GLOQ364 KEPLINGER and Issociates, inc. INTERNATIONAL ENERGY CONSULITANTE

WYn.

3430 ENTEX BUILDING 1200 MILAM STREET HOUSTON, TEXAS 77002 AREA 713/651-3127 CABLE: KEPPET TELEX: 762-324

INTERIM EVALUATION OF EXPLORATION AND DEVELOPMENT STATUS, GEOTHERMAL POTENTIAL AND ASSOCIATED ECONOMICS OF DIXIE VALLEY, NEVADA

FOR

MILLICAN OIL COMPANY

HOUSTON, TEXAS

SEPTEMBER 1, 1978

CONTENTS

			Page
	I.	SUMMARY	1
	II.	EXPLORATION PROGRAM	3
ı		Introduction	3
		Multi-Level Aeromagnetic Survey - Phase I	5
		Scalar and Tensor Magnetotelluric Survey	10
		Multi-Level Aeromagnetic Survey - Phase II	12
		Reconnaissance Drilling and Temperature Logging Program	19
		Geothermetric Spring Sampling and Regional	
		Data Collection	21
	111.	LAND ACQUISITIONS	32
	IV.	U. S. DEPARTMENT OF ENERGY PROGRAMS	37
	V • •	GEOTHERMAL DEVELOPMENT AND ECONOMICS	39
		Exploration Wells	44
		Production and Reinjections Wells	44
	· ,	Replacement Wells	44
		Drilling Costs	45
	VI.	CONCLUSIONS	54
	VII.	REFERENCES	57
	VIII.	APPENDIX	60

KEPLINGER and Associates, inc.-

ILLUSTRATIONS

.

PLATES

Plate I - Magnetic Features Map of Structural Relationships	
Within Dixie Valley	SEE MAP POCKET
Plate II - MT Features Map of Shallow-Heat Sources	
And Hole Locations	SEE MAP POCKET
Plate III - Map of Cross-Sections with Miscellaneous Data	SEE MAP Pocket
Plate IV - Land Map of Dixie Valley Area	SEE MAP POCKET

Page

FIGURES

KEPLINGER and Associates, inc. -

Figure 1 - Magnetotelluric Features, South Dixie, Nevada	11
Figure 2 - Apparent Resistivity at Period = 10 Second,	
South Dixie	13
Figure 3 - Isopach - Surface to Resistive Gabbroic Complex	14
Figure 4 - Idealized Cross-Section A-A'	16
Figure 5 - Idealized Cross-Section B-B'	17
Figure 6 - Idealized Cross-Section C-C'	18
Figure 7 - Photograph Looking Northeast Toward Drilling Sites	
#H-1 and #H-2	20
Figure 8 - Millican Oil #H-l: Temperature - Depth Plot with	
Relative Thermal Gradient per 100 Feet	25
Figure 9 - Millican Oil #H-2: Temperature - Depth Plot With	
Relative Thermal Gradient Per 100 Feet	25

-ii-

Page

FIGURES (Cont'd.)

KEPLINGER and fisociales, inc.-

	Figure 10 - Photograph Looking Eastward Across	
	Dixie Valley from Spring #2 Site.	
	With Numerous Fuming Spring Outlets	26
	Figure 11 - Location Map for Dixie Valley and	
	Nearby KGRA's	31
	Figure 12 - Postulated Growth of Installed Geothermal	
	Electric Capacity	41
	Figure 13 - Assumed Potential Capacity vs. Cost for	
	Electricity Without R, D, and D Advances	49
	Figure 14 - Ranges of Projected Costs of Electricty Without	• • •
	R, D, and D Advances	50
	Figure 15 - Assumed Potential Capacity vs. Cost for	
	Electricty for First Commercial Plants with	
	R, D, and D Advances	51
	Figure 16 - Assumed Potential Capacity vs. Cost for	
	Electricity with R, D, and D Advances After	
	First Commercial Plants	52
	Figure 17 - Assumed Potential Capacity vs. Cost for	
•	Electricity with R, D, and D Advances and	
	22% Depletion Allowance and Intangible Costs	
	Expensed	⁻ 53

Page

TABLES

e.

KEPLINGER and fssociates, inc.-

	Table 1	-	Millican Hole #H-1 Temperature Gradient Data.	
			Logged May 16, 1978 (Section 16, T24N, R36E)	22
	Table 2	-	Millican Hole #H-1 Relog of above, June 7, 1978	23
	Table 3	-	Millican Hole #H-2 Temperature Gradient Data.	
			Logged June 21, 1978 (Section 31, T24W, R36E)	24
	Table 4	-	Variations in Dixie Valley Spring Geochemistry	28
	Table 5	-	Comparison of Hot Spring Geochemistry of Dixie	
			Valley, Beowawe and Brady Hot Spring KGRA's	29
	Table 6		General Summary of KGRA Characteristics and	
			Activity	30
	Table 7	-	Bidding History of Competitive Geothermal Lease	
		2	Sales on Federal Land in Dixie Valley (1976)	33
	Table 8	-	Bid Results of Geothermal Federal Lease Sale	
			in Dixie Valley (1977)	34
	Table 9	-	Competitive Bidding, Dixie Valley and Other	
			Areas (1976)	35
	Table 94	A –	Regional Competitive Bidding, Nevada 1974-1976	36
	Table 10) –	Geothermal Development Scenarios Formulated by the	
			The U. S. Department of Energy, Div. Geothermal	
		•	Energy	42
•	Table 11	L -	Anticipated Well and Plant Construction Schedules	
			for 50 MWe Power Plant Operation	43

TABLES (Cont'd.)

KEPLINGER and fosociates, inc.-

र्ष भ

Table 12 -	Footage Costs for Geothermal Drilling as a	
	Function of Rock Type and Well Depth	46
Table 13 -	General Characteristics and Well Costs for	
	Selected Geothermal Prospects	47
Table 14 -	Levelized Busbar Costs of Electricity From Coal and	
· ·	Nuclear Sources	48

INTERIM EVALUATION OF EXPLORATION AND DEVELOPMENT STATUS, GEOTHERMAL POTENTIAL AND ASSOCIATED ECONOMICS OF DIXIE VALLEY, NEVADA

I. SUMMARY

KEPLINGER and Issociates, inc.

Millican Oil Company has a dominant land position in Dixie Valley, Nevada and presently holds or controls approximately 54,000 federal acres over a highly prospective, but untested, geothermal reservoir. During late 1977, Millican Oil Company joined Southland Royalty Company in a joint exploration program involving multi-level aeromagnetic surveys, magnetotelluric surveys, thermal-gradient drilling (to 1,500 feet T.D.), and hot-spring geochemical monitoring.

The aeromagnetic surveys have outlined structural relationships that differ radically from the normal basin-and-range structures. The surveys have identified two areas with abnormal gradient, one on the western boundary of Dixie Valley and one on the eastern boundary. A follow-up magnetotelluric survey indicated three relatively shallow heat sources (ranging from approximately 20,000 feet to 26,000 feet) on the western boundary and three overlying conductive (low resistivity) anomalies that suggest high fluid temperatures. Two of the three anomalies occur within Millican Oil holdings. Both were drilled to 1,500 feet T.D. to evaluate the overlying thermal gradient and stratigraphic relationships in the area. A maximum of 97°C was encountered in one of the holes at 1,500 feet, after penetrating young valley-fill and lucustrine deposits, a magnetite-rich gabbroic-like unit and a highly-fractured metasedimentary unit to total depth. A second hole was essentially isothermal (51°C maximum) to total depth (1,500'). Hot spring geochemical monitoring indicates, to date, that long-term geochemical variations (?seasonal) do occur and that such variations suggest mixing of recharge water from the Stillwater Range with heated deep reservoir ground water. Geothermetric calculations will therefore be depressed and hence will not indicate actual deep reservoir temperatures at the surface springs sampled.

Millican Oil and Southland Royalty, in cooperation with University of Nevada at Reno, have cooperated in a joint proposal to the U.S. Department of Energy on a project involving exploration and reservoir anaylsis of Dixie Valley. A favorable response has been received and contract negotiations are to begin in the near future. The project is designed to evaluate the hydrogeologic, tectonic and geophysical aspects of Dixie Valley as they relate to its geothermal potential. Drilling up to three deep holes (8,000 feet) is an integral part of the proposed project. The proposal was presented on a fixed-cost basis with cost-sharing provisions.

KEPLINGER and Issociates, inc.--

Recent estimates indicate that Nevada will rank second only to California in growth of installed geothermal electric capacity by 1983. Two areas that are undergoing intensive exploration are Brady Hot Springs, KGRA and Beowawe KGRA, both are within 50 miles of Dixie Valley and exhibit geological characteristics that are also present

-2-

in Dixie Valley. Using the former as economic guides, their commercial development will strongly influence the viability of Dixie Valley, if the latter can produce comparable reservoir temperature and flow rate.

The economic potential of Brady Hot Springs, Beowawe and Dixie Valley in competition with coal depends to a large extent on cost reductions expected over the next few years from research on development and drilling techniques and materials, as well as from federal tax incentives allowing a 22% depletion allowance, expensing intangible drilling costs and a significant investment tax credit designed to assist the geothermal industry.

Based on resource data from nearby areas and on limited data from the recent exploration program, Dixie Valley appears to have a minmum potential production sufficient to support six 50 MWe power plants over a 30-year period. In addition, an average initial well production of 475,000 pounds/hr. (3.85 MWe/well) at a reservoir temperature of 225°C appears possible at this time. A flash recovery system would be appropriate at such temperature and flow rate. A more accurate assessment of the potential of Dixie Valley, however, can be made only after the proposed deep drilling program has been completed.

II. EXPLORATION PROGRAM

Introduction

During late 1977, Millican Oil Company joined Southland Royalty Company in a joint exploration program over a 300 square-mile area of

KEPLINGER and *Issociates*, inc.

-3-

Dixie Valley, Nevada. Southland Royalty Company served as operator for the program. The exploration program, however, was developed jointly and costs were shared on a 50-50 basis. All data and subsequent interpretations have been shared. An agreement was made between the two companies that any additional land acquisition prompted by data from the joint exploration program would be acquired and owned jointly. No other relationship exists at this time between Millican Oil Company and Southland Royalty Company, with the exception of joint ownership in 19,200 acres of newly acquired federal land in Dixie Valley.

The exploration program was developed and supervised by Richard L. Jodry, consultant to Southland Royalty Company, and Michael D. Campbell, Keplinger and Associates, Inc., consultants to Millican Oil Company. The program consisted of the following:

Phase I

KEPLINGER and *Associates*, inc.--

- A. Multi-Level Aeromagnetic Survey by Senturion Sciences, Inc., Tulsa. Completed October, 1977.
- B. Scalar and Tensor Magnetotelluric Survey by Senturion Sciences, Inc. Completed February, 1978.
- C. Phase II Multi-Level Aeromagnetic Survey by Senturion Sciences, Inc. Completed June, 1978.
- D. Reconnaissance Drilling and Temperature Logging Program (up to 1500'TD). Completed September, 1978.
- E. Geothermetric Ground-Water Sampling and Regional Data Collection - Periodic Sampling Continuing of Selected Springs Within Dixie Valley Area.

Multi-Level Aeromagnetic Survey - Phase I

Five multi-level aeromagnetic profiles (approximately 50 miles) were flown (at five altitudes) during the fall of 1977 over the western and central parts of Dixie Valley. This highly sensitive technique is used to define faults, throw and dip (where possible) and areas of abnormal gradients (suggesting heated ground water). Preliminary structural relationships were developed by Senturion Sciences, Inc. (see Plate I).

In addition, a major intrusive feature (apparently cold) was identified in T22N, R36E and an area of abnormal magnetic gradient was identified in T24N, R36E.

Two major features of the interpreted structural relationships developed by Senturion Sciences have been challenged. The first feature is the dip direction and relative movement of the "Old Stillwater Fault"; the interpreted aeromagnetic data suggests that the fault, although high angle, has a westward dip component under the Stillwater Range. In a previous report by Keplinger and Associates, Inc. (September 16, 1977), we reported that the pertinent literature and available data concerning the structural setting of Dixie Valley, and our own field evaluations along the range-front fault (referred to by Senturion as the "Old Stillwater Fault") suggest a typical basin-and-range structural setting where tensional stress has predominated as far back as early Tertiary and still predominates the tectonic movements in the Dixie Valley area. We suggested that such conditions require a near vertical and basinward dip (normal) for the range-front fault.

-5-

KEPLINGER and Associates, inc.-

The significance of the dip direction (and relative movement) of the fault in question is of paramount importance in developing the structural relationships within Dixie Valley. The location and characteristics of all faults in the prospective area will guide future geothermal exploration. Very little direct structural information is available in Dixie Valley because the area is covered by coalluvium, alluvium and lucustrine deposits, which obscure the structural picture. Therefore, what little information does exist (e.g. seismic refraction data, range geology, earthquake epicenters, lineaments and other features identified by areal photographic techniques) must be placed within a general model that can be used to extrapolate various known structural features and relationships into areas without data but with possible site-specific geothermal potential. If the Senturion interpretation is correct, and that is possible, the structural model required would involve compressional and vertical tectonics, which differs significantly in general and in detail from a structural model involving tensional tectonics of the socalled "normal" basin-and-range structures.

The second major feature that has been challenged is the interpretation involving the so-called "Stillwater Thrust", as well as the Mud Fault (or part of it). The former feature occurs in a highly prospective area of Dixie Valley. As with the first feature mentioned above, all available information suggests that such a feature is mechanically impossible within a tectonic model involving tensional stress. However, if a compressional model were involved, such a thrust would not only be possible but also probable in such a tectonic environment. Alternate interpretation of the aero-

-6-

KEPLINGER and Issociates, inc.

magnetic data is nevertheless required at this time before the deep wellsite selection process is begun. Some of the alternate interpretations are discussed in the following review of aeromagnetic data.

Interpretation of multi-level aeromagnetic data depend upon the migration of a particular magnetic characteristic, as indicated by multi-level flight lines, to calculate the dip component of a fault. However, we suggest that the magnetic characteristics used to define dip may or may not represent faulting. Such characteristics do, however, represent zones of magnetic discontinuity. Such discontinuities could develop above a relatively shallow heat source where excessive heat has altered the ferrimagnetic rocks in such a manner that a zone interpreted as a fault may in fact be a boundary between ferrimagnetic and paramagnetic rocks. The fault zone, if known to be present, may not be apparent under such conditions. The magnetic characteristics used for fault identification may have been affected by alteration. The shape of a zone of magnetic discontinuity would be in the form of an inverted cone, assuming the heat source is circular in horizontal dimension. If the heat source is fault-controlled at depth, the zone would be in the form of an irregular, elongate prism with an irregular apex upward, which would be expected in the Dixie Valley area.

Interpretation of multi-level aeromagnetic data, especially those derived from surveys with high-response capability, also depend upon variations in gross rock magnetism to identify separate geologic units. However, magnetic variations are created by a number of geothermal and geologic features, some of which are:

KEPLINGER and Associates, inc.

-7-

- 1. Heating above Curie point of a geologic unit of presumed uniform ferrimagnetic content, thereby allowing the inference that where "significant" magnetic lows occur, heating and, therefore, geothermal activity has occurred. Some lows that appear within areas of higher magnetics are characterized as having "abnormal" gradients.
- 2. A ferrimagnetic unit in contact with a paramagnetic unit is a common relationship. This contact may be a high-angle intrusive contact but (based on magnetic data) could be interpreted as a fault in Dixie Valley; the former would be expected (e.g. high-ferrimagnetic gabbro in contact with a low-ferrimagnetic volcanic or metasedimentary unit).
- 3. Detectable ferrimagnetic variations within the same unit, if of sufficient magnitude, may also appear to be faults, but in magnetic data may show systematic variation, which would not be uncommon.

4. Detectable ferrimagnetic variations between different units at the same elevation may also appear as faults (similar to 2) based on magnetic data. This condition would also be expected in Dixie Valley as indicated by the complex mosaic outcrop pattern consisting of many different units exposed in the Stillwater and Clan Alpine Ranges. Conditions should not be different below the cover material in Dixie Valley.

It should be apparent that the applicability of all the multi-level

-8-

aeromagnetic interpretations has been challenged. However, where independent data support the aeromagnetic interpretations, such integrated interpretations can be accepted with reasonable confidence that they are accurate within reasonable limits. For example, the following interpretations do have independent support:

- The range-front fault (Old Stillwater Fault) is shown to have major displacement, although the indicated strike and dip are questioned.
- 2. The <u>Marsh Fault</u> is accepted, supported by tensional model, by the anomalous western boundary of Humbolt Salt Marsh, and by the position of two microearthquake clusters along strike of of the Marsh Fault. It may be offset faulted between flight lines B and C. (see Plate I)

KEPLINGER and Associates, inc.-

- The <u>Buck Brush Fault</u> is accepted, supported by tensional model and by the anomalous occurrence of springs along the strike of fault. Relative movement consistent.
- 4. The <u>Bernice Creek Fault</u> is accepted, supported by relative movement and correlated with major fault trend in Stillwater Range, which traverses Dixie Valley.
- 5. The "<u>Gabbro</u>" <u>Intrusive</u> is accepted; such a unit must have a striking magnetic character.
- The <u>Dyer Fault</u> is accepted, supported by known fault scarplet with same strike direction in area. Relative movement is consistent.

-9-

7. Area of abnormal gradient is accepted only because it was confirmed by the magnetotelluric survey, discussed later in this report.

Multi-level aeromagnetic surveys do not generate unique solutions. If pertinent data can be marshalled, as is the case with many of the Senturion interpretations, to support some of the critical aeromagnetic interpretations challenged herein, the development of structural relationships within Dixie Valley would be well advanced at this time. However, the very basic academic question of which tectonic model is applicable to the Dixie Valley must be addressed and resolved in the near future. The approach to resolving this question will be discussed later in this report under "U.S. Department of Energy Program".

Scalar and Tensor Magnetotelluric Survey

KEPLINGER and Issociates, inc.-

Twenty-seven scalar magnetotelluric stations (SMT), and one tensor magnetotelluric station (TMT) were occupied. SMT stations recorded one component of the telluric field and the TMT station recorded three components of the telluric field. Audio-magnetotelluric data (AMT) supplied to Senturion Sciences by Keplinger and Associates from earlier U.S. Geological Survey evaluations were integrated with the survey.

SMT and TMT, as well as AMT, are widely used in geothermal exploration with excellent results to date. This survey located three unusually shallow heat source areas (see Plate II) at a depth ranging from 19,600 to 26,000 feet (six to eight km) and three overlying conductive (low resistivity) anomalies, which indicate high fluid temperatures (see Plate II and Figure 1). The two northern areas ("Stillwater" and "Mine"

-10-

Ι.

anomalies) correlate well with areas along the multi-level aeromagnetic profiles which exhibited abnormal gradients. It should be noted that Millican Oil holdings are located, in part, over two of the three heat sources and associated conductive anomalies reported in that survey.

