rocks in or near the valley.
- Stewart and McKee, 1969, west-central Lander County
- 1970, Lander County, 1:250,000

Hydrogeologic maps:
- Everett and Rush, 1964, pl. 1, 1:250,000, shows three lithologic units, one phreatophyte unit, playa, wells, and springs.
- Horton, 1964, 1:1,000,000 map shows location of two hot springs in valley.
- Mifflin, 1968, 1:1,000,000 map shows areas of ground-water recharge and discharge and ground-water flow directions.

Subsurface geologic data:
- Everett and Rush, 1964, table 7, drillers' logs of 5 wells
- Nevada State Engineer, unpublished well logs

Temperature and heat-flow data:
- Everett and Rush, 1964, p. 8, description of two warm-spring areas with temperatures given; p. 12, reference to hot springs, table 5, discharge temperatures of 8 wells and springs.
- Nevada State Engineer, unpublished temperature data
- Waring and others, 1965, p. 35, discharge temperatures of two springs
Surface or airborne geophysical data:
Robinson, 1970, aeromagnetic map

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, 1:1,000,000 map shows three earthquake epicenters in valley.
Slemmons, Jones, and Gimlett, 1965, earthquake data

Borehole geophysical data: None available

Geochemical data:
Everett and Rush, 1964, table 5, chemical analyses of water samples from 11 wells.
Nevada Division of Health, unpublished chemical analyses

Meteorological data:
Everett and Rush, 1964, tables 1 and 2
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada
1965, do.
U.S. Weather Bureau, 1914-72, temperature and precipitation records

Botanical data:
Everett and Rush, 1964, table 4, acreage of phreatophytes; pl. 1, distribution of phreatophytes.
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:
Desert Research Institute, unpublished data
Everett and Rush, 1964, table 6, records for 18 wells, including water levels.

Water-Budget data:
Everett and Rush, 1964, ground-water budget
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Rawhide Flats

Hydrographic area: Rawhide Flats (123)

Geothermal land classification: Part of area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
Foray and others, 1968, highway geologic map
Ross, 1961, pl. 2, Mineral County, 1:250,000
Schilling, 1965, isotope ages of four rocks in or near the valley
Silberman and McKee, 1972, isotope ages of three rocks in or near the valley.
Willden and Speed, 1968a, pl. 1, Churchill County, 1:200,000

Hydrogeologic maps:
Everett and Rush, 1967, pl. 1, two lithologic units, one phreatophyte unit, wells, springs, 1:250,000.
Horton, 1964, 1:1,000,000 map shows location of one spring (Lee Hot Spring) in valley.
Mifflin, 1968, 1:1,000,000 map shows ground-water recharge, discharge, and flow direction.

Subsurface geologic data: Nevada State Engineer, unpublished well logs

Temperature and heat-flow data:
Everett and Rush, 1967, table 8, discharge temperature of one well in valley.
Nevada State Engineer, unpublished data
Waring and others, 1965, p. 34, discharge temperature of Lee Hot Springs.

Surface or airborne geophysical data: None available

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, 1:1,000,000 map showing earthquake epicenters
Slemmons, Jones, and Gimlett, 1965, data on earthquakes

Borehole geophysical data: None available

Geochemical data:
Everett and Rush, 1967, table 8, chemical analysis of one ground-water sample.
Nevada Division of Health, unpublished data

43
Meteorological data:

Everett and Rush, 1967, table 1, precipitation at five stations near the area.
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada
1965, do.
U.S. Weather Bureau, 1914-72, temperature and precipitation records

Botanical data:

Everett and Rush, 1967, table 5, water use by phreatophytes; pl. 1, distribution of phreatophytes.
Nevada Resources Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:

Desert Research Institute, unpublished data
Everett and Rush, 1967, table 9, records for two wells
Waring and others, 1965, p. 34, discharge of Lee Hot Springs

Water-budget data:

Everett and Rush, 1967, p. 28, water budget
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Hydrographic areas: Little Fish Lake Valley (150); Little Smoky Valley (155); Hot Creek Valley (156); Railroad Valley (173).