Heat sources are defined as having anomalously low resistivity (1 to 5 ohmeters). Conductive anomalies were derived by plotting and contouring apparent resistivity at selected recorded frequencies. Anomalies were defined as having apparent resistivities of 20 ohmeters at the 30-second period recording frequency. They change location with respect to the frequency recorded. Such variations are a function of depth and suggest changes in fracture pattern, high fluid salinity and/or high fluid temperature. The 10-second period depth representation may indicate maximum drilling depth (see Figure 2). In general, the 1-second recording frequency suggests conditions at a depth of approximately 5,000 feet, the 10-second at 7,000 feet, the 30-second at 12-14,000 feet and the 100-second at greater than 18,000 feet. (See Figures 4, 5, and 6).

The depth from surface to a resistive unit (defined by Senturion Sciences as the gabbroic complex) has been calculated (see Figure 3).

Multi-Level Aeromagnetic Survey - Phase II

KEPLINGER and *Issociates*, inc.

Follow up aeromagnetic profiles were flown to tie-in the data obtained during the original survey in an attempt to reevaluate the dip component of the "Old Stillwater Fault". In addition, existing profiles were extended eastward across Dixie Valley to the Clan Alpine Ranges (see Plate I). The hade of the "Old Stillwater Fault"

-12-

was reconfirmed as having a reverse relative movement and a dip toward the west. In the eastern profiles a new area was identified as having a significant geothermal potential (see Plate I, Profile F). A fourcycle magnetic high of exceptionally sharp relief was reported at the intersection of Sections 19 and 30, T38N, R23E; Section 24 and 25, T37N, R23E. The anomaly has a range of 558 gammas in three miles. An unusually high magnetic gradient falloff rate east of the magnetic apex (in Section 25, T37N, R23E) has been interpreted as an indication of an abnormal loss of magnetism due to an increase in temperature at relatively shallow depth. However, a ferrimagnetic dike could also be interpreted from the magnetic data, but the associated abnormal gradient still has considerable geothermal potential.

Independent data supporting the eastern anomaly is indirect. A shallow hole (500 feet?) was drilled a few years ago to the north of the anomaly and reportedly had a 5-8° C /100 feet thermal gradient. It should be noted that this is an unconfirmed report. In addition, a resistivity survey a few miles to the southeast also reported very low resistivity (high temperatures) at relatively shallow depths. This also is unconfirmed. A follow-up magnetotelluric survey is merited.

KEPLINGER and *Issociales*, inc. –

Additional faults have been identified along the eastern border of Dixie Valley. Senturion Sciences was requested to integrate all aeromagnetic and magnetotelluric data and to generate their geological interpretations via cross-sections of Dixie Valley (see Plate III and Figures 4, 5 and 6). The general structural configuration expressed suggests that a compressional model is applicable to this part of Dixie Valley. Figure 7

-15-

FIGURE 5

-18-

is a photograph of the western boundary of Dixie Valley and the Stillwater Range. Drilling locations are shown (Millican #H-1 and #H-2).

Reconnaissance Drilling and Temperature Logging Program

KEPLINGER and *Issociates*, inc.

Based on the identification and confirmation of heat sources and overlying conductive areas, an intermediate-depth thermal-gradient drilling program was begun in early summer of 1978. To date, drilling data is available on four holes (see Plate II for locations), two on Millican Oil Company land and two on land held by Southland Royalty Company. A fifth hole is presently being drilled on Southland Royalty land.

Millican No. H-1 site was selected to evaluate the thermal gradient and stratigraphy above one of the anomalies produced by the MT survey ("Mine" anomaly). In addition, the site was also selected to evaluate the dip of the range-front fault and/or associated faults. Scouting information indicated that an intermediate depth hole had been drilled in the immediate vicinity which encountered down-hole temperatures greater than 125° C.

Millican No. H-1 encountered a recorded bottomhole temperature of 97.3° C at 1,500 feet (T. D.). Although a full lithologic log has not been completed to date, the supervising geologist (R. L. Jodry, Consultant for Southland Royalty) indicated that a gabbroic-like unit with an unusually high magnetite content was encountered at approximately 1,145 feet; a metasedimentary unit was encountered at 1,470 feet to total depth of well (1,500 feet).

-19-

FIGURE 7: PHOTOGRAPH LOOKING NORTHEAST TOWARD DRILLING SITES H-1 AND H-2. (SEE PLATE IV FOR COVERAGE OF PHOTOGRAPH).

KEPLINGER and Issociates, inc.-

-20-

During the drilling, ten-foot samples were taken for later study and evaluation. Down-hole temperature data are tabulated in Tables 1 and 2 (rerun). Figure 8 is a generalized temperature-depth plot with associated relative thermal gradient per 100 feet. Note increase in Δ T at top of grabbroic unit (between 1,100 and 1,200 feet depth).

Millican No. H-2 location was selected to evaluate the thermal gradients and stratigraphy above the major "Stillwater" MT anomaly. Low temperatures and a low thermal gradient were encountered to 1,500 feet T.D. Lithology consisted of alluvium, interbedded valley fill and lucustrine deposits. A gabbroic unit was not encountered. Table 3 shows recorded down-hole temperatures. Figure 9 is the temperaturegradient-depth plot.

Southland Royalty hole locations were also selected to evaluate either anomalous areas or fault zones. Temperatures and gradients were reportedly lower than Millican No. H-1.

Geothermetric Spring Sampling and Regional Data Collection

KEPLINGER and Issociates, inc.

Two major hot springs on the boundary of the Humbolt Lopolith in Dixie Valley have been sampled over the past two years (see Figure 10). Shortterm variations in geochemical character have been monitored. Shortterm variations were discussed in a previous report by Keplinger and Associates, Inc. (September 16, 1977). The indicated variations were small.

Additional samples, however, were obtained during 1978 which indicate that substantial geochemical variations do occur over the long-term

-21-

TABLE 1: MILLICAN HOLE H-1 TEMPERATURE GRADIENT DATA.LOGGED MAY 16, 1978 (SECTION 16, T24N, R36E)

<u>°c</u> DEPTH 22.65 38.70 47.50 52.80 0 40 80 120 160 200 57.00 58.70 59.7 60.4 61.6 62.5 63.6 240 280 320 360 400 440 480 64.9 66.3 67.6 68.8 520 560 600 69.8 70.8 71.6 640 680 720 760 73.6 74.1 800 74.8 840 880 75.5 76.5 77.5 78.6 79.5 80.2 80.9 81.6 81.5 81.9 920 960 1000 1040 1080 1100 1120 1140 1160 1180 83.0 83.7 84.4 85.3 85.9 86.5 87.2 88.8 89.3 89.3 89.9 90.1 1200 1220 1240 1260 1280 1300 1320 1340 1350 1360 1370 1380 1390 1400 90.4 90.8 1410 1420 91.3 91.9 1430 1440 92.3 92.7 1450 93.1 1460 1470 1480 1490 93.7 94.3 95.0 95.7 1500 96.4

KEPLINGER and fosciates, inc.-

TABLE 2: MILLICAN HOLE H-1 TEMPERATURE GRADIENT DATA LOGGED JUNE 7, 1978 (SECTION 16, T24N, R36E)

DEPTH	°c	DEPTH	<u>°c</u>	DEPTH	<u>°c</u>
D	37.3	600	72.2	1200	88.1
10	22.3	10	72.5	10	88.4
20	27.7	20	72.8	20	88.6
30	32.1	30	73.1	30	88.9
. 40	34.7	40	73.3	40	89.2
50	37.9	50	73.5	50	89.5
60.	41.8	60	73.7	60	. 89.8
70	44.7	70	73.9	70	90.1
80	46.1	0U	74.1	00	90.4
90	4/.4	700	74.4	- 1300	91.0
100	40.7	10	75.0	10	91.4
20	51.8	20	75.2	20	91.7
30	53.4	30	75.4	30	92.0
40	54.8	40	75.7	40	92.3
50	56.1	50	76.0	50	92.6
60	57.1	60	76.2	60	92.9
70	57.9	70	76.4	70	93. 2 [·]
80	58.7	80	76.7	80	93.5
90	59.2	90	76.9	90	93.8
200	59.6	800	77.2	1400	94.2
10	59.8	10	11.5	10	94.5
20	59.9	20	77.0	20	· 94.0
30	60.1	50	78.0	50 50	95.1 05 h
40	60.7	50	78.5	50	95 7
- 60	61.0	60	78.8	60	96.0
70	61.3	70	79.0	70	96.4
80	61.6	80	79.3	80	96.7
90	61.8	90	79.5	90	97.0
300	62.1	900	79.8	1500	97.3
10	62.4	10	80.1		
20	62.7	20	80,4		
30	63.0	30	80.8		
40	63.3	40	01.1 01 k		
50	63.6	50	81.4		
50	03.9 (h)	70	81.9		
/U ·	64.2	80	82.1		
90	64.8	90	82.3		
400	65.3	1000	82.5		
10	65.8	10	82.7		
20	66.2	20	83.0		
30	66.6	30	83.3		
40	67.0	40	83.6		
50	67.3	50	83.9	•	
60	67.7	60 70	84.1		
/0	68.1	70 80	04.4 85 6		
80	68.8	90	84.9		
500	69.2	1100	85.1		
10	69.4	- 10	85.3		
20	69.8	20	85.5		
30	70.1	30	85.9		
40	70.4	40	86.3		
50	70.7	50	86.6		
60	71.0	60	86.9		
70	71.3	70	87.2		
80	71.6	80	87.5		
90	71.9	90	87.8		

KEPLINGER and Associates, inc.-

-23-

TABLE 3: MILLICAN HOLE H-2 TEMPERATURE GRADIENT DATA.LOGGED JUNE 21, 1978 (SECTION 31, T24N, R36E)

DEPTH	<u>°c</u>	DEPTH	<u>°c</u>
0	17.0	800	36.2
20	19.0	20	36.6
40	19.5	40	37.0
60	20.3	60	37.5
. 80	21.0	80	37.9
100	21.2	900	38.5
20	21.6	20	38.9
40	21.9	40	39.3
60	22.3	60	39.7
80	22.9	80	40.1
200	23.3	1000	40.6
20	24.2	20	41.0
40	24.5	40	41.4
60	25.0 ⁻	60	41.8
80	25.4	80	42.2
300	25.8	1100	42.7
20	26.2	20	43.1
40	26.7	40	43.5
60	27.1	60	43.9
80	27.5	80	44.3
400	27.9	1200	44.7
20	28.3	20	45.1
40	28.7	40	45.5
60	29.0	60	46.0
80	29.4	80	46.4
500 .	29.7	1300	46.8
20	30.2	20	47.2
40	30.6	40	47.7
60	31.0	60	48.1
80	31.4	50	48.6
600	31.9	1400	49.0
20	32.3	20	49.4
40	32.7	40	49.8
60	33.1	60	50.2
80	33.6	80	50.7
700	34.0	1500	51.2
20	34.4		
40	34.9		
60	35.3		
80	35.7		

KEPLINGER and fasociates, inc.-

-24-

-25-

KEPLINGER and Associates, inc.-

FIGURE 10: PHOTOGRAPH LOOKING EASTWARD ACROSS DIXIE VALLEY FROM SPRING NUMBER 2 SITE. NOTE NUMEROUS FUMING SPRING OUTLETS. (SEE PLATE IV FOR COVERAGE OF PHOTOGRAPH.

KEPLINGER and Associates, inc.-

(seasonal?), in this case one year (see Table 4). Although data obtained to date do not permit a firm conclusion because of limited baseline information, it is apparent that the springs are in direct communication with seasonal surface recharge from the Stillwater Range, which supports previous tentative conclusions that mixing of meteoric ground water with deep, heated reservoir ground water does occur. This will act to depress the calculated geothermetric temperature of the deep reservoir. If spring geochemistry were found to be constant, however, mixing would not be indicated and any calculated temperature would be indicative of subsurface conditions, within the limits imposed by the methods used.

To assess the general similarity of Dixie Valley spring geochemistry with other areas of known geothermal significance, a comparison of spring geochemistry of Dixie Valley, Beowawe and Brady Hot Spring is shown on Table 5. Beowawe KGRA is located approximately 55 miles to the northeast of Dixie Valley, while Brady Hot Spring (Brady - Hazen KGRA) is located approximately 40 miles to the southwest (see Figure 11). These areas are presently undergoing extensive exploration. Economic consideration of these areas will be discussed later in this report. Table 6 is a general summary of KGRA characteristics and recent activity within a 125 mile radius of Dixie Valley.

It is apparent in Table 5 that Dixie Valley spring geochemistry is not significantly different from that of other springs in areas under intensive exploration by industry. The extent to which mixing is involved in the other springs is presently unknown.

KEPLINGER and Issociates, inc.

-27-

- . }

•)

					•						
		. *		T	ABLE 4						
		:	VARIATION	IS IN DIXIE	VALLEY SPR	ING GEOCH	EMISTRY				
				(P	PM)						
Sampling Period	#Samples	<u>t* L1</u>	Na	<u>K</u>	Mg	Ca	нсоз	<u>C1</u>	SO4	<u>510</u> 2	<u>Temperature(^oC)***</u>
1977*	8 1	0.64	194.	8.08	0.35	8.04	106.4	216.	57.	142.3	67.6
	<u>St.</u> 1	<u>Dev.</u> 0.004	8	0.4	0.1	0.7	22.	67.	3.	1.8	0.6
1978*	4 <u>n</u>	0.40	237	6.1	0.01		88.0	235.0 ,	114.	117.0	57.5
	St.I	<u>ev.</u> 0.005	57	0.4	0.008	-	9.2	5.8	28.	0.8	2.9

* Samples taken: *June 29 through July 7, 1977 and *April 28 and May 4, 1978

** Samples taken at Spring #2

1

1 a

*** Ambient Temperature mean during 1977 sampling period: 26.4; 1978 period: 18.3

-28-

1

TABLE 5 COUPARISON OF HOT SPRING CEOCHEMISTRY OF DIXIE VALLEY, BEOWARE AND BRADY HOT SPRING KORAS. (See Figure))

Pops Location	#Samples	<u>L1</u>	Na	<u></u>	Mg	_Ca	(РРМ) нсо ₂	<u></u>	<u>\$C/</u>	<u></u> B	_ <u></u>	<u>\$10</u>	_ <u>p!</u>]	<u>1p.(°C)</u>	A:j. ++++ TDS
Bisto Valley Social Øl	8	m 0.68 Std.Dev. 0.01	478. 24.	14.7 0.2	0.75 0.06	65.05 0.4	58. 7.	704. 97.	M3. 6.	-	-	86. 4.	7.80 0.99	۶۶. روي ۶۶ ۵. 09	1,470
Spring #2	12	0.56 Std.Dev. 0.12	208. 37.	7.4	0.24 0.19	8.04 * 0.65	100. 20.	222. 54.	76. 32.	1.1** 0.4	4.0** 1.97	134. 13.	8.33 0.31	65.7*** .4.1	763
Beoware	9	₩ 1.38 Std.Dev. 0.21	236. 9.	24.1 5.9	0,53 0.58	0.84 0.36	123.* 55.	48. 11.	95. · 15.	1.6 0.7	- -	358. 148.	9.5* 0.3	94.3 3.9	829
Brady Hot Springs	. 3	m 1.1 Std.Dev. 0.6	570 321 .	52.7 18.8	1.3	40.0 15.9	144. 70.	644. 521.	244. 31.	4.6 7.2	-	192. 73.	7.3	4t.9 2.7	ل في الم

E - Mean +-- - 16 Camples

THTN - For comparison purposes, solor amions and cations shown have been summed.

* - 8 Samples

** - 4 Sumples

-29-

1

TABLE 6 General Summary of KGRA Characteristics and Activity (See Figure**#**)

					Estimated	, Area of	Recent Activity				
KGRA Area	Surface Temperature	Subsurface Temperature	<u>Geoc</u> SiO2	hemical NA-K-Ca	Depth to Top of Reservoir	Reservoir (Acres)	Companies	Maximum Drilling Depth	Maximum Temperature		
Beowawe	98 °	240°	226°	242°	3,300'	5,200	Magma Power (Chevron) Stand. Calif. Phillips	9,600' 700'	214°		
Brady Hot Springs	98°	214°	179°	- .	1,600'	3,000	Magma Power Earth Energy Phillips Union Stand, Calif.	4,500' 5,000' 7,000' 5,000'	214°		
Desert Peak	-	-		-	-	•	Phillips	7,000'	250*		
Rye Patch	-	- ·	-	-	-	-		3,200'	200*		
Leach	96°	170•	155°	176°		-	Phillips	1,850'	200°		
Steam Boat Springs	96°	210°	207 °	226*	1,000'	1,500	Phillips Magma Power Southern Union	725' - -	185° - -		
Dixie Valley	82°	> 200 °	175 °*	146°*	3,000'	32,000(7)	Millican, Southland Royalty, Sunoco Republic Geothermal	1,500'	97°		

*Mixing indicated.

i :

-30-

vociales, інс.

FIGURE 11: LOCATION MAP FOR DIXIE VALLEY AND NEARBY KGRA'S

-31-

It should be noted that local geology will have a dramatic effect on reservoir ground water. If carbonate units are present in the reservoir, the possibility exists that serious calcium and alkalinity levels could be present which could promote sealing within the reservoir and scaling within production wells and collection pipes. Monitoring of springs should continue to evaluate geochemical variations in Dixie Valley.

III. LAND ACQUISITIONS

Over the past 4 years, leasing of federal lands on either a competitive basis (lease bid) or noncompetitive basis has increased significantly in Nevada. Table 7 is a summary of the competitive bidding held during 1976 on lands in Dixie Valley. In 1977, Millican Oil bid on prime land in Dixie Valley (see Table 8). Non-competitive federal leases were obtained in 1975, 1976 and 1978. Regional bidding activity is shown in Table 9. Lease costs, of course, depend upon the interest shown by industry. Lands requiring competitive bid sales are within known Geothermal Resource Areas (KRGA's), areas previously defined by the U. S. Geological Survey as having significant geothermal potential.

KEPLINGER and Associates, inc.

As of late 1977, Millican Oil held or controlled by agreement 33,920 federal acres in Dixie Valley. At present Millican holds (or controls) approximately 54,400 federal acres, of which 9,600 acres is 50% of land held jointly with Southland Royalty (See Plate IV).

Southland Royalty has increased its land holdings from 14,080 (in late 1977) to 27,520 federal acres, which also includes 9,600 acres of the Millican Oil-Southland Royalty joint venture.

-32-

BIDDING HISTORY OF THE COMPETITIVE GEOTHERHAL LEASE SALES ON FEDEMAL LAND

DITIE VALLEY KORA 4/20/76 NEVADA OFFFREDI 34911.07 ACRES. 16 THACTS. 7 THACTS. 10 BIDS. TOTAL BIDS = \$ 204869.58. TOTAL HIGH BIDS = \$ 160840.40 RECEIVED RICSI 14793.59 ACRES. 14793.59 ACHES. 7 TRACTS. HIGH BIDS = \$ 160840.40 ACCEPTED BLOST TRACT 4+ 2560.00 ACPES+ 0 BIDS+ NO BID 4 TRACT 5. 2319.58 ACRES. 0 AIDS. NO AID 1 TRACT 6. 251A.36 ACRES. 0 8105. NO 810 1 TRACT 7. 1920.00 ACRES. 1 8105. LEASED 1 REPUBLIC GEOTHERMAL+ HIGH BID, LEASE N-12859 \$ 13814.98 * 7.20/ACHE, REPUBLIC GEOTHERHAL TRACT R. 1920.00 ACRES. 1 RIDS. LEASED 1 REPUBLIC GEOTHERMAL. HIGH BID. LEASE N-12860 \$ 6.49/ACRE. REPUBLIC GEOTHERMAL \$ 12466.80 TRACT 9. 2242.50 ACRES. 1 RIDS. LEASED 1 REPUBLIC GEOTHERMAL. HIGH BID. LEASE N-12851 \$ 3.33/ACRE. REPURLIC GEOTHERMAL \$ 7465.86 TRACT 10. 1905.50 ACRES. 3 RIDS. LEASED I SUNOCO ENERGY DEVELOPMENT CO., HIGH BID. LEASE N-12862 \$ 18.89/ACRE. SUNDED ENERGY DEVELOPMENT COMPANY \$ 35994.90 \$ 13731.04 \$ 7.21/ACRE, REPUBLIC GEOTHERMAL \$ 13662.44 \$ 7.17/ACRE: CHEVRON OIL COMPANY TRACT 11. 2308.59 ACRES. 2 RIDS. LEASED 1 SUNOCO ENERGY DEVELOPMENT CO., HIGH BID. LEASE N-12863 \$ 66695.17 5 28.89/ACRE. SUNDCO ENERGY DEVELOPMENT COMPANY \$ 16635.70 \$ 7.21/ACRE. REPUBLIC GEOTHERMAL TRACT 12. 2542.92 ACRES. 0 BINS. NO BID 1 TRACT 13+ 2560.00 ACRES+ 1 BIDS+ LEASED 1 SUNOCO ENERGY DEVELOPMENT CO.. HIGH BID. LEASE N-12864 \$ 7.84/ACRE, SUNACO ENERGY DEVELOPMENT COMPANY \$ 20198.40 TRACT 14+ 2560.00 ACRES+ 0 5105+ NO BID 4 TRACT 15+ 1263-23 ACRES+ 0 BIDS. NO BID 1 TRACT 16+ 1891.56 ACRES+ 0-BIDS. NO BID 1 TRACT 17. 2492.64 ACHES. O RIDS. NO BID I TRACT 18+ 1970-00 ACHES+ 0 BIDS+ NU BID # TRACT 19+ 1937-00 ACRES+ 1 PIDS+ LEASED + AL-AQUITAINE EXPLORATION LIMITED, HIGH BID, LEASE N-12865 S 2.17/ACPE+ AL-AQUITAINE EXPLORATION LIMITED 4203.29

-33-

TABLE 8

DIDS AND RESULTS OF GEOTHERMAL LEASE SALE	BIDS AN	ID RESULTS	OF	GEOTHERMAL	LEASE	SALE
---	---------	------------	----	------------	-------	------

JULY 19, 1977 STATE OF NEVADA

BLM Geothermal Lease Sale - N-16930 - July 19, 1977:

Leasing Unit No. 1:	Total	Per Acre
Earth Power Corp.	\$8,811.40	\$3.77
Leasing Unit No. 2:		
Earth Power Corp.	\$7,385.60	\$5.77
Lessing Unit Mo 2.		
Ceasing on the law	¢5, 53,0, 40	40.55
Earth Power Corp.	\$5,318.4U	\$2.77
Leasing Unit No. 4:		
Republic Geothermal, Inc.	\$13,519.36	\$5.281
Leasing Unit No. 5:	· · · · ·	
Republic Geothermal, Inc.	\$16,961.52	\$7.312
Leasing Unit No. 6: No	Bids	
Leasing Unit No. 7:		
Sunoco Energy Development C	o. \$48,358.40	\$18.89
Millican Oil Company Amax Exploration, Inc.	\$82,099.20 \$28,800.00	\$32.07
Republic Geothermal, Inc.	\$104,128.25	\$40.675
Leasing Unit No. 8:		
Millican Dil Company	\$55,122.25	\$22.07
Sunoco Energy Development C Amax Exploration, Inc	0. \$35,321.16 \$28,608,75	\$13.89
Republic Geothermal, Inc.	\$49,214.86	\$19.354
Southland Royalty Company	\$51,544.99	\$20.27
Leasing Unit No. 9:		
Millican Oil Company	\$18,099.20	\$7.07
Leasing Unit No. 10:		
Nillican Oil Company	\$3,878.12	\$3.07
Leasing Unit No. 11:		
Millican Oil Company	\$5,807.09	\$3.07
Leasing Unit No. 12: No	Bids	
Leasing Unit No. 13: No	Bids	

KEPLINGER and Associates, inc.-

TABLE 9: COMPETITIVE BIDDING, DIXIE VALLEY AND OTHER AREAS, 1976

KGRA	No.	Lease Sale	age	of Jids	Range of Bidding	High Bidder	Lessa	\$/Acro
San Emidio	15	1-20-76 6-15-76	1,699	0		Reoffared as tract 26	· · · · · · · · · · · · · · · · · · ·	
Desert	16	1-02-76	1,612	1	16,720.00	Chevron Oil Company	Chevron Oil Co.	10.37
	17	1-20-76	1,920	n		Budfford or teach 17		•••••
Seb-		1-20-75	5,231	1	Total of \$ 16,720.00			**
Vilson	19	3-03-75	1,294	1	4,775.00	Chevron Oil Company	Chevron Cil Co.	3.69
Darrough	<u>ings</u> h 1	4-20-76	1,983	0				· · · · · · · · · · · · · · · · · · ·
101	2	4-20-76	2,250	0			•	
Sarings	3	4-20-76	1,550	• •				
Sub- total			5,803	0	Total of Accepted Bids 50			
Cixie	4	4-20-76	2,560	0		· · · · · · · · · · · · · · · · · · ·		
Valley	5	4-20-76	2,320	0	,			
	9	4-20-76	2,243	1	7,466.86	Republic Geothermal	Republic Geothermal	3.33
	10	4-20-76	1,906	3	13,662.44 - \$ 35,994.90	Sunoco Energy Development	Sunoco Energy Dev.	18.33
	11	4-20-76	2,309	2	16,635.70 - 66,695.17	Sunoco Energy Development	Sunoco Energy Day.	25.88
	12	4-20-76	2,543	· 0				
	13	4-20-76	2,560	t	20,198.40	Sunoco Energy Development	Sunoca Energy Dev.	7.89
	14	4-20-76	2,560	0				
	15	4-20-75	1,253	0			· ·	
	16	4-20-76	1,892	0				
· .	17	4-20-76	2,493	0				
	78	4-20-76	1,970	0				
	19	4-20-76	1,937	0				
Sub-	•				Total of			
total			34,911	10	Accepter 520 5 160,840.40			
Peak	. 20	4-20-/8	2,54/	1	¥ 13,4/1.35	nagma rower Company	naçma rowar co	3.29
	21	4-20-76	2.378	0				
- Sub-			4,924	1	Accepted Bids \$ 13,471.35	1		
Honte	1	8-18-76	1,946	0				
Neva	2	8-18-76	1.959	ò				
	3	8-18-76	1,360	0			•	
	4	8-18-75	2.282	0				
Sub- total			7,547	0	Total of Accepted Side \$0			
Colado	1	8-18-76	640	U	· · · · · · · · · · · · · · · · · · ·			
	<u>6</u>	10-19-76	640	1	\$ 5,107.20	Getty Oil Company	Getty Oll Co.	7.98
sub- tocal			1,280	1	Total of Accepted Bids 5,107.20	·····		
Ruby	6	8-18-76	2,419	4	16,522.00 - \$ 244,983.22	Union Oil Company	Union Oll Company	101.00
Valley	1	8-18-75	640	0				
Sub- total			3.059	4	Total of Accepted Files 5 244,998.22			
<u>Rva</u> Patch	8	8-18-76	801	2	15,002.73 - 5 32,360.74	Union Oll Company	Union Oil Co.	46.40
Leach	1	10-19-76	2,520	1	\$ 4,435.20	Amin Oil USA, Inc.	Amin Oil USA	1.76
Sociere	2	10-19-76	2,482	1	4,369.05	Amin OII USA, Inc.	Amin OIT USA	1.76
<u></u>	3	10-19-76	2,603	1	4,591.84	Amin Oll USA, Inc.	Amin Oli USA	1.76

TABLE 9A: REGIONAL COMPETITIVE BIDDING, NEVADA, 1974-76

KGRA	No.	Date of Lease Sale	age	no. of Bids	Range of Bldding	High Bidder	Lessee	\$/Acr
Bradv-Haza	<u>0</u>							
	19	6-15-76	2,536	0				
	20	6-15-76	1,505	1	7,917.6	Union Oll Co.	Union Oil Co.	5.26
Sub- total			42.497	6	\$ 67.529.1		· .	
Becwawe	1	12-18-74	1,943	2	\$ 2,002.00 - \$ 15,074.8	Chevron 011 Company	Chevron Oll Co.	7.75
	2	12-18-74	1,920	• 0			•	
	3	12-19-74	1,938	0				
•	4	12-18-74	2,479	3	13,112.00 - 505,088.77	Chevron 011 Company	Chevron Oil Co.	203.00
	5	12-18-74	2,521	3	25,256.61 - 45,371.16	Getty Oil Company	Getty Oll Co.	18.00
	6	12-18-74	2,463	• 3	37,017.45 - 75,490.93	Chevron 011 Company	Chevron 011 Company	30.58
	7	12-18-74	844	٥				
	8	12-18-74	2,419	1	30,231.6	Getty 011. Company	Getty Oil Company	12.50
Sub- total			14,113	12	Total of Accepted Bids \$ 671.257.33			
Becation	21	6-15-76	1,920	0				
	22	6-15-76	1,938	1	\$ 25,015.46	So. Union Production Co.	So. Union Prod. Co.	12.90
	23	6-15-76	844	0				
Sub-					Total of			
total			4,702	<u> </u>	Accepted dida \$ 25,015.46			
Pot	1	12-18-74	540	0				
Paint	2	12-18-74	2,141	2	\$ 12,846.36 - \$ 115,2/4.67	Chevron Oil Company	Chevron Dil Co.	53.84
e	2	12-18-74	2,500		23.040.00 - 125.819.20	Chevron Dil Combany	Chevron Uil Co.	49.07
total			5,341	4	Accepted Bids \$ 240,893.87	·		
Hot	3	3-01-75	640			TRANSFER TO	Geo. Resources Intl	• •
Sorlags Paint	ż	7-03-75	640			Reoffered as tract 25		
	3	2-01-76	640			TRANSFER TO	Diable Exploration	,
	3	3-01-76	640			TRANSFER TO	Diablo Exploration	
	24	6-15-76	640	0			•.	
	25	6-15-76	640	0	M	·		
Sub- total			1,290	0	Accepted Bida SO			
Fly Rench	1	4-08-75	1,801	0				
	2	1-20-76 4-08-75	2,037	0				
	3	1-20-76	1,467	2	3,007.47 - \$ 7,702.07	Natomas Company	Natomas Company	5.25
	ь	1-01-75	2 161		16 300 67	iranster	incrmal rower to.	
	7	4-08-75	2,101	- 1 - 1	8 655 86	Calvert Drilling Company	Sun ull company	1.28
	6	4-08-75	1.890	, 0	••••	Reoffered as tract 3	Carvert Diffing Co	
	7	4-08-75	2,445	1	8.348.85	Calvert Drilling Company	Calvert Brilling Co	
Sub-		4-08-75	14,479	5	Total of \$ 41,297.76	· · · · · · · · · · · · · · · · · · ·		· . · . <u></u>
total		9-23-75	5,728	Ó	Accepted Bids		· ·	
S+111-21-		1-20-70	5,725					
Soca Loke	1	6-26-75 3-03-76	2,560	0		Reoffered as tract 2		
	2	6-26-75 3-03-76	2,609	0		Reoffered as tract 3	• .	
	3	6-26-75 3-03-76	1,968	0		Reoffered as tract 4		
	4	6-26-75	2,528	1	\$ 12,058.56	Phillips Petroleum Co.	Phillips Pet. Co.	4.77

KEPLINGER and Associates, inc.-

-36-

Other holdings within Dixie Valley are shown on Plate IV.

IV. U.S. DEPARTMENT OF ENERGY PROGRAMS

A request for proposal was received from the U.S. Department of Energy regarding a DOE project involving a geothermal reservoir assessment case study of the northern Basin and Range Province. A proposal was submitted as a cooperative venture between Millican Oil Company, Southland Royalty Company and the Minerals Research Institute of the Mackay School of Mines, University of Nevada at Reno. Integration of industrial and academic expertise is provided in the proposed venture.

The proposal is presented in a multi-phase format, with each phase encompassing specific tasks. This format inherently includes major decision-points, both within each phase and between phases, to allow for redesign or modification of each of the following tasks or phases based upon evaluation of previous results. In addition, it provides DOE with the option of selecting the proposal as an entire program leading to reservoir assessment, or as a multi-phase program in which each phase can be sequentially selected and negotiated.

KEPLINGER and Issociates, inc. -

The contractural posture which is proposed will have the Southland-Millican cooperative venture as Prime Contractor, with the University of Nevada group as a sub-contractor. All phases of task accomplishment and reporting will be achieved with the cooperative assistance of University personnel coordinated through the Prime Contractor's representatives.

-37-

This proposal contains provisions for the sale of: 1) existing data derived from surface and subsurface investigations, and 2) development of new data from subsurface investigations and from the drilling of a minimum of three deep exploratory wells.

The industrial-academic effort will involve subprojects on 1) the hydrogeologic framework to assess recharge and potential reservoir characteristics, 2) the structural and tectonic setting in the Stillwater Range-Dixie Valley-Clan Alpine area to evaluate all aeromagnetic and other data for developing a structural model of the basin, 3) the alteration effects within basin rocks to petrologically evaluate rock behavior in the geothermal environment (relative to sealing and faulting) and 4) the seismic framework via microseismicity to support development of a technically appropriate structural model of the Dixie Valley area.

KEPLINGER and Issociates, inc.--

The proposal is designed to have the first well under way by early 1979, with the first drilling site to be selected from eleven permitted sites already approved by the U.S. Bureau of Land Management. The final selection of the first well location will be made following review of the existing data by the industrial-academic personnel involved in the venture. The second well site is to be based on data developed from new surface investigations and the results of the first well. The third well site is to be selected based upon a final model of the area which will be developed by integrating all data from surface and subsurface investigations completed by the

-38-

time the rig is ready to move off the second well. It is expected that the entire program, including well testing and reservoir analysis, will be completed by the end of FY 1980.

The proposal was presented on a fixed-cost basis with inflation adjustment for four phases of work. The proposal is flexible with regard to method of cost-sharing, but has incorporated fixed price (with inflation adjustment) in the proposal because of its relative ease of administration.

A highly significant aspect of this proposal is the large geographical area involved in the Millican-Southland acreage. A substantial amount of existing data is available for immediate dissemination which indicates the existence of a significant potential geothermal reservoir. Further, the exploratory drilling program will result in a near-term assessment of not only the Dixie Valley area, but of the state-of-the art techniques utilized in evaluating geothermal prospects.

The Millican Oil-Southland Royalty cooperative venture was recently advised by DOE that the proposal has been approved on the basis of technical feasibility. Final contract negotiations are to begin in the near future.

V. GEOTHERMAL DEVELOPMENT AND ECONOMICS

Geothermal exploration has increased in Nevada over the past few years. U.S. Department of Energy has recently estimated that Nevada will rank second only to California in growth of installed geothermal electric

KEPLINGER and Associates, inc.

capacity by 1983 (see Figure 12). Two 50 MWe plants may be in operation by 1983 (see Table 10). Brady Hot Springs and Beowawe are presently under intensive evaluation (see Figure 11). DOE's development scenario for Brady Hot Springs, Beowawe, Steamboat Springs (Nevada) and Leach KGRA's are included in the Appendix. It is apparent that strong similarities exist between Brady Hot Springs and Beowawe and Dixie Valley, the former areas being at an advanced exploration stage relative to Dixie Valley at this time. However, input derived from the proposed DOE research and development (including drilling) will close the gap in defining reservoir potential (temperature and flow rate) within 2 years, while the other areas continue to lead the way in field development and production techniques.

The power on-line schedule for the Nevada sites shown in Table 11 suggests the necessary well construction schedule that allows for a sufficient number of exploration, production, reinjection and replacement wells to meet the specified power production goal. Although not as advanced in exploration as Brady Hot Springs or Beowawe, Dixie Valley has similar characteristics and potential. Conservative estimates of a possible schedule can now be made to define the reservoir requirements before deep drilling is begun. Temperature and flow-rate minimums can now be established (based on nearby areas) that will guide future economic considerations of Dixie Valley. This is a fortunate situation in many respects because the reliability of future economic considerations will be higher in Dixie Valley (if similar temperatures and flow-rates can be produced) than early economic studies conducted on the Brady Hot Springs and Beowawe areas.

KEPLINGER and Issociates, inc.--

-40-

KEPLINGER and Associates, inc.-

FIGURE 12: POSTULATED GROWTH OF INSTALLED GEOTHERMAL ELECTRIC CAPACITY ¹No credit for methane included.

-41-

KEPLINGER and Issociates, inc.-

TABLE 10

GEOTHERMAL DEVELOPMENT SCENARIOS FORMULATED BY THE DIVISION OF GEOTHERMAL ENERGY¹

PROSPECT		GENERATING CAPACITY INSTALLED EACH YEAR (MWe)									
	Pre-									Post	
•	1983	1983	1984	1985	1986	1987	1988	1989,	1990	1990	TOTAL
CALIFORNIA & HAWAII	•					•					
Brawley, CA	-	50		50	-	100	100	100	100	500	1,000
Coso Hot Springs, CA		-	· —	50	50	50	150	150	150		600
East Mesa, CA	-	j —		50	-	-	50	-	-	-	100
Geysers, CA (liquid-	·		-	100	100	100	100	100	100	400	1,000
dominated)											
Geysers, CA (steam)	1678	160	220	110	-	-	.—	-	-	-	2,168
Glass Mt., CA			-		_	-	-		50	-	50
Heber, CA	-	50	-	50	-	100	· 100	-		700	1,000
Lassen, CA		-	-		_	50	-	-	50	-	100
Mono-Long Valley, CA	-	-	-	50	-	100	-	-	100	-	250
Puna, Ht	·		-				-	-	50	850	900
Salton Sea, CA	-	50	-	100	75	75	100	100	100	1400	2,000
Surprise Valley, CA	-	-	-	-	50		50	100	100	1700	2,000
NORTHWEST				<i></i>							
Alvord, OR	-	-	-	· _	· _	50	_		50	200	300
Baker Hot Springs, WA		-	-		-	_			50 ²		
Bruneau-Grandview, ID		-	-	·	-	50		-	100	3000	3,150
Mount Hood, OR	·	 .	_	-	-	-	-	_	50 ²		· _
Raft River, 1D	-	-	· -	-	-	-	50	-	50	-	100
Vale Hot Springs, OR		-	-	-	-		50		50	700	800
Weiser-Crane Creek, ID	-	-	-		-		50	-	100_	850	1,000
West Yellowstone, MT		-	<u> </u>		-	. 	_		501		
SOUTHWEST											
Brady Hot Springs, NV	-	50			50		100		100	700	1.000
Beowawe, NV	-	50	_		50		50		100	750	1,000
Chandler, AZ					50			_	100	80	230
Cove-Fort Sulphurdale, UT	-	· _	-	50	-	50	-	50	50	1300	1,500
Leach, NV	<u></u>	·	-	-	-	50			50	1400	1,500
Roosevelt Hot Springs, UT	-	50	-		50	-	50		100	750	1,000
Safford, AZ		-	-		-	50	-	-	-	50	100
Steamboat Springs, NV		·	-	50			50		100		200
Thermo, UT		-				. –	- 50		_	450	500
Valles Caldera, NM	-	50		-	100	-	100	-	100	1150	1,500
GULF COAST ¹											
Acadia Parish, LA	-	-	_	-	-	50		-	50	250	350
Brazoria, TX	<i>→</i> .	-	_	-	25	_	100	100	200	1800	2,225
Calcasieu Parísh, LA	· _ `	_	-			50	·	_	50	250	350
Cameron Parish, LA	-	-		- .		50	-	-	50	400	500
Corpus Christi, TX	-	-	-	-		50.	-	-	50	1550	1,650
Kenedy County, TX	· _	-	-	-		50		_	50	200	300
Matagorda County, TX		-	-	-		50	-	-	50	400	500
Cumulative Generating Capacity	1678	2188	2408	3068	3668	4793	6093	6793	9143	30923	30,923
Oil Equivalent (10 ³ bbl/day)	19	25	27	35	41	54	69	• 77	103	342	•
Associated Methane				•				• •			
(10° SCF/day)	-	-	-	-	21	269	351	434	848	4858	
			,								

¹Pilot plants are not included in this table.