Geothermal land classification: A small part of the area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
Cebull, 1970, southern Grant Range
Cook, 1966, southern Hot Creek Range
Cornwall, 1972, pl. 1, southern Nye County
Feray and others, 1968, highway geologic map
Ferguson, 1933, Tybo District
Hose and Blake, 1970, White Pine County, 1:150,000
Hyde and Huttrer, 1970, Paleozoic rocks of central Grant Range
Kleinhampl and Ziony, 1967, northern Nye County, 1:200,000
Lowell, 1965, Ordovician rocks in Hot Creek and Monitor ranges
Quinlivan and Rogers, 1970, Tybo quadrangle
Schilling, 1965, isotope ages of 5 rocks in or near the area
Scott and Trask, 1972, Lunar Crater volcanic field
Snyder and others, 1969, Lunar Crater quadrangle
Summerfield and Peterson, 1971, two soil maps of Railroad Valley
area, 1:250,000.
VanDenburgh and Rush, 1973, pl. 1, Railroad Valley

Hydrogeologic maps:
Horton, 1964, 1:1,000,000 map shows location of 9 hot springs in valleys.
Maxey and Eakin, 1950, pls. 4 and 5, Railroad, Hot Creek, Reveille, Kawich, and Penoyer Valleys.
Mifflin, 1968, 1:1,000,000 map shows ground-water recharge, discharge, and flow direction.
VanDenburgh and Rush, 1973, pl. 1, Railroad and Penoyer Valleys, shows two alluvial units and consolidated rocks, wells and springs, phreatophyte areas, and playas.

Subsurface geologic data:
Eakin and others, 1951, table 9, drillers' logs of 29 wells in Railroad and Hot Creek Valleys.
Garside and Schilling, 1967, 1:1,000,000 map showing locations of oil and gas test wells
Lintz, 1957, p. 31, data for oil test well
Maxey and Eakin, 1950, table 9, drillers' logs of 36 wells
Nevada Oil & Gas Conservation Commission, unpublished logs of oil test wells.
Rush and Everett, 1966, table 15, drillers' logs of 7 wells
Schilling and Garside, 1968, logs of oil test wells
Temperature and heat-flow data:
Eakin and others, 1951, table 6, discharge temperatures of 17 springs; table 9, discharge temperatures of 9 wells.
Mifflin, 1968, discharge temperatures of 14 springs in Railroad and Little Smoky Valleys.
Nevada Oil & Gas Conservation Commission, unpublished temperature data for oil test wells.
Rush and Everett, 1966, table 13, discharge temperatures of 5 wells and 9 springs.
Sass and others, 1971, table 8, heat flow for 5 wells in Little Fish Lake Valley, Little Smoky Valley, and Hot Creek Valley.
VanDenburgh and Rush, 1973, discharge temperatures of about 25 wells and 30 springs; temperature log of a deep oil test well.

Surface or airborne geophysical data:
Ekren and others, 1971, pl. 1, gravity map includes south end of Railroad Valley.
Healey, 1968, reconnaissance gravity map
U.S. Air Force, 1968, Bouguer gravity map

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, 1:1,000,000 map show 9 epicenters within the area.
Slemmons, Jones, and Gimlett, 1965, earthquake data

Borehole geophysical data:
Nevada Oil & Gas Conservation Commission, unpublished logs of oil test wells in Railroad Valley.
Schilling and Garside, 1968, logs of oil test wells in Railroad Valley

Geochemical data:
Maxey and Eakin, 1950, chemical analyses of 3 water samples
Mifflin, 1968, appendix table 5, chemical analyses of waters from 14 springs in Railroad and Little Smoky Valleys (12 analyses include tritium).
Nevada Division of Health, unpublished chemical analyses of water samples
Rush and Everett, 1966, table 13, chemical analyses of waters from 6 wells and 10 springs (including 4 in Railroad Valley).
VanDenburgh and Rush, 1973, chemical analyses of water from 34 wells and 20 springs, also 5 streams.
Meteorological data:
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada
Maxey and Eakin, 1950, table 1, precipitation data
U.S. Weather Bureau, 1914-72, temperature and precipitation records
VanDenburgh and Rush, 1973, average annual precipitation at 13 stations in and near the study area.