-42-

²MITRE-assumed plant capacities for analysis. These capacities are not included in the cumulative generating capacity total.

KEPLINGER and Associates, inc.-

1

ţ

TABLE 11 ANTICIPATED WELL AND PLANT CONSTRUCTION SHCEDULE

FOR

50 MWe POWER PLANT OPERATION

	KGRA AREA	<u>1978</u>	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	
1.	BEOWAWE														
	On-Line Power (MWe)			Plant i	#1		s-leo	Plar	nt #2	2150	Plant #3	. 150	<i>#</i> 4 & #5	Nhaa	? _
	Exploration Wells Production Wells Re-Injection Wells Replacement Wells	5			11 5	5	1	5 11 5 1	1		5	5 22 10 3	5 22 10 3		
11.	BRADY				•										
	On-Line Power (MWe)			Plant	#1			Plan	nt #2		1ant_#3 &	14-1100	# <u>5 &</u> #6		1 -
	Exploration Wells Production Wells Re-Injection Wells Replacement Wells	5			5 15 7		2	5 15 7 2	2	30 14 4	5	5 30 14 7	5 30 14 7	-100 5 30 14 10	
111.	STEAMBOAT										•				
	On-Line Power (MWe)			·	Plant	<i>¶</i> 1			<u></u>	P1	ant #2		#3 & #4		?
	Exploration Wells Production Wells Re-Injection Wells Replacement Wells			10			16 7	5	2	5 16 7 2	2	32 14 4	4	7	
IV.	LEACH														
	On-Line Power (MWe)				•	Plant	<i>Ø</i> 1					Plar	nt #2		?
	Exploration Wells Production Wells Re-Injection Wells Replacement Wells		<u>.</u>			10	. <u></u>		24 10	5	2	5 24 10 2	5 48 20 2	5 48 20 4	
v.	DIXIE VALLEY*									-		· .	· .		
	On-Liner Power (MWe)	<u> </u>		P1	ant #1				Pla	nt #2		Plant	13 8 14		?
	Exploration Wells Production Wells Re-Injection Wells Replacement Wells		2	3	3	3 13 6	3	2	3 13 6 2	4 2	2	5 26 12 6	5 26 12 6	5 26 12 6	

*Preliminary estimate only. Based on limited data when compared to other KGRA's.

4ω-

Exploration Wells

The number of exploration wells drilled for developing the first 50 MWe plant in Dixie Valley depends heavily on how effectively and how soon the reservoir's structural and other geologic conditions can be defined. Based on U.S. Department of Energy evaluations, approximately 5 to 10 reconnaissance wells may be required before a fieldsite can be established for development drilling of production wells. Table 11 also includes our estimates of the necessary exploration activity in Dixie Valley over the next 12 years.

Production and Reinjection Wells

The determination of the number of production and reinjection wells necessary to support one 50 MWe plant is based upon the temperature of the produced reservoir and the produced flow rate. The following data are used herein:

Area	Temperature (°C)	MWe/Well	No. of Wells
l. Brady Hot Sp	orings 214	3.33	15
2. Beowawe	240	4.55	11
3. Dixie Valley	225	3.85	13

Replacement Wells

KEPLINGER and Issociales, inc.

Geothermal production wells begin to decrease in power production almost as soon as they are brought online. Replacement wells must be drilled and completed to provide constant heat input for the plant. Based on experience in The Geysers and other areas, approximately 10% of the production wells in service will be replaced each year.

Drilling Costs

Although drilling costs depend upon each site's unique geological characteristics and associated inherent potential subsurface problems, costs have been estimated by the U.S. Department of Energy for nearby areas (see Tables 12 and 13); we have revised our estimation of well costs for Dixie Valley (see Table 13).

The effects of cost reductions of geothermal development derived from 1) research, development and drilling advances and, 2) Federal tax incentives within the next few years will play a major role in geothermal development in the United States. The "busbar" costs of electricity (producer plus utility costs to consumer) from competing resources (coal and nuclear) will also play a major role in regional geothermal development. Table 14 summarizes the expected costs of such competition, against which geothermal development must be measured.

Figures 13 through 17 illustrate the relative effects of research, development and drilling advances (R, D & D) and of federal tax incentives (22% depletion and expensing intangible drilling costs) on cost of electricity from liquid-dominated geothermal prospects. Investment tax credit incentive is also under consideration for revision in geothermal projects. It should be noted that the indicated cost of coal and nuclear power are conservative while the cost of geothermal power is estimated to be high because of uncertainties in development and production technology. However, existing technology (without any cost

.

Issociates, inc.

KEPLINGER and

-45-

TABLE 12

FOOTAGE COSTS FOR GEOTHERMAL DRILLING AS A FUNCTION OF ROCK TYPE AND WELL DEPTH

ROCK	COST/FOOT (1977 DOLLARS)					
HARDNESS	<5000 FEET	>5000 FEET				
Soft	80	160				
Medium	100 ·	120				
Medium-Hard	125	250				
Hard	200	400				

KEPLINGER and Associates, inc.-

-46-

KEPLINGER and *fasociates*, inc.-

 $\vec{x} = \lambda$

- F

TABLE 13		
ϹዝϪϷΔϹͲϷϷϫϛͲϫϲϛ	AND	LIT

	.	Reservoir Temperature	Depth to	Average	Depth to Reservoir Plus	Probable Cost Per Exploration, Pro- duction and Re- placement Well	Probable Cost Per Reinjection
loces	Prospect		Keservoir Km	Classification [20]	<u>0.5 km</u>	(5x10 ⁻)	Well (\$x10 ⁻)
4	Gevsers (steam), CA	~240	2.0	Medium	2 5	1003	1003
3.4	Brazoria, TX	146	4.0	Soft	4.5	1962	1962
2	Salton Sea, CA	340	1.0	Soft	1.5	400	400
	Valles Caldera, NM	240	1.0	Hard	1.5	984	984
	Brady, NV	214	0.5	Hard	1.0	656	656
2	Brawley, CA	260	1.5	Soft	2.0	400	400
	Roosevelt, UT	230	0.8	Medium-Hard	1.3	533	533
	Beowawe, NV	240	1.0	Hard	1.5	984	984
	Coso, CA	220	1.0	Medium-Hard	1.5	615	615
•	Mono-Long Valley, CA	220	1.0	Medium-Hard	1.5	615	615
1	Cove Fort/Sulphurdale,	UT 200	1.5	Medium-Hard	2.0	. 1523	1015
1	Heber, CA	190	1.0	Soft	1.5	600	400
4	Geysers (hydro), CA	no data	2.0	Medium	2.5	1141	1141
1	East Mesa, CA	180	1.0	Soft	1.5	600	400
	Steamboat, NV	210 .	0.3	Medium-Hard	0.8	328	328
1	Surprise Valley, CA	175	1.0	Medium-Hard	1.5	923	615
1,4	Chandler, AZ	178	2.0	Medium	2.5	1711	1140
1.4	Leach, NV	170	2.0	Medium-Hard	2.5	2138	1426
3,4	Calcasieu Parrish, LA	156	4.0	Soft	4.5 _	1962	1962
1,4	Bruneau-Grandview, ID	200	2.0	Medium-Hard	2.5	2138	1426
	Lassen, CA	240	1.0	Medium-Hard	1.5	615	615
3.4	Kenedy County, TX	168	4.0	Soft	4.5	2590 ·	2590
1	Alvord, OR	200	1.5	Hard	2.0	2437	1625
3.4	Matagorda, TX	146	4.0 .	Soft	4.5	1962	1962
3,4	Cameron, LA	140	4.0	Soft	4.5	2662	2662
3.4	Acadia, LA	164	4.0	Soft	4.5	1962	1962
1.4	Corpus Christi, IX	169	4.0	Soft	4.5	2000	2000
1,4	Sattord, AZ	200	2.0	Medium-Hard	2.5	2138	1426
1	Weiser/Crane Creek, ID	160	1.0	Medium-Hard	1.5	923	615
1	Vale, OR	160	1.0	Soft	1.5	591	394
1	Thermo, OI	200	1.5	Medium	2.0	1219	812
1	Ratt River, ID	140	1.5	Soft	2.0	910	607
4	Glass Mountain, CA	210	2.0	Medium-Hard	2.5	1426	1426
4	Puna, HI	2/5	2.0	Hard	2.5	2281	2281
	Mt. Hood, OR	125	1.0	Medium	1.5	738	492
1,4	Baker Hot Springs, WA	102	2.0	med lum-Hard	2.5	2138	1426
4	w. rerrowscone, wy	no data	2.0	2011	2.5	912	912
2,4	Dixie Valley	225	1.3	Hard	1.8	1180	780

GENERAL CHARACTERISTICS AND WELL COSTS FOR SELECTED GEOTHERMAL PROSPECTS .

NOTES -

47-

l - binary plant 2 - binary or flash plant 3 - geopressured 4 - depth to reservoir estimated

TABLE 14

LEVELIZED BUSBAR COSTS OF ELECTRICITY FROM COAL AND NUCLEAR SOURCES (1977 mills/kWhr)

PLANT-ON-LINE DATE	CENSUS REGION/PLANT TYPE						
AND	PA	CIFIC	MOUNTAIN				
SCENARIO	COAL	NUCLEAR	COAL	NUCLEAR			
985 National Energy Plan ¹	27.0		<u>20.0</u> 2				
985 Recent Trends Scenario	21.5		16.7				
985 High Escalation ¹		24.5		23.2			
985 Low Escalation	. 	22.2		20.9			
990 National Energy Plan ¹	28.1		20.6				
990 Recent Trends Scenario	22.8	 `	17.5				
990 High Escalation ¹		27.0		25.7			
990 Low Escalation		23.4		22.3			

Denotes alternative chosen as a basis for comparing geothermal costs.

² Underlined values represent the sources which are expected to be the main competitors to geothermal energy in the respective regions.

KEPLINGER and Associates, inc.--

-48-

KEPLINGER and fosociates, inc. -

FIGURE 13: ASSUMED POTENTIAL CAPACITY vs. COST FOR ELECTRICITY FROM HYDROTHERMAL LIQUID-DOMINATED PROSPECTS WITHOUT RD&D ADVANCES KEPLINGER and Issociales, inc. -

FIGURE 14: RANGES OF PROJECTED COSTS OF ELECTRICITY FROM HYDROTHERMAL LIQUID DOMINATED PROSPECTS (WITHOUT RD&D ADVANCES)

-50-

-52-

FIGURE 16: ASSUMED POTENTIAL CAPACITY VS. COST FOR ELECTRICITY FROM HYDROTHERMAL LIQUID-DOMINATED PROSPECTS WITH RD&D ADVANCES

KEPLINGER and Issociates, inc.-

FIGURE 17: ASSUMED POTENTIAL CAPACITY vs. COST FOR ELECTRICITY FROM HYDROTHERMAL LIQUID-DOMINATED PROSPECTS-FIRST PLANTS ON LINE WITH RD&D ADVANCES, 22% DEPLETION ALLOWANCE AND EXPENSING INTANGIBLE DRILLING COSTS

reductions in the future) is capable of making geothermal generally competitive during the 1980's if coal and nuclear power experience any form of unforeseen price escalation. If cost reductions do occur, geothermal energy will become a significant source of energy for the entire western United States.

VI. CONCLUSIONS

It is very apparent that Dixie Valley has significant geothermal potential. Furthermore, although early indications were not as dramatic as nearby areas (e.g. high spring and geothermetric temperatures), Dixie Valley has a potential for future development very similar to that of Brady Hot Springs and Beowawe KGRA's.

Timing is important in any resource development project. It is a prime favorable factor in the development of Dixie Valley. The area's exploration and development can draw heavily from the experiences of nearby areas, which will no doubt result in reduced costs relative to those projects preceding it. Early signs of Dixie Valley's economic viability (or the lack of it) will be apparent. In addition, the Federal Government may revise tax incentives to promote growth of geothermal development. The timing of this revision, if one is made, will certainly affect Dixie Valley and its future viability.

Based on the geologic evaluations of Dixie Valley to date, the following conclusions can be drawn:

-54-

- Two shallow heat sources have been identified along the western border of Dixie Valley within land held by Millican Oil Company. A third heat source, also within Millican holdings, is possible on the eastern boundary of the valley.
- 2) Thermal gradient drilling near one of the heat sources suggests subsurface temperatures <u>greater</u> than 200°C at depths of 3,000 to 4,000 feet in the fractured metasedimentary units below the gabbroic complex. A liquiddominated reservoir is expected. However, a reservoir at depths greater than 8,000 feet may be steam-dominated because of the very high temperatures indicated, but exploration is not sufficiently advanced at this time to suggest such a condition.
- 3) Faulting is widespread and complex within the basin which allows for numerous avenues of upwelling heated ground water to reach intervals within economic drilling depths, i.e. less than 9,000 feet, depending upon the temperature and flow rate encountered.
- 4) Ground-water geochemistry may be similar to Brady Hot Springs and Beowawe areas, and thus may present sealing and scaling problems during the development of the reservoir.

KEPLINGER and Associates, inc.-

-55-

- 5) Although remote from population centers, the Dixie Valley area is located approximately 30 miles north of a 230 KV power line.
- 6) Land position of Millican Oil Company is excellent. Assuming a minimum of 7 sections (4,500 acres) of production, approximately six 50 MWe plants could be supported via substained total production of 300 MWe over a 30-year period. Balanced land position allows a widespread coverage of the various structural plays in the area.
- 7) Per well initial production of 475,000 pounds/hr. (3.85 MWe/well) is necessary for economic viability and appears possible at this time, although drilling must be undertaker to substantiate such potential.

KEPLINGER and *Issociates*, inc.-

- 8) A production temperature of 225°C appears possible at this time, if temperature gradient of previously drilled well (H-1) represents a somewhat less than linear relationship with depth.
- 9) Flash production may be appropriate for any production temperatures in excess of 200° C.
- 10) Future exploration and development in Dixie Valley will be considerably enhanced by the industrial-academic project presently being seriously considered by U. S. Department of Energy.

-56-

11) It should be noted that many of the quantitative conclusions made herein are clearly based on limited and speculative information at a stage of the project where such probabilities must be considered in view of assessing risk. We reserve the right to alter our conclusions as additional data become available.

VII. REFERENCES

Armstead, H. C., 1973, "Geothermal Engergy, Review of Research and Development"; Unesco Press, 186 p.

Anon., 1978, "Proposal on Geothermal Reservoir Assessment Case Study Northern Basin and Range Province", Dept. of Energy, RFP ET-78-R-U8-0003, Millican Oil Company, Southland Royalty Company and University of Nevada at Reno, 160 p.

KEPLINGER and *Issociates*, inc.

Bhattacharyya, B.K. and L.K. Leu, 1975, "Analysis of Magnetic Anomalies Over Yellowstone National Park: Mapping of Curie Point Isothermal Surface for Geothermal Reconnassance", <u>Journ. Geophy. Res.</u>, Vol. 80, No. 32, pp. 4461-4465.

Goldstein, N. E., 1977, "Northern Nevada Geothermal Exploration Strategy Analysis", L.L.L. Labs Report 7012, U. S. Department of Energy, TID -4500-R66, 55 p.

Gupta, J. N. and J. G. Leigh, 1978, "Gelcom, A Geothermal Levelized Busbar Cost Model, Description and User's Guide", Mitre Corporation,

-57-

Report M78-17, January, 127 p.

KEPLINGER and Issociates, inc.

Keplinger and Associates, Inc., 1977, "A Preliminary Evaluation of The Hughes Geothermal Properties in Churchill County, Nevada", Report for Millican Oil Company, April 21, 65 p.

Keplinger and Associates, Inc., 1977, "Phase II Preliminary Evaluation of Dixle Valley, Nevada: Geothermal Potential and Associated Economics", Report for Millican Oil Company, September 16, 1977, 46 p.

Leigh, J., <u>et.al</u>., 1978, "Site-Specific Analysis of Geothermal Development", Volume 1, Summary Report, U. S. Department of Energy, Div. Geothermal Energy, Mitre Corporation, Washington, D. C., DGE/4014-2, August, 58 p.

Mitre Corporation, 1978, "Prospects for Improvement in Geothermal Well Technology and Their Expected Benefits", for U. S. Department of Energy, HCP/T4014-04, June, 128 p.

Pearl, R. H., 1976, "Hydrological Problems Associated with Developing Geothermal Energy Systems", <u>Ground Water</u>, Vol. 14, No. 3, May - June, pp. 128-137.

Sacarto, D. M., 1976, "State Policies for Geothermal Development", National Conference of State Legislators, Denver, 94 p.

Senturion Sciences, Inc., 1977, "High-Precision Multilevel Aeromagnetic Survey Over Dixie Valley", Report for Southland Royalty Company and Millican Oil Company, October, 15 p.

-58-

Senturion Science, Inc., 1978 "Part 2 - High Precision Multilevel Aeromagnetic Survey Over Dixie Valley", Report for Southland Royalty and Millican Oil Company, June, 13 p.

Senturion Sciences, Inc., 1978, "South Dixie Valley, Nevada: Scalar Magnetotelluric Survey", Report for Southland Royalty and Millican Oil, February, 45 p.

Trehan, R., <u>et al</u>, 1977, "Site-Specific Analysis of Geothermal Development - Scenarios and Requirements", Volume II, Mitre Corporation Report MTR-7586, April, 655 p.