Botanical data:
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
U.S. Bureau of Land Management, unpublished range-forage maps
VanDenburgh and Rush, 1973, p. 1, distribution of phreatophytes

Hydraulic data:
Garside and Schilling, 1967, 1:1,000,000 map shows 35 wells in Railroad Valley; data on these wells are generally available from the Nevada Oil and Gas Conservation Commission, Reno, Nev.
Maxey and Eakin, 1950, tables 2, 3, 4, 5, and 6, discharge of streams and springs; table 9, records for 36 wells.
Mifflin, 1968, appendix table 4, discharge of 14 springs in Railroad and Little Smoky Valleys.
Snyder, 1963, table 4, records for 2 springs under the name "Sand Spring Valley" and records for 14 springs and 15 wells.
VanDenburgh and Rush, 1973, water-level and discharge data for 126 wells; discharge data for 34 springs in Hot Creek and Railroad Valleys.
Waring and others, 1965, p. 36, discharge data for springs in Hot Creek and Railroad Valleys.

Water-budget data:
Maxey and Eakin, 1950, ground-water budget estimates
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
VanDenburgh and Rush, 1973, budgets, recharge, inflow and outflow, discharge.
Winnemucca segment

Hydrographic area: Winnemucca segment (70)

Geothermal land classification: Part of area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Bateman, 1953, Golconda tungsten deposit
- Cohen, 1961a, Humboldt River valley near Winnemucca
- 1962d, stratigraphy and origin of Lake Lahontan deposits
- 1963a, Humboldt River valley near Winnemucca
- 196hb, do.
- 196hc, do.
- Erickson and Marsh, 1972, Golconda and Iron Point quadrangles
- Feray and others, 1968, highway geologic map
- Fergason, Muller, and Roberts, 1951, Winnemucca quadrangle
- Fergason, Roberts, and Muller, 1952, Golconda quadrangle
- Gilluly, 1967, Winnemucca quadrangle, 1:62,500
- Hawley and Wilson, 1965, Quaternary geology
- Hotz and Willden, 1961, Osgood Mountains quadrangle, 1:48,000
- 196h,
- Southern Pacific Co., 1964, geologic maps and economic mineral deposits, 1:24,000.
- Willden, 1964, Humboldt County, 1:250,000
- Wilson, 1963, alluvial fans in Winnemucca area

Hydrogeologic maps:
- Cohen, 1962b, East Range fault as a hydraulic barrier
- Eakin and Lamke, 1966, pl. 1, 1:500,000
- Harrill and Moore, 1970, tributary area north of Winnemucca segment
- Mifflin, 1968, 1:1,000,000 map showing ground-water recharge, discharge, and flow direction.

Subsurface geologic data:
- Cohen, 1961c, specific yield of alluvium
- 1962c, specific yield and porosity of alluvium
- 1962d, geologic section of Humboldt River valley
- 1963a, pl. 6, thickness of medial gravel unit
- 1963b, specific yield and particle size of alluvium
- 196hb, fig. 8, specific yield
- 196hd, fig. 19, thickness of medial gravel unit
- Nevada State Engineer, unpublished drillers' logs of wells
Temperature and heat-flow data:
Cohen, 1962b, thermal water in a well and several springs
1962e, table 1, temperatures of about 70 water samples
Waring and others, 1965, p. 33, discharge temperature of Golconda
Hot Springs.

Surface or airborne geophysical data:
Dudley and McGinnis, 1962, seismic refraction and earth resistivity
McGinnis and Dudley, 1964, seismic studies
Wilson, 1960, Humboldt River
1970, aeromagnetic map, 1:62,500

Passive seismic data:
Environmental Research Laboratories, unpublished records of known
earthquakes.
Slemmons and others, 1965, 1:1,000,000 map shows an earthquake
epicenter in the area.
Slemmons, Jones, and Gimlett, 1965, data on earthquakes

Borehole geophysical data: None available

Geochemical data:
Cohen, 1962b, siliceous and calcareous deposits at springs
1962e, table 1, chemical analyses of 101 water samples from
wells and springs.
Kerr, 1940, p. 2026, states that rock overlying the ore deposit at
Golconda is of hot-spring origin.
Penrose, 1893, mentions the hot springs near Golconda and suggests
a hot-spring origin for the manganese ore.

Meteorological data:
Cohen, 1964d, fig. 3, precipitation map of Humboldt River valley
near Winnemucca; fig. 4, average monthly temperature at and
near Winnemucca; fig. 5, average monthly precipitation.
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, precipitation probabilities
Hardman, 1936, precipitation map of Nevada
1965, do.
Nevada Department of Conservation and Natural Resources, U.S.
Geological Survey, and U.S. Bureau of Reclamation, 1972,
precipitation data for 5 storage gages in Sonoma Mountains.

U.S. Weather Bureau, 1914-72, temperature and precipitation records
for Winnemucca.
Botanical data:
Cohen, 1964d, fig. 6, vegetation map
Nevada Department of Conservation and Natural Resources and U.S.
Department of Agriculture, 1965, vegetation map and phreatophyte map.
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.

Hydraulic data:
Cohen, 1961b, relation of surface water to ground water along flood plain of Humboldt River.
1961c, specific yield of alluvium
1962b, hydraulic-barrier effect of East Range fault
1962c, specific yield and porosity of alluvium
1963b, specific yield and particle size of alluvium
1964b, fig. 8, specific yield; pl. 2
1964d, figs. 13 and 14

Water-budget data:
Cohen, 1963a, p. 93, water budget
1964d, table 13, do.
Scott and others, 1971, fig. 5, estimates of annual surface and ground-water flows between hydrographic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Monitor Valley

Hydrographic areas: Monitor Valley, northern part (140A); Monitor Valley, southern part (140B).

Geothermal land classification: A small part of the area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Edwards and McLaughlin, 1972, isotope age of one rock in area
- Feray and others, 1968, highway geologic map
- Kay and Crawford, 1964, Toquima Range
- Kleinhampl and Ziony, 1967, northern Nye County, 1:200,000
- Krueger and Schilling, 1971, isotope ages of two rocks in area
- Lowell, 1965, Ordovician rocks in Hot Creek and Monitor Ranges
- McKee, 1968a, Spencer Hot Springs quadrangle, 1:62,500
- 1968b, Ackerman Canyon quadrangle, 1:62,500
- McKee and others, 1971, isotope ages of 14 rocks in the area
- McKee and Ross, 1969, northern Toquima Range
- McKee and Silberman, 1970, isotope ages of Tertiary igneous rocks
- Roberts, Montgomery, and Lehner, 1967, pl. 3, Eureka County, 1:250,000
- Sargent and McKee, 1970, Bates Mountain Tuff
- Schilling, 1965, isotope ages of two rocks in the area
- Silberman and McKee, 1971, isotope ages of two rocks in area
- Stewart and McKee, 1968a, Mount Callaghan quadrangle, 1:62,500
- 1970, Lander County, 1:250,000

Hydrogeologic maps:
- Horton, 1964, 1:1,000,000 map shows location of two springs
- Mifflin, 1968, 1:1,000,000 map shows ground-water recharge, discharge, and flow direction.
- Rush and Everett, 1964, pl. 1, three lithologic units, two phreatophyte units, playas, wells, and springs, 1:250,000.

Subsurface geologic data:
- Nevada State Engineer, unpublished well logs
- Rush and Everett, 1964, table 11, drillers' logs of 15 wells

Temperature and heat-flow data:
- Nevada State Engineer, unpublished temperature data
- Rush and Everett, 1964, table 9, discharge temperatures of 8 wells and springs; table 10, discharge temperatures of 21 wells.
- Sass and others, 1971, table 8, heat flow at one drill hole
- Waring and others, 1965, p. 36, discharge temperatures of two springs
Surface or airborne geophysical data:

- Healey, 1968, gravity map, Smoky Valley to Railroad Valley, 1:250,000
- Robinson, 1970, aeromagnetic data
- U.S. Air Force, 1968, gravity map
- U.S. Geological Survey, 1971, aeromagnetic map, 1:250,000

Passive seismic data:

- Environmental Research Laboratories, unpublished records of known earthquakes.