Williams, F., <u>et.al.</u>, 1977, "Site-Specific Analysis of Geothermal Development - Data Files of Prospective Sites", Volume III, Mitre Corporation Report MTR-7586, October,620 p.

KEPLINGER and *Issociates*, inc.

VIII APPENDIX

DEVELOPMENT SCENARIOS AND SITE-SPECIFIC ANALYSIS OF SELECTED PROSPECTIVE GEOTHERMAL AREAS IN NEVADA:

- A) BRADY HOT SPRING KGRA
- B) BEOWAWE KGRA

ssociates, інс

KEPLINGER and

C) STEAMBOAT SPRINGS KGRA

D) LEACH KGRA

BRADY HOT SPRINGS, NEVADA

Postulated Development Scenario

PLANT NUMBER	INSTALLED CAPACITY (MWe)	PLANT ON-LINE DATE
1	50	1983
2	50	1986
3	100	1988
4	100	1990
SUBSEQUENT PLANTS	700	1991-1997
TOTAL	1000	to 1997

Estimate of Resource Characteristics

KEPLINGER and Associates, inc.

RESOURCE CHARACTERISTIC		ESTIMATE
Subsurface Fluid Temperature (°C)	Range: Best Estim	200-230 hate: 214
Total Dissolved Solids (PPM)		2,450
Electric Energy Potential (M	Ve 30 years)	1,000
Overlying Rock Hard	Basalt an	d alluvium
Depth to Top of Reservoir (Me	eters)	500
Land Status Total KGRA acres Total Federal acres Federal acres leased Total State and private acre State and private acres leas	es sed	98,508 59,358 26,049 ¹ 39,150 No data

All Federal land in the KGRA was offered in the Federal lease sale.

Development Status and Activity

KEPLINGER and Issociates, inc.

Several companies have been drilling in the area since 1959. Magma Power Company drilled several shallow wells between 1959 and 1961. Earth Energy, Inc. drilled a well to 1,519 meters (5,062 feet) in 1964. By August 1975, Phillips Petroleum Company and Union Oil Company had drilled deeper than 2,100 meters (7,000 feet) and Magma had drilled two wells, one to 1,050 meters (3,500 feet) and the other to 1,350 meters (4,500 feet) near the old holes.

By February 1977, Southern Union Products company had suspended operation and Standard Oil of California had drilled a producing well.

One 1,500 meter (4,900 foot) well had a temperature of $214^{\circ}C$ and a high flow rate.

Phillips has new high-flow-rate wells east of the old Brady Magma wells.

In 1977, ERDA (now part of DOE) approved an application for §3.46 million in loan guarantees by Geofood Products, Inc., to build a plant to use heat from the Brady geothermal resource for dehydration of food products. Total project cost is \$4.96 million. The loan has been granted by the Nevada National Bank.

BRADY HOT SPRINGS, continued.

Major Development Problems

KEPLINGER and Associates, inc.

There do not appear to be any severe technological problems at Brady Hot Springs. However, the following determinations must be made before development can begin:

- Whether or not the brine at Brady may lead to severe calciting, as has been suggested may happen.
- What the noncondensible content is, as this may affect the choice of conversion technology.

Also, injection feasibility must be demonstrated, and the maintenance of production flow must be demonstated in formations having low permeabilities.

Postulated Development Scenario: Status and Implications

First Commercial-Scale Plant: 50 MWe in 1983

The postulated development schedule at Brady Hot Springs calls for a 50-MWe plant to begin in operation in 1983. The development schedule appears in Figure 22-1. As shown, the commitment to develop the site must be made at the beginning of 1979 while plant design must be completed in mid-1980 to achieve power on line in 1983. The required timing for the availability of new technology would thus be 1980. A complementary schedule in Figure 22-2 presents the activities of principal paricipants in the development of the series of plants postulated for Brady Hot Springs. It is anticipated that this plant will use flash cycle conversion technology because: KEPLINGER and Associates, inc.-

OPERATING ENTITIES	ACTIVITY	RECIPIENTS	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
BLM Gounty USGS BLM BIM	Issue STC Drilling Permit Issue Land Use Permit Issue Drilling Permit Lease Land Process EIA/EIS	Developer Developer Developer Developer CEQ	}	umed comp	ETED								
Developer Developer Developer & Utility Froducer (De	Exploratory Drilling & Reservoir Evaluation Develop Utility Interest Feasibility Study -Financial Negotiations								X				
Veloper) & Utility Producer & Utility Producer & Utility	Sitc Selection Design . Commitment to Development									•			
Producer & Utility Utility	Prepare Master Development Plan Prepare Environmental Data Statement	BLM USGS BLM FPC State,County Froducer &											
DEM FRC Stat USCS FPC FPC	Permits Process EIA/EIS (Drilling Process EIA/EIS (Plant) Process EIA/EIS (Trans- mission Line)	Utility CFQ CEQ CEQ											
Producer Utility Utility	Development Drilling Plant Construction Install Transmission Line (16km)												-

FIGURE 22-1 DEVELOPMENT SCHEDULE FOR FIRST PLANT: BRADY HOT SPRINGS, NEVADA (FEDERAL LAND)

•

XXII-4

KEPLINGER and fosociates, inc.-

OPERATING ENTITIES	ACTEVITY	1977	1978	1979	1980	1981	1982	1983	1984	1985	1985	1987
Owner	Lease Land, Issue Prospecting Fermit											- <u>5</u>
County	Frocens Environmental Report - Fre-lease issue Land Use Permit Frocess Environmental Report - Drilling									_		j
State	Process Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines			L								
Developer	Exploration and Reservoir Evaluation Commit to Development Prepare Master Development Plan Development Drilling	1			1	1						
UESTICY	Constit to Development Prepare Environmental Data Statement and Haster Development Plan Construct Plant, Install Transmission Lines Power on Line					<u>1</u>		50 🔊				
DO1/USCS ·	Issue Drilling Fermit Process EIA/EIS - Drilling			L							-	=
DO1/BLH	Process ElA/ElS, Lease Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits			1								<u></u>
PO1/USFS	Process EIA/EIS, Lease Land Issue STG Drilling Permit											

XXII-5

FIGURE 22-2 DEVELOPMENT SCHEDULE FOR ALL PLANTS: BRADY HOT SPRINGS, NEVADA **KEPLINGER** and *Associates*, inc.-

÷

OPERATING ENTITIES	ACTIVITY	1988	1989	1990	1991	1992	1973	1994	1.995	1996	1997	1998
Ovner	Lease Land, Issue Prospecting Permit				2	-						
County	Process Environmental Report - Pre-lease Issue Land Use Permit Process Environmental Report - Drilling	5	=	5	2	<u>y_</u>		9				
State	Process Environmental Report, Lense Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines	<u></u>		<u> </u>	9 	9		<u>9</u>	-			
Neveloper	Exploration and Reservoir Evaluation Commit to Development Prepare Master Development Plan Development Drilling			5	-2	2	\$	29 72	<u>9</u>			
ULILITY	Commit to Development Prepare Environmental Data Statement and Master Development Plan Construct Plant, Install Transmission Lines	>		5				9	9			
	Touer on Line		}	100	100	100	100.	120	100	100	100	
DO I / USGS	Insue Drilling Permit Process EIA/EIS - Drilling	P	<u>├</u>		<u>}_</u>	┝╼		<u>-</u> 2	<u>*</u>			
DOI/BLN	Process ELA/ELS, Lease Land Issue STG Drilling Fermit Certify Plant and Site, lasse Permits			5				_2	 			
DO1/USFS	Process FIA/EIS, Lease Land Issue STG Drilling Permit				:							

XX11-6

FIGURE 22-2 (CONCLUDED)
BRADY HOT SPRINGS, continued.

- Reservoir temperature appears high enough to give flash technology an economic advantage over binary; and
- Flash technology may appear to the developers to be less risky than binary in this time frame.

However, certain resource characteristics which are not known at present may affect the choice of technology. Possible high noncondensible gas content (>3 percent) might necessitate a binary cycle, because noncondensible gases in a flash system require high pumping power to remove the gases from the condenser. Calciting tendencies in the brine might lead to problems of scaling.

In the context of a possible binary plant, the experience gained at the Niland thermal loop will be relevant. The problems associated with binary systems are described in detail under Salton Sea, California. In the following, the use of a flash cycle plant is assumed.

KEPLINGER and Issociates, inc.

<u>Development Problems</u>. This plant would be one of the first flash geothermal plants constructed in the United States and, in the absence of experience with similar type plants, is likely to be perceived as a relatively high-risk venture. The schedule requires that a utility company be identified in mid-1977, commitment to development be made in early 1979, design be completed by mid-1980, and construction started by mid-1981. While the attitude to development in the area is relatively favorable, mild constraints and brief delays may be anticipated.

BRADY HOT SPRINGS, continued.

Reservoir conditions appear fairly good. High flow rates are reported to have been obtained from test wells, although no numerical data are available. A low TDS of 2450 ppm has been reported. It is believed that the major problems associated with this and other similar reservoirs in Nevada are high noncondensible gas content, possible calciting tendencies of the brine, and maintenance of production well flow from low permeability reservoir formations.

Drilling in the hard rocks associated with this reservoir may be difficult, but is well within current capabilities. Well completions at the estimated reservoir temperature of 214°C should present no problems. Wells have been successfully completed under much more severe conditions (Salton Sea, Cerro Prieto, The Geysers). Since some good well flows have been demonstrated, it is not expected that deep well pumps will be required, although control of noncondensible gases and/or calciting might necessitate their use.

KEPLINGER and Issociates, inc.

Since flash plant conversion technology has been demonstrated elsewhere in the world, no severe technological problems are foreseen. Before the development can proceed, it will be necessary to demonstrate injection of spent brine in this fractured volcanic rock environment, but this is expected to be feasible. Table 22-I shows a summary of important site-related needs and RD&D impacts.

In summary, while it appears that there are no initial technological obstacles to development on the postulated schedule, additional

XXII-8

1

TABLE 22-1 ECONOMIC ANALYSIS: BRADY HOT SPRINGS, NEVADA FLASH SYSTEM . 50 MW ELECTRIC FLANT FIRST PLANT ON LINE DATE : 1983

TEMPERATURE IN CENTIGRADE DEGREES (BEST ESTIMATE) : 214 WELL DEPTH IN METERS : BRINE SALINITY : 1000 ION OVERLYING ROCK TYPE : HARD THE WELL FLOW RATE IS NOT SPECIFIEC : THE DEPAULT FLOW RATE USED (KGM./HR.) = 205886 THE COST PER PRODUCTION WELL IS NOT SPECIFIED : THE DEFAULT COST FER PRODUCTION WELL (\$) = 656168.1 THE COST FER INJECTION WELL IS NOT SPECIFIED : THE DEFAULT COST PER INJECTION WELL (S) = 656168.1

PRODUCER FINANCIAL DATA

UTILITY FINANCIAL DATA

Brady

Hut

Springs.

Ň

ANNUAL INTEREST RATE ON DEBT (FRACTION) :0.08REQUIREC WATE OF FETURN ON EQUITY (FRACTION) :0.20PROFERTY TAX RATE (FRACTION) :0.01REVENUE TAX RATE (FRACTION) :0.01EFFECTIVE TOTAL INCCME TAX RATE (FRACTION) :0.10EFFECTIVE TOTAL INCCME TAX RATE (FRACTION) :0.04ESCALATION FACTOF FCR CGM COSIS :0.05ESCALATION FACTOR FOR CAPITAL COSIS :0.05ESCALATION FACTOR FOR CAPITAL COSIS :0.05LIFE SPAN OF PROLUCTION WELLS (YEARS) :10.00LIFE SFAN OF INJECTION WELLS (YEARS) :10.00START UF COST MULTIPLIER :1.001	ANNUAL INTEREST RATE ON DEBT (FRACTION) : REQUIRED RATE OF REFURN ON EQUITY (FBACTION) : PROPERTY TAX RATE (FRACTICN) : REVENUE TAX RATE OR ROYALTY (FRACTION) : EFFECTIVE TOTAL INCCME TAX RATE (FRACTION) : EFFECTIVE INVESTMENT TAX CREDIT (FRACTION) : ESCALATION FACTOR FOR OGM COSTS : ESCALATION FACTOR FOR CAFITAL COSTS : ESCALATION FACTOR FOR CAFITAL COSTS : LIFE SPAN OF UTILITY PLANT (YEARS) : ULTIMATE CAPACITY FACTOR : START UP COST MULTIPLIER :	0.50 0.08 0.12 0.01 0.50 0.50 0.05 0.05 30.00 0.80 1.038
---	--	--

* NUMBER OF WELLS , CAFITAL COSTBASIS AND OCH COSTS , AND REVENUE REQUIREMENTS WITHLUT ANY R&C IMPACTS *

.

CAFITAL COSTPASIS (1977 \$M)

OEN COSTS (1977 \$H/YF.) 15 FRODUCTION WELLS : 11.845 7 INJECTION WELLS : PRODUCER 5.529 PRODUCER PLANT EXCLUDING WELLS : GENERAL : 0.401 6.149 REPLACEMENT FRODUCTION WELLS : WELL : 0.144 10.118 DEEP WELL PUNP : REPLACEMENT INJECTION WELLS : 0.0 4.722 SPENT BRINE TREATMENT : REPLACEMENT PLANT : 2.713 0.0 TOTAL FCR PRODUCTION FIELD : CHEMICAL & MECHANICAL CLEANING : 0.0 41.079 GENERATING PLANT : TOTAL : 0.545 25.814 UTILITY TOTAL : 66.894 GENERAL : 0.753 CHEMICAL & MECHANICAL CLEANING : 0.0 TOTAL : 0.753

** REVENUE APCUIREMENTS **

P	RODUCER	:	25.382	MILLS/KWHR	
	DIILITY	:	7.511	MILLS/KNHA	
*	TOTAL	:	32,893	MILLS/KWHR	*

XXII-9

....

1 N

TABLE 22-I (CONTINUED)

* RED IMPACTS FOR PLANT NO. 1 - ON LINE DATE : 1983 *

RED COMPONENT		ANTICIPATED CHANGE	CHANGE IN REVENUE
CAPITAL COST PER FRCDUCTION WILL CAFITAL COST PER INJECTION WELL	· .	(%) -5.00 -5.00	REQUIREMENIS (MILLS/KWHR) -0.6792 -0.3170

** REVENUE REQUIREMENTS WITH ALL THE RGD IMPACTS INCLUDED. **

1	PRODUCER	:	22.622	BILLS/KWHB	
	UTILITY	:	7.511	MILLS/KWHR	
*	TOTAL	:	30.133	MILLS/KWHR	

* SENSITIVITY OF COST OF ELECTRICITY (FROM PLANT NO. 1 , RGD IMPACTS INCLUDED) *

RESOURCE & OPERATING PARAMETERS

MILLS/KWHR

 $\langle . . \rangle$

Brady Hot Springs.

AN

HIGH RESOURCE TEMPERATURE LSTIMATE (230 EFGREES CENTIGRADE)	26.023
LCW RESOURCE TEMPERATURE ESTIMATE (200 DEGREES CENTIGRADE)	44.324
HIGH CAPACITY FACTOF VALUE : 0.85	28.360
LOW CAPACITY FACTOF VALUE : 0.60	40.177
EXPENSING OF INTANGIBLE DRILLING COSTS (70.0% OF WELL COSTS EXPENSED)	27.006
DEFLETICN ALLOWANCE (22.0% CF GEOSS INCOME)	25.689
INVESTMENT TAX CREDIT (26.2% GROSS, 15.0% PPFECTIVE)	28.428

* REC IMPACTS FOR PLANT NO. 2 - ON LINE DATE : 1986 *

R&D COMPONENT	ANTICIPATED CHANGE	CHANGE IN REVENUE
	- (%)	REQUIREMENTS (MILLS/KWHR)
NUMBER CP PRODUCTION WELLS	-3,00	0.0
CAPITAL COST PER PRODUCTION WELL	-12.00	-1.6302
CAPITAL COST PPB INJECTION WELL	-12.00	-0.7608
CAFITAL COST OF GATHERING SYSTEM	-10.00	-0.0777
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0348
CAPITAL COST OF TURPINE GENERATOR	-3.00	-0.0808
CAPITAL COST OF FROCESS MECHANICAL (UTILITY)	-10,00	+0.0279
LIFE SPAN OF PROLUCTION WELLS	20.00	-0.9911
LIFE SPAN OF INJECTION WELLS	100.00	-1.4111
START UP COST MULTIPLIERS	(PRODUCER: -4.16 , UTILITY: -2.	12) -1.2158

** REVENUE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. ** -

 PRODUCER:
 19.900
 HILLS/KWHR

 UTILITY:
 7.246
 MILLS/KWHR

 *
 TOTAL:
 27.145
 MILLS/KWHR

TABLE 22-I (CONCLUDED)

* RED IMPACTS FOR PLANT NO. 3 - ON LINE DATE : 1988 *

RED COMECHENT	ANTICIPATED CHANGE	CHANGE IN DEVENUE
NUMBER OF PRODUCTION WELLS CAPITAL COST PER ERCDUCTION WELL CAPITAL COST PER INJECTION WELL CAPITAL COST OF GATHERING SYSTEM CAPITAL COST OF DISTRIBUTION SYSTEM CAPITAL COST OF TUBEINE GENEFATOR CAPITAL COST OF FRCCESS MECHANICAL (UTILITY) LIFE SPAN OF PROLUCTION WELLS LIFE SPAN OF INJECTICN WELLS START UP COST NUITIPLIERS	(%) -3.00 -12.00 -12.00 -10.00 -10.00 -3.00 -10.00 20.00 100.00 (PRODUCER; -4.16, UTILITY: -2.5	CHANGE IN REVENUE RECUIREMENTS (MILLS/KWHR) 0.0 -1.6302 -0.7608 -0.777 -0.0348 -0.0508 -0.0279 -1.0115 -1.4299 12) -1.2158

** REVENUE BEQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

1	RODUCER	:	19,867	MILLS/KWHR	
•	UTILITY	:	7.246	HILLS/KWHR	
*	TOTAL	:	27.112	MILLS/KWHR	

* RED IMPACTS FOR PLANT NO. 4 - ON LINE DATE : 1990 *

BET COMPONENT

	ADIICIPATED CHANGE	CHANGE IN REVENUE
NUMBER OF PRODUCTION WELLS	(3)	BEQUIREMENTS (MILLS/KWHR)
CAPITAL COST PER FRCDUCTICS WELT	-3.00	0.0
CAFITAL COST PER INJECTION WELL	-20.00	-2.7170
CAPITAL COST OF GATHERING SYSTEM	-20.00	-1.2679
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0777
CAPITAL COST OF TUREINE GENERAICE	-10.00	-0.0348
CAPITAL COST OF FROCESS MECHANICAL (UTILITY)	-3.00	-0.0608
LIFE SPAN OF PRODUCTION WELLS	-10.00	-0.0279
LIFE SPAN OF INJECTION WELLS	20.00	-1.0115
START UP COST MULTIPLIERS	100.00	-1.4299
	(PRODUCER: -4.16 , UIILITY: -2.	121 -1.2158

Brady Not Springs.

ş

** REVENUE REQUIREMENTS WITH ALL THE BOD IMPACTS INCLUDED. **

1	FRODUCER	:	18.526	MILLS/KWHR	
	UTILITY	:	7.246	HILLS/KWHR	
ŀ.	TOTAL	:	25.772	MILLS/RWHR	

XX11-11

BRADY HOT SPRINGS, continued.

information about reservoir and fluid characteristics might alter this perception.

<u>Economic Analysis</u>. The projected economics of electrical generation at the Brady Hot Springs geothermal power prospect are presented in Table 22-I. The levelized busbar cost of electricity¹ produced by a flash conversion system at this site is estimated to be 32.9 mills/ kWh using currently available technology. Taking into account anticipated cost reductions from the RD&D program, the first commercial-scale plant at this site, postulated to come on line in 1983, is expected to have a levelized busbar energy cost of 30.1 mills/kWh.

It is assumed that geothermal electric plants in this region will be competing primarily for base-load generating capacity addition against coal-fired steam plants. The levelized busbar cost of electricity from these sources is expected to be about 20.0 mills/kWh for plants coming on-line in 1985, rising to 20.6 mills/kWh for plants coming on-line in 1990 under assumptions of the National Energy Plan scenario for escalation of coal prices.

KEPLINGER and Issociates, inc.-

It can be seen that the cost of electricity (with RD&D benefits) at this prospect is not competitive without the advantages of further incentives. The sensitivity analysis for Plant 1 shows that expensing intangible drilling costs would reduce the levelized busbar cost by about 3.1 mills/kWh, that a 22 percent depletion allowance would

¹See Chapter 2 for details of the computer print-out and assumptions and data used in this analysis.

XXII-12

BRADY HOT SPRINGS, continued.

reduce costs by at most 4.4 mills/kWh, and that an increased investment tax credit to 15 percent effective would reduce costs by about 1.7 mills/kWh. Thus, the use of further incentives (such as an investment tax credit of approximately 25 percent plus depletion and expensing intangibles) would be required to render this plant roughly competitive on the basis of cost. Within limits, changes in the levels of the depletion allowance or tax credit would produce proportional cost changes to achieve a desired level of incentive.

Subsequent Plants

KEPLINGER and Issociates, inc.

The second plant at Brady Hot Springs is scheduled to come on line in 1986. This means that the commitment to develop must be made in 1982 for design to be completed in 1984 prior to start of construction. It is clear that operating experience at Plant 1 will not be be acquired in time to have a major impact on the design of Plant 2. Moreover, on the basis of the postulated development schedule, there will be insufficient time for operating experience at any United States commercial-scale, liquid-dominated geothermal plant to influence Plant 2 at Brady Hot Springs.

Based on the impacts of RD&D shown in Table 22-I, Plant 2 is expected to have a levelized busbar cost of 27.1 mills/kWh. This indicates that the first two tax incentives (expensing intangible drilling costs and applying a 22 percent depletion allowance) would bring electricity costs to about a competitive level.

XXII-13

BRADY HOT SPRINGS, concluded.

Plant 3 at Brady Hot Springs is postulated to come on line in 1988 at an estimated cost of electricity of 27.1 mills/kWh. This plant should benefit from prior operating experience at Brady Hot Springs, Beowawe, Roosevelt Hot Springs, and Valles Caldera.

Plant 4, on line in 1990, has an estimated cost of electricity of 25.8 mills/kWh.

KEPLINGER and Issociates, inc.--

BEOWAWE, NEVADA

PLANT NUMBER	INSTALLED CAPACITY (MWe)	PLANT ON-LINE DAT
1	50	1983
2	50	1986
3	50	1988
4	100	1990
SUBSEQUENT PLANTS	750	1991-1998
TOTAL	1000	to 1998

Postulated Development Scenario

Estimates of Resource Characteristics

RESOURCE CHARACTERISTIC		ESTIMATE
Subsurface Fluid	Range:	165-280
Temperature (°C)	Best est	imate: 240
Total Dissolved Solids (PPM)		1,200
Electric Energy Potential (MWe 30 Years)		624
Overlying Rock F	lard: Tert Ind Quatern	iary basalt ary alluvium
Depth to Top of Reservoir (Me	ters)	1,000
Land Status		i
Total KGRA acres		33,225
Total Federal acres		16,530,
Federal acres leased		13,7661
Total State and private acr	es	19,112

¹Nearly all the Federal land has been offered and leased in recent Federal lease sales.

Development Status and Activity

As of August, 1975, the deepest well drilled was 2,915 meters (9,563 feet). By June, 1976, more than 12 holes had been drilled, with Magma Power Company (Chevron) planning additional holes. By February, 1977, one well had been drilled by Standard Oil Company of California. Phillips Petroleum Company has also been involved in development.

Major Development Problems

This is an isolated site. If a purchaser/utility can be identified, then there should be no severe problems. Still it is recommended that the following potential problem areas be investigated:

• silica scaling

KEPLINGER and Issociates, inc.-

• return flow injectibility

• low sustained flow rates from production wells. Postulated Development Scenario: Status and Implications

First Commercial-Scale Plant: 50 MWe in 1983

No clear-cut major leaseholder/developer of the Beowawe site has been identified. However, companies such as Chevron, Standard Oil, and Phillips Petroleum Company have leased Federal lands in the area. Based on current information, a 50-MWe flash conversion power plant appears possible at this site by 1983. However, the site is remote from population centers (20 miles to a town of 1800 people),

BEOWAWE, continued.

and a utility may have marketing problems with a plant at this isolated site. Also, the site is situated about 150 miles from a primary distribution line (750 KV).

Figure 21-1 shows a possible development schedule for Plant 1 at the Beowawe site. For 1983 power-on-line, commitment to development must take place at the beginning of 1979. Final design must be completed in 1980, and the technological RD&D, to contribute to this plant, must be available at about the same time. Since Plant 1 is to undergo development in parallel with other early-phase flash conversion power plants (Valles Caldera, Brady Hot Springs, Brawley, Roosevelt Hot Springs, and possibly Salton Sea), some interrelated technology undergoing development can be shared, but no operational experience with commercial-scale plants will be available to support the Beowawe plant development.

KEPLINGER and Associates, inc.--

Figure 21-2, which complements the preceding figure, shows the scheduled activities of the principal participants in the develop-

<u>Development Problems</u>. Principal RD&D problems at this site include possible scaling from a high silica content in the geothermal fluid and the long-term injection of the spent brine into the fractured volcanic formation. Testing to date has indicated low reservoir permeabilities and resultant low volumetric flow rates from production wells. Reservoir stimulation technology could therefore be important at this prospect. Again, Beowawe should be able to share

XXI-3

1

 $\langle - \rangle$

OPERATING ENTITIES	ACTIVITY	RECIPIENTS	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
BLM USCS BLM/Owner BLH County	Issue STC Drilling Permit Issue Drilling Permit Lease Land Process EIA/EIS Issue Land Use Permits	Developer Developer Developer CEQ Developer	ASSU	ned conpl	ETED	•			·				
Developer Developer Developer 6 Utility Producer (De	Exploratory Drilling & Reservoir Evaluation Develop Utility Interest Feasibility Study -Financial Negotiations												
Veloper) a Utility Producer 6 Utility Producer 6 Utility	Site Selection Design Commitment to Development												
Producer S Dellity Utility DIM, FPC	Prepare Master Development Plan Prepare Environmental Data Statement Certify Plant & Site,	BLN, USGS BLN, FPC, STATE,County Producer &			 		·						
State,USGS USGS FPC FPC Producer	Issue Permits Process EIA/EIS (Drilling) Process EIA/EIS (Plant) Process EIA/EIS (Trans- mission Line) Development Drilling	CEQ CEQ CEQ CEQ							-				
Utility Utility	Plant Construction Install Transmission Line (40km)										-		
	· .			. ,									

XXI-4

FIGURE 21-1 DEVELOPMENT SCHEDULE FOR FIRST PLANT: BEOWAWE, NEVADA (FEDERAL LAND/POSSIBLY SOME PRIVATE)

OPERATING ENTITIES	ACTIVITY	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1957
Owner	Lease Lond, Issue Prospecting Permit				_	-		-	-	- ž		
County	Pracess Environmental Report - Pre-lease Jasue Land Use Permit Frocess Environmental Report - Drilling					_		-		<u> </u>	2	-
State	Process Environmental Report, Lease Land Isnue Proupecting/Exploration Permits Issue Drilling Permits Certify Finnt and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines			<u> </u>		-					5	
Developer	Exploration and Reservoir Evaluation Commit to Development Prepare Master Development Plan Bevelopment Drilling	1		·	Δl						2	
Utility	Commit to Development Prepare Environmental Data Statement and Master Development Flan Construct Flant, Install Transmission Lines Power on Line			1 [·]	Δ^1	<u> </u>		· 50 ▲1				
DOI/USGS	Issue Drilling Permit Process EIA/EIS - Drilling	·		L							5	
LOI/BLN	Process ElA/ElS, Lease Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits			1		-						
DOI/USFS	Process BIA/EIS, Lease Land Issue STG Drilling Permit											

FIGURE 21-2 DEVELOPMENT SCHEDULE FOR ALL PLANTS: BEOWAWE, NEVADA

XXI-5

OPERATING ENTITIES	ACTIVITY	1960	1989	1990	1991	1992	1993	1994	1995	1996	1977	1798
Owner	Lease Land, Issue Prospecting Permit					L 12	-]		· · ·	
County	Process Environmental Report - Pre-lease Issue Land Use Permi: Frecess Environmental Report - Drilling	5			-	<u>12</u>	12		L2			
Stote	Process Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines	- <u>-</u>				L2	12		- <u>L2</u> 			
Neveloper .	Exploration and Reservoir Evaluation Commit to Development Prepare Master Development Flan Development Drilling	25 	2						Å ¹²	12		
Utility	Commit to Development Prepare Environmental Data Statement and Haster Development Plan Construct Plant, Install Transmission Lines Power on Line	5	<u></u>							12	100	30 A 12
DOI/USG5	Issue Drilling Permit Process EIA/EIS - Drilling	-5	\$ 						-12	12		<u>}</u>
DO1/BLM	Process EIA/EIS, Lease Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits	 _2							-12			
DOI/USF\$	Process EIA/EIS, Lease Land Issue STG Brilling Permit											

9-IXX

FIGURE 21-2 (CONCLUDED)

BEOWAWE, continued.

in the parallel experience at the Roosevelt Hot Springs and Brady sites, which are all expected to encounter similar problems in these technical areas of concern. No apparent environmental problems have been identified at this site nor has local opposition to development been expressed.

Economic Analysis. The projected economics of electrical generation of the Beowawe geothermal power prospect are presented in Table 21-I. The levelized busbar cost of flash-system conversion electricity¹ from this site is estimated to be 32.1 mills/kWh using currently available technology. Taking into account anticipated cost reductions from the RD&D program, the first commercial-scale plant at this site, postulated to come on line in 1983, is expected to have a levelized busbar energy cost of 29.1 mills/kWh (see second page of Table 21-I).

KEPLINGER and *Issociates*, inc.

It is assumed that geothermal electric plants in this region will be competing primarily against coal-fueled steam plants for additions to baseload generating capacity. Under the assumptions of the National Energy Plan scenario for escalation of coal prices, the levelized busbar cost of electricity from coal-fueled steam plants is expected to be about 20.0 mills/kWh for plants coming on-line in 1985, rising to 20.6 mills/kWh for plants coming on-line in 1990.

¹See Chapter 2 for details of the computer print-out and assumptions and data used in this analysis.

XXI-7

TABLE 21-1 ECONOMIC ANALYSIS: BEOWAWE, NEVADA FLASH SYSTEM , 50 HW ELECTRIC PLANT PIRST FLANT ON LINE DATE : 1983

TEMPERATURE IN CENTIGRADE DEGREES (BEST ESTIMATE) : 240 WELL DEPTH IN METERS : 1500 PRIME SALINITI : LOW OVERLYING ROCK TYFE : HARD THE WELL FLOW RATE IS NOT SPECIFIED : THE DEFAULT FLOW RATE USED (KGM./HR.) = 194299 THE COST PER PROLUCTION WELL IS NOT SPECIFIED : THE DEFAULT COST PER PRODUCTION WELL (\$) = 984251.6 THE COST PER INJECTION WELL IS NOT SPECIFIED : THE DEFAULT COST PER INJECTION WELL (\$) = 984251.6

PRODUCER FINANCIAL DATA

UTILITY PINANCIAL DATA

DEBT PRACTION :	0.30
ANNUAL INTEREST RATE ON DEBT (FEACTION) :	0.08
REQUIREE RATE OF RETURN ON EQUITY (PRACTION) :	0.20
PROPERTY TAX RATE (FRACTION) :	0.01
REVENUE TAX BAYE OR ROYALTY (FEACTION) :	0.10
EFFECTIVE TOTAL INCOME TAX RATE (FEACTION) :	0.50
EFFECTIVE INVESTMENT TAX CLEDIT (FRACTICN) :	0.04 .
ESCALATION FACTOR FOR OUN COSTS :	0.05
ESCALATION FACTOF FOR ENERGY COSTS :	0.05
ESCALATION FACTOR FOR CAPITAL COSTS :	0.05
LIFE SPAN OF PRODUCTION WELLS (YEARS) :	10.00
LIFE SPAN OF INJECTION WELLS (YEARS) :	10.00
LIFE SPAN OF PRODUCER PLANI (YEARS) :	20.00
START UF COST MULTIFLIER :	1.081

DEBT FRACTION :	0.50
ANNUAL INTEREST RATE ON DEBT (FRACTION) :	0.08
REQUIRED RATE OF RETURN ON EQUITY (FBACTION) :	0.12
PROPERTY TAX RATE (FRACTICN) :	0.01
REVENUE TAX RATE OR ROYALTY (FRACTICN) :	0.0
EFFECTIVE TOTAL INCOME TAX BATE (FRACTION) :	0.50
EFFECTIVE INVESTMENT TAX CREDIT (FRACTION) :	0.04
ESCALATION FACTOR FOR GEN COSTS :	0.05
ESCALATION FACTOR FOR ENERGY COSTS :	0.05
ESCALATION FACTOR FOR CAFITAL COSTS :	0.05
LIPE SPAN OF UTILITY PLANT (YEARS) :	30.00
ULTIMATE CAPACITY FACTOR :	0.80
START UP COST MULTIPLIEE :	1.038

* NUMBER OF WELLS , CAPITAL COSTBASIS AND OGB COSTS , AND REVENUE REQUIREMENTS WITHOUT ANY RED IMPACTS *

CAPITAL COSTBASIS (1977 \$H)

OCH COSTS (1977 SH/TE.)

11 PRODUCTION WELLS :	13.032			PRODUCER		
S INJECTION WELLS :	5.924			GENERAL :	0. 166	
PRODUCER PLANT EXCLUDING WELLS :	4.026	•		WELL :	0.157	
REPLACEMENT FRODUCTION WELLS :	11.130		• •	DEEP WELL PUMP :	0.0	
REPLACEMENT INJECTION WELLS :	5.059			SPENT BRINE TREATMENT :	0.0	
REFLACEMENT FLANT :	1.777			CHEMICAL & MECHANICAL CLEANING :	0.0	
TOTAL FOR PRODUCTION FIELD :	·	40.948		TOTAL :		0.546
GENERATING PLANT :		23.281		UTILITY		
TOTAL :		64.229		GENEFAL :	0.679	
				CHEMICAL & MECHANICAL CLEANING :	0.0	
				TOTAL :		0.679

Ne. N

** BEVENUE RECUIBEMENTS **

PRODUCER : 25.309 HILLS/KWHR UTILITY : 6.774 HILLS/KWHR • TOTAL : 32.083 HILLS/KWHF •

3-1XX

TABLE 21-I (CONTINUED)

* RED IMPACTS FOR PLANT NO. 1 - ON LINE DATE : 1983 *

KOD CONFORERI

CAPITAL COST PER PRODUCTION WELL CAPITAL COST PER INJECTION WELL

CHANGE IN REVENUE REQUIREMENTS (HILLS/KWHB) -0.7472 -0.3396

1

ş

** REVENCE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

PRODUCER : 22.312 NILLS/KWHR UTILITY : 6.774 NILLS/KWHR * TOTAL : 29.086 MILLS/KWHA *

* SENSITIVITY OF COST CP BLECTRICITY (PROM PLANT NO. 1 , RGD IMPACTS INCLUDED) *

RESOURCE & OPERATING PARAMETERS

BILLS/KNHR

ANTICIPATED CHANGE

(%) -5.00

-5.00

•	
HIGH RESOURCE TEMPERATURE ESTIMATE (280 DEGREES CENTIGRADE)	20.935
LOW RESOURCE TERFERATURE ISTIMATE (165 DEGREES CENTIGRADE)	93.815
HIGH CAPACITY FACTOF VALUE : 0.85	27 175
LOW CAPACITY PACTOR VALUE : C.60	27.373
PYDENCING OF THE ANGUAR PRIVILE COCHE (TO OF AT WITH COCHE THE COCHE	30.701
DEPENDENCE OF THINKGABLE CHILLING COSTS (70.0% OF WELL COSTS EXPENSED)	25.672
DEPLETION ALLOWANCE (22.0% OF GROSS INCOME)	24.703
INVESTMENT TAX CHECIT (26.2% GBOSS, 15.0% EFFECTIVE)	27 440

* BED IMPACTS FOR PLANT NO. 2 - ON LINE DATE : 1986 *

BGD CONFONENT	ANTICIPATED CHANGE	CHANGE IN REVENUE
NUMBER OF PRODUCTION WELLS	(%)	REQUIREMENTS (MILLS/KWHR)
	-3.00	0.0
	-12.00	-1.7932
CAPITAL COST PER INJECTION WELL	-12.00	-0.8151
CAPITAL COST OF GATHERING SYSTEM	-10.00	-0.0581
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0220
CAPITAL COST OF TUREINE GENERATOR	-3.00	-0.0684
CAFITAL COST OF PROCESS MECHANICAL (UTILITY)	-10.00	-0-0266
LIFE SPAN OF PROCUCTION WELLS	20.00	-1.0902
LIFE SPAN OF INJECTION WELLS	100.00	-1.5120
START UP COST MULTIFLIERS	(PRODUCER: -4.16 , UTILITY: -2.	12) -1.1971

** REVENUE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

PRODUCER : 19.484 MILLS/KWHR UTILITY : 6.537 MILLS/KWHR * TOTAL : 26.021 MILLS/KWHB *

TABLE 21-I (CONCLUDED)

* RED IMPACTS FOR PLANT NO. 3 - ON LINE DATE : 1988 *

RGD COMFONENT	ANTICIPATED CHANGE	CHANGE IN REVENUE
•	(3)	RPCUIREMENTS (MILLS/KWBB)
NUMBER OF PRODUCTION WELLS	-3.00	0.0
CAPITAL COST PER FECDUCTION WELL	-12.00	~1.7932
CAPITAL COST PER INJECTION WELL	-12.00	-0.8151
CAPITAL COST OF GATHERING SYSTEM	-10.00	-0.0561
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0220
CAPITAL COST OF IDEPINE GENERATOR	-3.00	-0.0689
CAFITAL COST OF PROCESS MECHANICAL (UTILITY)	-10.00	-0.0266
LIFE SPAN OF PROTUCTION WELLS	20.00	-1.1127
LIFE SPAN OF INJECTION WELLS	100.00	-1.5321
START UP COST MULTIPLIERS	(PRODUCER: -4.16 , UTILITY: -2.	12) -1.1971

** REVENUE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

PRODUCTR : 19.448 MILLS/RWHR UTILITY : 6.537 MILLS/RWHR * TOTAL : 25.985 MILLS/RWHR *

* RED IMPACTS FOR PLANT BO. 4 - ON LINE DATE : 1990 *

RED CONFONENT	ANTICIPATED CHANGE	CHANGE IN REVENUE
	(\$)	BEQUIREMENTS (MILLS/KWHR)
NUMBER OF PRODUCTION WELLS	-3.00	0.0
CAPITAL COST PEB FRCDUCTICH WELL	-20.00	-2.9687
CAPITAL COST PER INJECTION WELL	-20.00	-1.3585
CAPITAL COST OF GATHERING SYSTEM	-10.00	-0.0581
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0220
CAPITAL COST OF TURBINE GENERATCE	-3.00	-0.0689
CAPITAL COST OF FROCESS MECHANICAL (UTILITY)	-10.00	-0.0266
LIFE SPAN OF PROEUCTION WELLS	20.00	-1.1127
LIFE SPAN OF INJECTION WELLS	100.00	-1.5321
START UP COST MULTIPLIERS	(PRODUCER: -4.16 , UTILITY: -2.	12) -1.1971

Brownwe

AN

** REVENUE REQUIREMENTS WITH ALL THE RGD IMPACTS INCLUDED. **

₽	RODUCER	:	17.985	BILLS/KWHR	
	UTILITY	:	6.537	HILLS/KWHE	
	TOTAL	1	24.522	HILLS/KWHR	

BEOWAWE, concluded.