Borehole geophysical data: None available

Geochemical data:

- Nevada Division of Health, unpublished chemical analyses of water samples.
- Rush and Everett, 1964, table 9, chemical analyses of water samples from 10 wells and springs.

Meteorological data:

- Fritts, 1965, tree-ring evidence for climatic changes
- Gifford and others, 1967, precipitation probabilities
- Hardman, 1936, precipitation map of Nevada
  1965.
- Rush and Everett, 1964, table 1, precipitation at 8 stations; table 2, temperature at 2 stations.
- U.S. Weather Bureau, 1914-72, temperature and precipitation records

Botanical data:

- Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.
- Rush and Everett, 1964, table 5, evapotranspiration by phreatophytes; pl. 1, distribution of phreatophytes, 1:250,000.
- U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:

- Desert Research Institute, unpublished data
- Rush and Everett, 1964, table 3, streamflow summary; table 10, records for 47 wells in three-valley hydrologic unit.
- Waring and others, 1965, p. 36, discharge of 2 springs

Water-budget data:

- Rush and Everett, 1964, ground-water budget
- Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir.
Buena Vista Valley

Hydrographic area: Buena Vista Valley (129)

Geothermal land classification: Part of area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
- Cameron, 1939, northeastern Humboldt Range
- Ferguson and others, 1968, highway geologic map
- Ferguson and others, 1951, Mt. Moses quadrangle, 1:125,000
- Ferguson, Muller, and Roberts, 1951, Winnemucca quadrangle, 1:125,000
- Jenney, 1935, central Humboldt Range
- Loeltz and Phoenix, 1955, pl. 1, 1:156,000; text p. 17-23
- Muller, Ferguson, and Roberts, 1951, Mt. Tobin quadrangle
- Page, 1965, part of Stillwater Range, 1:125,000
- Reeves and Kral, 1955, pl. 1, Buena Vista Hills, 1:48,000; pl. 2, (geology and magnetic), southern Buena Vista Hills, 1:6,000; pl. 4, (geology and magnetic), northern Buena Vista Hills; pl. 6, (geology and magnetic), northeastern Buena Vista Hills.
- Silberling and Wallace, 1967, Imlay quadrangle, 1:62,500
- Southern Pacific Co., 1964
- Tatlock, 1969, Pershing County, 1:250,000
- Wallace and others, 1959, Buffalo Mountain quadrangle, 1:48,000
- 1970, Unionville quadrangle 1:62,500
- Wilden and Speed, 1968b, fig. 4, part of Buena Vista District, 1:24,000; fig. 6, Copper Kettle District, 1:24,000.

Hydrogeologic maps:
- Loeltz and Phoenix, 1955, phreatophytes, playa, locations of wells and springs.
- Mifflin, 1968, 1:1,000,000 map shows ground-water recharge, discharge, and flow direction.

Subsurface geologic data:
- Loeltz and Phoenix, 1955, table 10, logs of 10 water wells
- Nevada State Engineer, unpublished well logs

Temperature and heat-flow data:
- Loeltz and Phoenix, 1955, table 7, discharge temperature of Kyle Hot Springs, discharge temperatures of several cool wells.
- Nevada Bureau of Mines, unpublished data
- Waring and others, 1965, p. 3h, discharge temperatures of Kyle Hot Springs and two other springs.

Surface of airborne geophysical data:
- U.S. Geological Survey, 1972a, aeromagnetic map, 1:250,000
Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, epicenters of three or four earthquakes greater than 4.0 Richter magnitude.
Slemmons, Jones, and Gimlett, 1965, major and minor historic earthquakes.