The costs of electricity (with RD&D benefits) at this prospect are therefore not competitive without the advantage of further incentives. The sensitivity analysis for Plant 1 shows that expensing intangible drilling costs would reduce the levelized busbar cost by about 3.4 mills/kWh, that a 22 percent depletion allowance would reduce costs by at most 4.4 mills/kWh, and that an increased investment tax credit to 15 percent effective would reduce costs by about 1.7 mills/kWh. Thus, the use of all three of these incentives would be required to render this site roughly competitive on the basis of cost.

Subsequent Plants

Beowawe Plant 2, another 50-MWe plant, is postulated to go on line in 1986. However, with the three-year lead time necessary to incorporate design improvements, little prior operating experience will be available from the 1983 plants to benefit Plant 2.

As shown in the concluding pages of Table 21-I, continuing RD&D impacts, as designated, result in further decreases in cost of electricity. Subsequent plants in 1986, 1988 and 1990 are expected to have costs of 26.0, 26.0, and 24.5 mills/kWh, respectively. Even in 1990, the site would require special tax incentives to place it in a competitive economic position.

XXI-11

STEAMBOAT SPRINGS, NEVADA

Postulated Development Scenario

PLANT NUMBER	INSTALLED CAPACITY (MWe)	PLANT ON-LINE DATE
1	50	1985
2	50	1988
3	100	1990
SUBSEQUENT	PLANTS	· · · · · · · · · · · · · · · · · · ·
TOTAL	200	to 1990

Estimates of Resource Characteristics

RESOURCE CHARACTERISTIC		ESTIMATE
Subsurface Fluid	Range:	No data
Temperature (°C)	Best Estin	nate 210
Total Dissolved Solids (P)	PM)	2,500
Electric Energy Potential	(MWe 30 Years)	208
Overlying Rock	Medium-Hard:	Granite
and Meta	amorphic Type,	Volcanic
Depth to Top of Reservoir	(Meters)	300
Land Status		
Total KGRA acres	· ·	8,914
Total Federal acres		4,450
Federal acres leased		1,548
Total State and private	acres	7,366
State and private acres	leased	

Development Status and Activity

Many shallow wells are tapping the Steamboat Springs resources for space heating in the Reno suburbs. No deep wells have been

KEPLINGER and Associates, inc.-

STEAMBOAT SPRINGS, continued.

drilled. Companies involved at Steamboat Springs include Magma Power Company, Southern Union Production Company, Phillips Petroleum Company, and Gulf Oil Company.

Major Development Problems

KEPLINGER and *Issociates*, inc.

No severe technological RD&D problems have been identified. Major developmental hurdles at this site appear to be the proof of the existence of a viable power-producing reservoir and the resolution of conflicts regarding how the land will be used. BLM, for example, is considering the development of housing units on the land.

Postulated Development Scenario: Status and Implications

First Commercial-Scale Plant: 50 MWe in 1985

Some commercial interest has been shown in this site. Development of a flashed steam plant is postulated at Steamboat Springs by 1985, according to the schedule shown in Figure 28-1. Figure 28-2 shows the scheduled activities of the principal participants in the development of the three postulated plants at the Steamboat Springs prospect. To obtain power on line in 1985, commitment to development of the site is required in 1980, and final design must be completed in 1981.

<u>Development Problems</u>. A likely attribute of this site is its shallow reservoir depth, with a thin rock cover. Wells should

XXVIII-2

1 3

OPERATING ENTITIES	• ACTIVITY	RECIPIENTS	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
BIM/Owner BLM Developer	Lease Land Process EIA Preliminary Geophysical Exploration	Developer CEQ	ASSU	ed compl	STED					-			
BLM USCS County Developer Developer Developer 6 Urijirv	Issue STG Urilling Permit Issue Drilling Permit Issue Use Permit Exploratory Drilling & Reservoir Evaluation Develop Utility Interest Feasibility Study	Developer Developer Developer									- - -		
Producer (De veloper) & Utility Producer	Financial Negotistions Site Selection												
Producer & Utility Producer & Utility	Design Commitment to Development					Δ							
Producer & Utility Utility BLM,FPC, State, USCS	Prepare Master Development Plan Prepare Environmental Data Statement Certify Plant & Site, Jague Permire	BLM, USGS BLM, FPC, State,County Producer & Urility										×	
USCS FPC, State PUC FPC, State PUC Producer	Process EIA (Drilling) Process EIA (Plant) Process EIA (Transmission Line) Development Drilling	CEQ CEQ CEQ					 						
Utility Utility	Plant Construction Install Transmission Line (16km)												

XXVIII-3

FIGURE 28-1 DEVELOPMENT SCHEDULE FOR FIRST PLANT: STEAMBOAT SPRINGS, NEVADA

OPERATING ENTITIES	ACTEVETY	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Owner	Lease Land, Issue Prospecting Permit							-	3			
County	Process Environmental Report - Pre-lease Issue Land Use Permit Process Environmental Report - Drilling								3	<u>ک</u>	· · · · · · · · · · · · · · · · · · ·	2
State	Process Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines					<u> </u>			3	2_ 2		<u>}</u>
Neveloper	Exploration and Reservoir Evaluation Commit to Development Prepare Haster Development Plan Development Drilling		1			_	L	·				<u>}</u>
Utility	Commit to Development Prepare Environmental Data Statement and Master Development Plan Construct Plant, Install Transmission Lines Power on Line				Δ <u>ι</u> 1	_						4)]
DOI/USCS	Issue Drilling Permic Process EIA/EIS - Drilling					1		-			<u>p_</u>	<u> </u>
DOL/BLN	Process BIA/EIS, Lease Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits					L			2			<u> </u>
DOI/USFS	Process EIA/EIS, Lease Land Issue STG Drilling Permit											

XXVIII-4

.

FIGURE 28-2 DEVELOPMENT SCHEDULE FOR ALL PLANTS: STEAMBOAT SPRINGS, NEVADA

OPERATING ENTITLES	ACTIVITY	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
Owner	Lease Land, Issue Prospecting Permit											
County	Process Environmental Report - Pre-lease Issue Land Use Permit Process Environmental Report - Drilling											
State	Process Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines	• • • •				•						
Nevelope r	Exploration and Reservoir Evaluation Commit to Development Prepare Master Development Plan Development Drilling	_3										
Utility	Commit to Development Prepare Environmental Data Statement and Master Development Plan Construct Plant, Install Transmission Lines Power on Line	<u>}</u>		100▲3								
POT/USCS	Issue Drilling Permit Process EIA/EIS - Drilling	-	,									
DOI/BLM	Process ElA/ElS, Lease Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits											
DOI/USFS	Process EIA/EIS, Lease Land Issue STC Prilling Permit									-		

XXVIII-5

FIGURE 28-2 (CONCLUDED)

STEAMBOAT SPRINGS, continued.

therefore be relatively inexpensive. The major current problem is the uncertainty of the resource, i.e., whether or not there is a reservoir adequate to support power production.

There are indications that excessive calcite deposition has occurred in early production wells. This is a geochemical condition identified at other Nevada/Utah geothermal power prospects. Some test wells have shown evidence of a moderate-to-rapid decline in flow, related to a pressure drop at the bottom of the well plus possible fouling of the well. Prior related operational experience, especially with geochemistry, may be expected from the 1983 plants at Heber, Brady, Roosevelt Hot Springs, Valles Caldera, and Beowawe. However, these plants will not be in service early enough to influence the design of Steamboat Springs plant 1.

KEPLINGER and Issociates, inc.

Economic Analysis. The projected economics of electrical generation at the Steamboat Springs geothermal power prospect are presented in Table 28-I. The levelized busbar cost of electricity¹ from a flash conversion system at this site is estimated to be 23.9 mills/kWh using currently available technology. Taking into account anticipated cost reductions from the RD&D program, the first commercialscale plant at this site, postulated to come on line in 1985, is expected to have a levelized busbar energy cost of 22.3 mills/kWh.

¹See Chapter 2 for a detailed description of the computer print-out and the assumptions and data used in this analysis.

XXVIII-6

TABLE 28-1 ECONOMIC ANALYSIS: STEAMBOAT SPRINGS, NEVADA PLASH SYSTEN, 50 NW ELECTRIC PLANT PIRST FLANT OF LIPE DATE : 1985

TEBPERATURE IN CENTIGRADE DEGREES (BEST ESTIMATE) : 210 WELL DEPIH IN METIRS : 800 PRINE SALINITI : LOW 800 OVERLYING ROCK TYFE : MEDIUM HAFC THE WELL PLOW RATE IS NOT SPECIFIED : THE DEPAULT PLOW RATE USED (KGM./HR.) = 212491 THE COST PER PRODUCTION WELL IS NOT SPECIFIED : THE DEPAULT COST PER PRODUCTION WELL (\$) = 328084.0 THE COST PER INJECTION WELL IS NOT SPECIFIED : THE DEPAULT COST PER INJECTION WELL (\$) = 328084.0

PRODUCER FINANCIAL DATA

XXVIII-7

DEET PRACTION : ANNUAL INTEREST BATE ON DEET (FFACTION) : 0.30 0.08 REQUIRED RATE OF RETURN ON EQUILY (FRACTION) : 0.20 PROPERTY TAX RATE (FRACTICN) : REVENUE TAX RATE OR ROYALTY (PFACTION) : EFFECTIVE TOTAL INCOME TAX RATE (PRACTION) : 0.01 0.10 EFFECTIVE INVESTMENT TAX CHEDIT (FRACTION) : 0.50 ESCALATION FACTOR FCB OGH LOSTS : 0.04 ESCALATION FACTOR FOR ENERGY CCSTS : 0.05 ESCALATION FACTOR FOR CAFILAL COSTS : 0.05 LIFE SPAN OF PRODUCTION WELLS (YEARS) : 0.05 LIFE SPAN OF INJECTION WELLS (YEARS) : 10.00 10.00 LIFE SPAN OF PRODUCER PLANZ (YEARS) : 20.00 START UF COST BULTIFLIES : 1.081

UTILITY FINANCIAL DATA

DEDI FRACTION :	
ANNUAL INTEREST RATE OF FERE ATTACT	0.50
REQUIRED RATE OF REMUNE ON LEET (PRACTICE) 2	0.08
PROPERTY TAX DATE OF REIVER ON EQUITY (FRACTION)	: 0.12
DEVENUE THA RAIS (FRACTION) :	0.01
BEVEAUE TAL RATE OR BOYALTY (FRACTION) :	0.0
EFFECTIVE TOTAL INCOME TAX RATE (FRACTION) :	0.50
EFFECTIVE INVESTMENT TAX CREDIT (FRACTION)	0.50
ESCALATION FACTOR FOR OGN COSTS	0.04
ESCALATION FACTOR FOR ENERGY COSTS	0.05
ESCALATION FACTOR FOR CALIFACT COSTS	0.05
LIFE SPAN OF UTILITY DIAME WELLSTS :	0.05
ULTINATE CARACTER PLANI (YEARS) :	30.00
START UD CORR START	0.80
START OF COST NULTIPLIER :	1.038

* HURBER OF WELLS , CAFITAL COSTBASIS AND OSM COSTS , AND REVENUE BEQUIREMENTS WITHOUT ANY BED INPACTS *

CAPITAL COSTBASIS (1977 \$8)

OGH COSTS (1977 \$8/18.)

TO FREDUCTION WELLS : 7 INJECTION WELLS : PRODUCER PLANT EICLUDING WELLS : REPLACEMENT PRODUCTION WELLS : REPLACEMENT INJECTION WELLS : REPLACEMENT FLANT : TOTAL FOR PLANT : TOTAL :	6.319 2.764 6.600 5.396 2.361 2.912	26.352 26.331 52.683	•	PRODUCER GENERAL : WELL : DEEP WELL PUMP : SPENT BRINE TREATMENT : CHEMICAL & MECHANICAL CLEANING : TOTAL : GENERAL : CHEMICAL & MECHANICAL CLEANING : TOTAL :	0.271 U.075 0.0 U.0 0.0 0.0 0.768 0.0	0.347
--	--	----------------------------	---	---	--	-------

0.768

ž

** REVENUE REQUIREMENTS **

Į	RODUCER	:	16.272 7.662	BILLS/RHHR HILLS/RWHR	
	TOTAL	2	23.934	MILLS/KWHR	

TABLE 28-I (CONTINUED)

* RGD IMPACTS FOR PLANT NO. 1 - ON LINE DATE : 1985 *

DET	20	M 21	~ 25	Ð	141 (199)
RG D		11 F	UΠ	Ε.	F 1

CAPITAL COST PER EFODUCTION WELL CAPITAL COST PER INJECTION WELL

CHANGE IN BEVENUE REQUIREMENTS (MILLS/KWHR) -0.3623 -0.1585

Steamboat

Springs,

N

** BEVENUE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

1	PRODUCER	:	14.680	BILLS/KWHB	
	UTILITY	3	7.662	HILLS/KWHR	
•	TOTAL	:	22.342	MILLS/KWHR	*

* SENSITIVITY OF LOST OF BLECTBICITY (FROM PLANT NO. 1 , RGD IMPACTS INCLUDED) *

BESOURCE 6 OPERATING PARAMETERS

BILLS/KEBR

ANTICIPATED CHANGE

(%) -5.00

-5.00

HIGH RESOURCE TEMPERATURE ESTIMATE (250 DEGREES CENTIGRADE)	15.375
LCW RESOURCE TEMPERATURE ESTIMATE (180 DEGREES CENTIGRADE)	39.545
HIGH CAFACITY FACTOR VALUE : C.85	21.028
LOW CAFACITY FACTOR VALUE : 0.60	70 780
EXPENSING OF INTANGIBLE DRALLING COSTS / 70 05 OF HELL COSTS PROPAGED	23.703
DEDIFICIONALI DI ANTO COLO L'UNA DE MELL CUBIS ELPENSED	20.131
The second	19.458
INVESTMENT TAX CREDIT (26.2% GEOSS, 15.0% EPFECTIVE)	21.083

* RED IMPACTS FOR PLANT NO. 2 - ON LINE DATE : 1988 *

R&D COMPONENT	ANTICIPATED CHANGE	CHANGE IN BEVENUE
NUMBER OF PRODUCTION WELLS CAFITAL COST PER PRODUCTION WELL CAFITAL COST PER INJECTION WELL CAFITAL COST OF GATHERING SISTEM CAFITAL COST OF DISTBLEUTION SYSTEM CAFITAL COST OF TURBINE GENERATOB CAFITAL COST OF PROCESS MELANICAL (UTILITY) LIFE SFAM OF PROTUCTION WELLS LIFE SPAW OF INDECTION WELLS START UF COST BULTIFLIERS	(%) -3.00 -12.00 -12.00 -10.00 -10.00 -3.00 -10.00 20.00 100.00 (PRODUCER: -4.16, UTILITY: -2.1	ARQUIREMENTS (MILLS/KWAR) 0.0 -0.8694 -0.3804 -0.0813 -0.0383 -0.0282 -0.5394 -0.7150 121 -0.8397

** REVENUE REQUIREMENTS WITH ALL THE RED INFACTS INCLUDED. **

1	RODUCEB	:	13.224	BILLS/KWHR
	UTILITY	:	7.390	MILLS/KWHR
•	TOTAL	:	20.614	HILLS/KWHR

XXVI11-8

ί,

TABLE 28-I (CONCLUDED)

* BGE IMPACTS FOR PLANT NO. 3 - ON LINE DATE : 1990 *

RED COMPONENT	ANTICIPATED CHANGE	CHANGE IN BEVENUE
	(%)	REQUIREMENTS (MILLS/KWHR)
NUBBER OF PRODUCTION WELLS	-3.00	0.0
CAPITAL COST PER FRODUCTION WELL	-20.00	-1.4490
CAPITAL COST PEB INJECTION WELL	-20.00	-0.6340
CAPITAL COST OF GATHERING SYSTEM	-10.00	-0.0813
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0383
CAPITAL COST OF TURBINE GENERATOR	-3.00	-0.0833
CAPITAL COST OF PROCESS NECHANICAL (UTILITY)	-10.00	-0.0282
LIFE SPAN OF PRODUCTION WELLS	20.00	-0.5394
LIFE SPAN OF INJECTION WELLS	100.00	-0.7150
STARI UP COST MULTIPLIERS	(PRODUCER: -4.16 , UTILITY: -2	.12) -0.8397

Steamboat Springs,

W

** REVENUE REQUIREBENTS WITH ALL THE RED INFACTS INCLUDED. **

PRODUCTR : 12.522 HILLS/KWHR UTILITT : 7.390 HILLS/KWHR * TOTAL : 19.912 HILLS/KWHR *

STEAMBOAT SPRINGS, continued.

It is assumed that geothermal electric plants in this region will be competing primarily against coal-fired steam power plants for baseload generating capacity additions. Under assumptions of the National Energy Plan scenario for escalation of coal prices, the levelized busbar cost of electricity from these sources is expected to be about 20.0 mills/kWh for plants coming on-line in 1985, rising to 20.6 mills/kWh for plants coming on-line in 1990.

The costs of electricity (with RD&D benefits) at this prospect therefore appear marginally competitive without the advantages of further incentives. The sensitivity analysis for Plant 1 shows that expensing intangible drilling costs would reduce the levelized busbar cost by about 1.6 mills/kWh, that a 22 percent depletion allowance would reduce costs by at most 2.9 mills/kWh and that an increased investment tax credit to 15 percent effective would reduce costs by about 1.3 mills/kWh. Thus, the use of at least one of these incentives and certainly no more than two would appear to bring the costs of this plant into a position competitive with coal.

Subsequent Plants

KEPLINGER and Issociates, inc.

The 50-MWe Steamboat Springs Plant 2 is projected to go on line in 1988. The design of this plant should benefit from operating experience at the 1983 flash conversion plants at Brady Hot Springs, Roosevelt Hot Springs, and perhaps from Valles Caldera and Salton Sea and Brawley (should the latter two be flash-type plants).

XXVIII-10

STEAMBOAT SPRINGS, concluded.

Incorporating advanced RD&D findings and their postulated impacts into Plant 2 development (Table 28-I) produces an estimated cost of electricity of 20.6 mills/kWh.

The third and final plant designated for development at Steamboat Springs, 100-MWe capacity in 1990, is projected to produce electricity at a favorable busbar cost of 19.9 mills/kWh without Federal subsidies.

KEPLINGER and Issociates, inc.

LEACH, NEVADA

Postulated Development Scenario

PLANT NUMBER	INSTALLED CAPACITY (MWe)	PLANT ON-LINE DATE
1	50	1987
2	50	1990
SUBSEQUENT PLANTS	1400	1991-2002
TOTAL	1500	to 2002

Estimate of Resource Characteristics

RESOURCE	CHARACTERISTIC	۰. ۱		1	ESTIMATE
----------	----------------	---------	--	---	----------

Subsurface Fluid	Range: 170-200						
Temperature (°C)	Best Estima	te: 170					
Total Dissolved Solids (PPM)		No data					
Electric Energy Potential (MWe	30 Years)	1500					
Overlying Rock		No data					
Depth to Top of Reservoir (Meto	ers)	No data					
Land`Status							
Total KGRA acres		12,797					
Total Federal acres	т. Т	12,246					
Federal Acres leased		12,246					
Total State and private acres		551					
State and private acres leased	đ.	No data					

Development Status and Activity

Considerable surface exploration was underway by June, 1976. Industry involvement in site development may include Sun Oil Company and Magma Power Company.

KEPLINGER and Associates, inc.-

LEACH, continued.

Major Development Problems

KEPLINGER and Associates, inc.

There are two significant problems at the Leach site: whether or not a viable, developable reservoir exists and whether or not the unfavorable economics can be improved.

Postulated Development Scenario: Status and Implications

First Commercial-Scale Plant: 50 MWe in 1987

A developer and/or plant operator has not yet been identified for this prospect (Sun Oil and Magma Power are possibilities). As shown in Figure 25-1, the first plant is expected to go on line in 1987. This requires that the existence of a commercial reservoir must be established by 1982. Figure 25-2 shows the scheduled activities of principal participants in the development of the two plants postulated at the Leach prospect. A binary conversion system is likely to be preferred at this site.

Development Problems. It is believed that no significant technological problems will remain by the time the final design for the plant must be completed. A little prior operating experience is expected to be available to benefit the development at Leach: Heber 1 (along with Salton Sea 1 and Brawley 1, if binary), will just be operational; Cove Fort-Sulphurdale and East Mesa will be in construction; and progress in parallel should be shared with Alvord 1, Bruneau-Grandview 1, and Cove Fort-Sulphurdale 2. The work in development and testing of organic turbines may have been conducted

XXV-2

i y

١

OREPATINC						1							
ENTITIES	ACTIVITY	RECIPIENTS	1977	1978	1979	1980 ⁻	1981	1982	1983	1984	1985	1986	1987
BLM	Process Environmental Reports	CEQ	ASSU	ED COMPL	TED								
BLM	Lease Land Issue Drilling Permits	Developer Developer					· ·						· ·
Developer	Preliminary Geophysical Exploration												
Developer	Exploratory Drilling and Reservoir Evaluation												
Developer	Develop Utility Interest	[.		{		<u>ا</u> ــــــــــــــــــــــــــــــــــــ	· ·			1			
Developer and Utility	Feasibility Study											•	
Producer (Developer) and Utility	Financial Negotiations		i l		-								
Producer	Site Selection	·											
Producer	Commitment to Development	1				1	}			1			
and Utility	construction to perceptuate	{								§			ł '
Producer	Desien	1 1		(([
and litities	Popren (
Producer	Properto Master Development	NIN HECE)						
and litities	Plan	BLA1, 0303					[
ne iliev	Presente Fruiresmentel Dete	NIN FRC											1
ochiley	frepare Environmental Data	Bun, rru,											(
NIM FRC	Statement Costify Ricot and Site	Braduces											1
State Voor	terms Persite	r toqucer											i 1
scare, USGS		and Utility											1
EPC	Process EIA/EIS (DILLING)	CEQ CEQ						[i
FRC	Process EIA/EIS (Flant)	CEQ	· ·										ί.
	Trocess LIA/LIS	LEY				1							1.
Baadwaan	(iransmission Line)							1					1
rioducer	Development Drilling												
ULILLUY	FLANE CONSTRUCTION					·							
UCILLEY	Install Transmission Line			I I									i
													1
													<i>i</i> i
													1 1
													1
								1					1 1
						ľ l				1			1
										· ۲			· · · · · · · · · · · · · · · · · · ·

FIGURE 25-1 DEVELOPMENT SCHEDULE FOR FIRST PLANT: LEACH, NEVADA (FEDERAL LAND)

XXV-3

1

ENTITIES	ACTIVITY	1977	1978	1979	1980	1981	1982	1983	1984	1985	1985	1987
Ovner	Lease Land, Issue Prospecting Permit			· ·					-		+	- 2
County	Process Environmental Report - Pre-lease Issue Land Use Permit Process Environmental Report - Drilling							· .		=	-	<u>></u>
State	Process Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines							<u> </u>		-		2 1
Developer	Exploration and Reservoir Evaluation Commit to Development Frepare Haster Development Plan Development Drilling		-	1			Δ ¹			1		
Utility	Commit to Development Prepare Environmental Data Statement and Haster Development Fian Construct Plant, Install Transmission Lines Fower on Line						r Vi			1		50 ▲ ¹
DOI/USCS	Issue Drilling Permit Process ELA/ELS - Drilling	· ·	<u> </u>					1		-	-	
DOI/BLH	Process EIA/EIS, Lesse Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits							1				<u></u>
DOI/USFS	Process EIA/EIS, Lesse Land Issue STG Drilling Permit											

XXV-4

FIGURE 25-2 DEVELOPMENT SCHEDULE FOR ALL PLANTS: LEACH, NEVADA

OPERATING ENTITIES	ACTIVITY	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
Owner	Lease Land, Issue Prospecting Permit					10			- 12	-		
County	Process Environmental Report - Pre-lease Issue Land Use Permit Process Environmental Report - Drilling	٤		<u> </u>	-	10	10.		<u>.</u>	1 <u>1</u>		u
State	Frocess Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines	ـــــــــــــــــــــــــــــــــــــ		Σ		10 	<u>10</u>		- <u>10</u> 10	L		<u>u</u>
Neveløper	Exploration and Reservoir Evaluation Commit to Development Prepare Haster Development Plan Development Drilling	<u> </u>		25 4 	-5				10 10			413 12
Utility	Commit to Development Prepare Environmental Data Statement and Haster Development Plan Construct Plant, Install Transmission Lines Power on Line	 		5	5					10		13
DO1/USCS	Jesue Drilling Permit Process EIA/EIS - Drilling	5 		-5	<u></u>					_10		13
DOT/BLN	Process EIA/EIS, Lease Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits			 5		10			_L			υ
DO1/USFS	Process FIA/EIS, Lense Land Issue STG Drilling Fermit		 									

XXV-5

FIGURE 25-2 (CONTINUED)

a 4.

OPERATING ENTITIES	ACTIVITY	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Owner	Lease Land, Issue Prospecting Permit									[
County	Process Environmental Report - Pre-lesse Issue Land Use Permit Process Environmental Report - Drilling											
State	Process Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines						· .					
Developer	Exploration and Reservoir Evaluation Commit to Development Prepare Master Development Plan Development Drilling	_13										
VEILICY	Commit to Development Prepare Environmental Data Statement and Master Development Plan Construct Plant, Install Transmission Lines Power on Line	<u>13</u> 100	100 🛋	100_13								
DO1/USGS	Issue Drilling Permit Process EIA/EIS - Drilling	-										
DUI/BLM	Process EIA/EIS, Lease Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits											
DOI/USFS	Process EIA/EIS, Lease Land Issue STC Drilling Permit											

XXV-6

FIGURE 25-2 (CONCLUDED)
LEACH, continued.

in the 10-MWe pilot plant at Niland. One year prior to design freeze on the Leach plant, deep-well pumps of improved reliability and durability are expected to be available (1.5-year expected life versus the current less-than-6-month life).

<u>Economic Analysis</u>. The projected economics of electrical generation at the Leach, Nevada, geothermal power prospect are presented in Table 25-I. The levelized busbar cost of electricity¹ by binary conversion from this site is estimated to be 109 mills/kWh using currently available (baseline) technology. Taking into account anticipated cost reductions from the RD&D program, the first commercialscale plant at this site, postulated to come on line in 1987, is expected to have a levelized busbar energy cost of 75 mills/kWh.

It is assumed that geothermal electric plants in this region will be competing primarily against coal-fueled steam plants for baseload generating capacity addition. Under assumptions of the National Energy Plan scenario for escalation of coal prices, the levelized busbar cost of electricity from these sources is expected to be about 20.0 mills/kWh for plants coming on-line in 1985, rising to 20.6 mills/kWh for plants coming on-line in 1990.

The cost of electricity (with RD&D benefits) at this prospect is therefore definitely not competitive without the advantage of further

See Chapter 2 for a detailed description of the computer print-out and the assumptions and data used in this analysis.

XXV-7

KEPLINGER and Issociates, inc.

KEPLINGER and fosociates, inc.-

TABLE 25-1 ECONOMIC ANALYSIS: LEACH, NEVADA BINARY SYSTEM, 50 HN ELECTRIC PLANT PIRST PLANT ON LINE DATE : 1987

TEMPERATURE IN CENTIGRADE DEGREES (BEST ESTIMATE) : 170 WELL DEPTH IN METERS : 2500 PRINE SALINITY : LON 2500 OVERLING ROCK TIFE : MEDIUM HAFD THE WELL FLOW RATE IS NOT SPECIFIED : THE DEPAULT FLOW RATE USED (KGM./HR.) = 268208 THE COST PER PRODUCTION WELL IS NOT SPECIFIED : THE DEFAULT COST PER PRODUCTION WELL (\$) =2138286.0 THE COST PER INJECTION WELL IS NOT SPECIFIED : THE DEFAULT COST PER INJECTION WELL (\$) =1425524.0

PRODUCER FINANCIAL DATA

DEBT FRACTION : 0.30 ANNUAL INTEREST RATE ON DEET (FRACTION) : 0.08 BEQUIRED RATE OF RETURN ON EQUITY (PRACTION) : 0.20 PROPERTY TAX RATE (FRACTICN) : 0.01 REVENUE TAX RATE OF ROYALTY (FFACTION) : EFFECTIVE TOTAL INCOME TAX RAIE (FRACTION) : EFFECTIVE INVESTMENT TAX CEEDII (FRACTION) : 0.10 0.50 0.04 ESCALATION FACTOR FOR OGH COSIS : 0.05 ESCALATION FACTOR FOR ENERGY COSTS : 0.05 ESCALATION PACTOR FOR CAFITAL COSTS : 0.05 LIFE SPAN OF PRODUCTION WELLS (YEARS) : 10.00 LIFE SPAN OF INJECTION WELLS (YEARS) : 10.00 LIFE SPAN OF PRODUCER PLAN1 (YEARS) : 20.00 START UP COST BUITIFLIER : 1.036

UTILITY PINANCIAL DATA

DEBI FRACTION :	0.50
ABNUAL INTEREST RATE ON CEPT (FRACTION) :	0.08
REQUIBED RATE OF RETURN ON EQUITY (PRACTION) :	0.12
PROPERTY TAX RATE (PRACTICN) :	0.01
REVENUE TAX RATE OR BOYALTY (FRACTION) :	0.0
EFFECTIVE TOTAL INCOME TAX RATE (FRACTION) :	0.50
EFFECTIVE INVESTMENT TAX CREDIT (FRACTION) :	0.04
ESCALATION FACTOR FOR OCH COSTS :	0.05
ESCALATION FACTOR FOR ENERGY COSTS :	0.05
ESCALATION FACTOR FOR CAFITAL COSTS :	0.05
LIFE SFAN OF UTILITY PLANT (YEARS) :	30.00
ULTIMATE CAPACITY FACTOR :	0 60
START UP COST MULTIPLIER :	1.016

* NUMBER OF WELLS , CAFITAL COSTBASIS AND COM COSTS , AND BEVENUE REQUIREMENTS WITHOUT ANY RED IMPACTS *

CAPITAL COSTBASIS (1977 SH)

OSM COSTS (1977 \$M/YR.)

24 FRODUCTION WELLS : 10 INJECTION WELLS : PRODUCER PLANT EXCLUDING WELLS : REPLACEMENT PRODUCTION WELLS : REPLACEMENT INJECTION WELLS : BEPLACEMENT PLANT : TOTAL FCB PRODUCTION FIELD : GENERATING PLANT : TOTAL ;	61.774 17.159 9.501 52.756 14.655 4.192 160.038 36.674 196.712	PRODUCER GENERAL : WELL : DEEP WELL PUMP : SPENT BRINE TREATMENT : CHEMICAL & MECHANICAL CLEANING : TOTAL : UTILITY GENERAL : CHEMICAL & MECHANICAL CLEANING :	1.485 0.656 0.850 0.0 0.0 1.319 0.0	2.991
		TOTAL :	•••	1 2 10

1.319

3

** BEVEBUE BEGUIBBHENTS **

PRODUCER : 97.612 BILLS/KWHR UTILITY : 11.167 BILLS/KWHA • TOTAL : 108.779 BILLS/KWHR • KEPLINGER and Issociates, inc. -

TABLE 25-I (CONTINUED)

* BED IMPACTS FOR PLANT BO. 1 - ON LINE DATE : 1987 *

R&C CONFCUENT ANTICIPATED CHANGE CHANGE IN REVENUE (%) -22.00 BEQUIREMENTS (MILLS/KWHE) NUMBER OF PRODUCTION WELLS -14.1423 CAPITAL COST PEB FBCDUCTION WELL ~12.00 -8.1459 CAPITAL COST PER INJECTION WELL ~12.00 -2.2628 CAPITAL COST OF GATHEBING SYSTEM ~10.00 -0.0949 CAPITAL COST OF DISTRIBUTION SYSTEM ~10.00 -0.0965 CAPITAL COST OF FBOCESS MECHANICAL (UTILITY) ~50.00 -0.6446 CAPITAL COST OF CONDENSER & HEAT BEJECTION EQUIPMENT -20.00 -0.6630 PRODUCER DEEP WELL PUEP OGE COSI PACIOE (EINABY SISTEM , TEMP <260 C) ~67.00 -1.8711 LIFE SPAN OF PECEUCTION WELLS 20.00 -5.0543 LIFE SPAN OF INJECTION WELLS 100.00 -4.2531

** REVENUE BEQUIREMENTS WITH ALL THE RGD IMPACTS INCLUDED. **

P	BODUCEB	3	65.432	BILLS/KWHR	
1	DIILITY	:	9.859	MILLS/KWHR	
	TOTAL	:	75.291	HILLS/KNHR	

* SENSITIVITY OF COST OF ELECTRICITY (FROM PLANT NO. 1 , R&D INPACTS INCLUDED) *

RESOURCE & OPERATING PARABETERS

MILLS/KWHR

Leach, W

BIGH RESOURCE TEMPERATURE ESTIMATE (200 DEGREES CENTIGRADE)	46 476
LOW RESOURCE TERPERATURE ESTIMATE (140 DECRETS COMPLETED)	40.440
LOG RESCRICT LEFTRATORE ESTIBATE (140 DEGREES CENTIGRADE)	151, 133
HIGH CAPACITY FACTOR VALUE : C.85	70 863
LOW CAPACITY PACTOR VALUE . O CO	/0.002
	100.388
ELPENSING OF INTANGIBLE DRILLING COSIS (70.0% OF WRIT COSTS PROPHERIN	68 007
DEPLETICN ALIONANCE (22 04 CE CECCE THEORET)	04.397
	62.438
INVESTMENT TAX CREDIT (26.2% GROSS, 15.0% EPFECTIVE)	71 103
	/ L ~ 19/3

XXV-9

1 -

KEPLINGER and *fasociales*, inc. -

TABLE 25-I (CONCLUDED)

* REC IMPACTS FOR PLANT NO. 2 - ON LINE DATE : 1990 *

RED COMPONENT	ANTICIPATED CHANGE	CHANGE IN REVENUE
NUMBER OF PRODUCTION WELLS	(*)	REQUIREMENTS (MILLS/RWHR)
	-22.00	-14.1423
	-20.00	-13.5766
CAPITAL COST PER INJECTION WELL	-20.00	-3.7713
CAPITAL COST OF GATHERING SYSTEM	-10,00	-0.0909
CAPITAL COST OF DISTRIBUTION SYSTEM	-10 00	-0.0343 .
CAFITAL COST OF FROCESS MECHANICAL (HTTLITY)	-10.00	-0.0965
CAPITAL COST OF CONDENSED A HEAT DE LECTOR PORTAMENT	-30.00	-0.6446
DECRUCED STRUCT CONDENSER O MENT RESECTION EQUIPMENT	-20.00	-0.6630
PRODUCTA DEEP WELL FURP OCH CCST FACTOR (EINABY SISIEM , TEHP <260 (C) ~67.00	-1.8711
LIFE SPAN OF PRODUCTION BELLS	20.00	-5.0543
LIFE SPAN OF INJECTION WELLS	100.00	-4.2531

Leach, NV

** REVENUE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

_ 1	ROLOCER	:	60.285	BILLS/KWHR	
	UTILITY	:	9.859	MILLS/KWHR	
¢	TOTAL	:	70.144	MILLS/KWHR	٠

LEACH, concluded.

incentives. The sensitivity analysis for Plant 1 shows that expensing intangible drilling costs would reduce the levelized busbar cost by about 10.3 mills/kWh, that a 22 percent depletion allowance would reduce costs by at most 12.9 mills/kWh and that an increased investment tax credit to 15 percent effective would reduce costs by about 4.2 mills/kWh. Thus, the use of all three plus further incentives would be required to render this plant roughly competitive on the basis of cost. Within limits, changes in the levels of the depletion allowance or tax credit would produce proportional cost changes and such changes could be made to achieve a desired level of Federal incentive. However, very large incentives would be required to make this site cost-competitive.

Subsequent Plants

KEPLINGER and *fssociates*, inc.-

Plant 2 at the Leach site, an additional 50-MWe capacity, is scheduled to come on line in 1990. At that late date, RD&D-related technological improvements available in 1987 should bring the economics down to 70 mills/kWh, still highly noncompetitive with power from coal-fueled plants.

XXV-11