Borehole geophysical data: None available

Geochemical data:
Desert Research Institute, unpublished chemical analyses of water samples.
Loeltz and Phoenix, 1955, table 7, chemical analyses of 12 springs and well waters.
Miller, Hardman, and Mason, 1953, p. 30, chemical analyses of 15 samples of irrigation water.
Nevada Bureau of Environmental Health, unpublished chemical analyses of water samples (major ions only).
University of Nevada, Department of Agriculture, unpublished chemical analyses of water samples (major ions only).
University of Nevada, Renewable Resources Department, unpublished chemical analyses of water samples.

Meteorological data:
Fritts, 1965, tree-ring evidence for climatic changes
Gifford and others, 1967, probability of precipitation
Hardman, 1936, precipitation map of Nevada
Kohler, Nordenson, and Baker, 1959, evaporation maps
Loeltz and Phoenix, 1955, p. 12 and 13, precipitation at two nearby stations.

Botanical data:
Loeltz and Phoenix, 1955, pl. 1, distribution of phreatophytes, 1:56,000; table 4, evapotranspiration by phreatophytes.
Nevada Resource Action Council and others, 1973, generalized vegetation map, 1:1,000,000.
U.S. Bureau of Land Management, unpublished range-forage maps

Hydraulic data:
Loeltz and Phoenix, 1955

Water-budget data:
Scott and others, 1971, fig. 5, estimates of annual surface- and ground-water flows between hydrologic areas; estimates of annual runoff, perennial yield, and water stored in upper 100 feet of ground-water reservoir
Elko segment

Hydrographic area: Elko segment (49)

Geothermal land classification: Elko Hot Springs KGRA; most of the area is classified as lands valuable prospectively for geothermal resources.

Geologic maps and other surface geologic data:
Bradberry & Associates, 1964
Dott, 1955, Elko and northern Diamond Ranges
Perry and others, 1968, highway geologic map
Fredericks and Loeltz, 1951, fig. 2, 1:125,000
Granger and others, 1957, pl. 1, Elko County, 1:250,000
Hope, 1970, Elko County, 1:200,000
Nevada Department of Conservation and Natural Resources and U.S. Department of Agriculture, 1964c, soils maps.
Regnier, 1960, Cenozoic geology near Carlin, pl. 1, 1:125,000
Sharp, 1939b, Humboldt Formation, fig. 9, 1:750,000; fig. 8, 1:48,000.
Smith and Ketner, 1972, Carlin quadrangle, 1:125,000

Hydrogeologic maps:
Eakin and Lamke, 1966, pl. 1, 1:500,000
Fredericks and Loeltz, 1951, fig. 2
Mifflin, 1968, 1:1,000,000 map showing ground-water recharge, discharge, and flow direction

Subsurface geologic data:
Fredericks and Loeltz, 1951, table 3, drillers' logs of 12 wells
Garside and Schilling, 1967, 1:1,000,000 map showing location of oil and gas test wells.
Lintz, 1957, locations of oil and gas test wells
Nevada State Engineer, unpublished drillers' logs (173)
Schilling and Garside, 1968, oil and gas well data, 1953-67

Temperature and heat-flow data:
Fredericks and Loeltz, 1951, table 4, discharge temperatures of 5 wells; table 5, notes on discharge temperatures of 3 other wells; p. 49, discussion of temperatures of springs and wells.
Sass and others, 1971, table 8, heat-flow data at one drill-hole site (Swales Mountain).
Waring and others, 1965, p. 33, discharge temperatures of Elko Hot Springs and several other hot springs in adjacent hydrographic areas.
Surface or airborne geophysical data:
Mabey, 1964, gravity map of Eureka County and adjacent areas

Passive seismic data:
Environmental Research Laboratories, unpublished records of known earthquakes.
Slemmons and others, 1965, three epicenters of earthquakes of magnitude less than 6.0 between 1854 and 1960.
Slemmons, Jones, and Gimlett, 1965, earthquake data

Geochemical data:
Eakin and Lamke, 1966, table 11, chemical analyses of water samples from 5 wells.
Fredericks and Loeltz, 1951, table 4, chemical analyses of water from 5 wells.
U.S. Geological Survey Water Resources Division District office, Carson City, Nev., unpublished chemical analyses of water samples from 4 wells and 2 springs; also many analyses of surface waters.

Meteorological data:
Fredericks and Loeltz, 1951, p. 43, brief discussion of climate
Hardman, 1936, precipitation map of Nevada
U.S. Weather Bureau, 1914-72, temperature and precipitation records

Botanical data:
Nevada Department of Conservation and Natural Resources and U.S. Department of Agriculture, 1964c, map showing irrigated and phreatophyte lands; also see table 2, ground-water use.
Nevada Resource Action Council and others, 1973, 1:1,000,000 vegetation map of Nevada.

Hydraulic data:
Desert Research Institute, unpublished data
Fredericks and Loeltz, 1951, table 5, water-level and discharge data for 12 wells; p. 11 and table 2, discharge and specific-capacity data for 7 wells; p. 50, pumping-test data for several wells.

Water-budget data:
Eakin and Lamke, 1966, table 12, fig. 33, and p. 56
References


Bingler, E.C., 1972, K-Ar dates from volcanic and plutonic rocks of the northern Wassuk Range, central-western Nevada: Isochron/West, no. 3 p. 31-32.


Cameron, E.N., 1939, Geology and mineralization of the northeastern Humboldt Range, Nevada: Geol. Soc. America Bull., v. 50, p. 563-634.


Lawrence, E.F., 1971, Mercury mineralization at the Senators Fumaroles, Dixie Valley, Nev.: Abstract in Geol. Soc. of Am. Cordilleran Sect. annual meeting program for 1971 at Riverside, Calif., p. 117.


Muller, S.W., Ferguson, H.O., and Roberts, R.J., 1951, Geologic map of the Mt. Tobin Quad: U.S. Geol. Survey Geol. Quad. GQ-7, 1:125,000.


1964b, Water and related land resources, Humboldt River basin, Nevada; Reese River sub-basin; U.S. Dept. Agr., Rept. 8, 127 p.


Nevada Resource Action Council and others, 1973, Nevada vegetative type map: Map at 1:1,000,000 and 7 p.


Robinson, T.W., 1953, Big Smoky Valley, Nevada, in Subsurface facilities of water management and patterns of supply--type area studies: U.S. Congress, House Comm. on Interior and Insular Affairs, Phys. and Econ. Found. of Nat. Resources Rept. 4, p. 132-146.


Rush, F.E., 1972, Hydrologic reconnaissance of Big and Little Soda Lakes, Churchill County, Nevada: Nevada Dept. Conservation and Natural Resources Information Series Rept. 11.


Ryall, Alan, 1972, Seismic potential in the western Great Basin and range/eastern Sierra Nevada region, Nevada and California: [abs.] in EOS, Transactions, American Geophysical Union, v. 63, no. 4, p. 442.


1972, A summary of radiometric age determinations on Tertiary volcanic rocks from Nevada and eastern California, Part II, Western Nevada, in Isochron West, no. 4, p. 7-28.


1962b, Ground-water resources Hualapai Flat, Washoe, Pershing, and Humboldt Counties, Nevada: Nevada Dept. Conservation and Natural Resources, Ground-water Resources-Reconnaissance Ser., Rept. 11, 16 p.


1968b, Geologic map of southeastern part of Lander County, Nevada: U.S. Geol. Survey open-file map.


1972b, Aeromagnetic map of the Vya and part of the McDermitt 1° by 2° quadrangles, Nevada: U.S. Geol. Survey open-file map 1:250,000.


U.S. Weather Bureau 1914-72, Climatological data: Nevada.


Figure 1.—Map of Nevada showing selected geothermal areas

1. Black Rock Desert area
2. Carson Desert
3. Brady's Hot Springs area
4. Ruby Valley
5. Crescent Valley-Whirlwind Valley area
6. Washoe area
7. Pueblo Valley-Continental Lake region
8. Mason Valley
9. Grass Valley
10. Dixie-Fairview Valley area
11. Buffalo Valley and lower Reese River Valley
12. Northern Big Smoky Valley
13. Smith Creek Valley
14. Rawhide Flats
15. Railroad Valley-Hot Creek Valley area
16. Winnemucca segment
17. Monitor Valley
18. Buena Vista Valley
19. Elko segment