Summary and Interpretation of Six Years of Groundwater Monitoring Data and Four Years of Geothermal Production and Injection Well Operations at the SB GEO, Inc Geothermal Binary Power Plant Steamboat Springs, Nevada

Volume I Report Document

Prepared for SB GEO, Inc.

by Colin Goranson January 1991 (415) 234-0522

Table of Contents

Q

![

•

Volume I

Executive Summary1
1.0) Introduction4
2.0) Geologic Description of the Steamboat Area (by P.C. van de Kamp)
2.1) Introduction4
2.2) Rocks Present in the Area5
2.3) Geologic Structure6
3.0) Production and Injection Well Data7
3.1) Introduction7
3.2) Well Completion Data7
3.3) Production and Injection Well Fluid Chemistry and Temperature8
3.4) Production and Injection History9
4.0) Monitor Well Data10
4.1) Introduction10
4.2) Monitor Well Completions11
4.3) Monitor Well Fluid Chemistry, Water Level and Temperature Data12
4.3.1) Pine Tree Ranch Well12
4.3.2) Peigh Domestic Well12
4.3.3) Flame Well13
4.3.4) Herz Geothermal Well13

	4.3.5) Herz I
	4.3.6) Brown S
	5.0) Comparison and Inter
	5.1) Introduction
	5.2) Water Chemistr
	5.3) Water Level an
	6.0) Discussion of Producti
	7.0) Conclusion
Ļ	References
	Figures
,	-
	Appendix 1 - Production
	Appendix 2 - Production
1	Appendix 3 - Production
	Appendix 4 - Injection Wei
	Appendix 5 - Observation
	Appendix 6 - Peigh Well M
I	Appendix 7 - Pine Tree Ra
	Appendix 8 - Flame Well N
	Appendix 9 - Herz Geother
	Appendix 10 - Herz Domes
	Appendix 11 - Brown Scho
- 1921	

.

Volume II Appendices

Appendix 1 - Production Well #1 Data1-9
Appendix 2 - Production Well #2 Data10-18
Appendix 3 - Production Well #3 Data19-27
Appendix 4 - Injection Well Completions
Appendix 5 - Observation Well Completions
Appendix 6 - Peigh Well Monitor Data
Appendix 7 - Pine Tree Ranch Well Monitor Data
Appendix 8 - Flame Well Monitor Data56 - 65
Appendix 9 - Herz Geothermal Well Monitor Data
Appendix 10 - Herz Domestic Well Monitor Data
Appendix 11 - Brown School Well Monitor Data

<u>List of Figures</u>

1

.....

. .

. .

|

Statut and

Figure 1) Location of The SB GEO, Inc. Steamboat Springs Geothermal Project
Figure 2) SB GEO, Inc. Production and Injection Well Locations25
Figure 3) Location of SB GEO, Inc. Monitoring Wells
Figure 4) North - South Cross Section Through the SB GEO, Inc. Field
Figure 5) Temperature Versus Depth for Selected Wells on the SB GEO, Inc. Lease
Figure 6) SB GEO, Inc. Production and Injection Flow Rate Plot29
Figure 7) Pine Tree Ranch Well Temperature, TDS and Water Level Data Versus Time
Figure 8) Pine Tree Ranch Well Piper Diagram
Figure 9) Peigh Domestic Well Temperature and TDS Plot
Figure 10) Peigh Domestic Well Piper Diagram
Figure 11) Flame Well Temperature, TDS and Water Level Plot34
Figure 12) Flame Well Piper Diagram35
Figure 13) Herz Geothermal Well Temperature, TDS and Water Level Plot
Figure 14) Herz Geothermal Well Piper Diagram
Figure 15) Herz Domestic Well Temperature, TDS and Water Level Plot
Figure 16) Herz Domestic Well Piper Diagram
Figure 17) Brown School Well Temperature and TDS Plot40
Figure 18) Brown School Well Chloride, Boron and Chloride/Boron Ratio Plot41

Figure 19) Brown School Piper Diagram	.42
Figure 20) Piper Diagram Showing Water Facies Classification for Data From 1985 and 1990 for SB GEO, Inc. Monitor Wells and 1990 Data for SB GEO, Inc. Production Wells	.43
Figure 21) Schoeller Plots for 1985 Monitor Well Data	.44
Figure 22) Piper Diagrams for Data from 1985 and 1990 for SB GEO, Inc. Monitor Wells and 1990 Data for SB GEO, Inc. Production Wells	.45

.

.

Ĺ

Executive Summary

This report summarizes six years of monitoring data that have been obtained by SB GEO, Inc. since January 1985. Full scale geothermal production and injection operations at the SB GEO, Inc. geothermal binary power plant (formerly known as the ORMAT power plant and the GDA plant) began in January of 1987. Geothermal reinjection operations require a permit from the Nevada Division of Environmental Protection (DEP). This five year DEP permit was issued in September of 1986 and comes up for renewal in September of 1991. The permit requires that the operator monitor the geothermal production and injection well flow rates, fluid chemistry and well head pressure over time. In addition, monitoring of water levels in three on-site observation wells is performed. Several off-site shallow domestic groundwater wells and low temperature geothermal wells are also monitored for water level and produced fluid temperature and chemistry. The monitoring of several nearby domestic groundwater wells and shallow low temperature geothermal wells began in January of **19**85.

Power plant operations require three production wells, PW-1, PW-2 and PW-3 and one injection well, IW-3. The geothermal supply wells are produced using downhole shaft driven pumps to supply ≈ 3700 gpm of geothermal fluid to a nominal 7 MW_e binary type power plant. The produced geothermal fluid temperature is $\approx 338^{\circ}$ F. The spent geothermal fluid, with a temperature that varies between 200°F to 230°F, is reinjected back into the geothermal system primarily through injection well IW-3. However, injection well IW-2 has been used as a back-up injection well on several occasions. The power plant uses an air cooled condensing process and, therefore, no cooling water is consumed in power plant operations.

The Steamboat Springs geothermal area has been classified as a Known Geothermal Resource Area (KGRA) by the United States Geological Survey (USGS). The Steamboat KGRA includes a high temperature area, with reservoir temperatures between 420°F to 460°F, located south of the SB GEO, Inc. operations area. A moderate temperature area, with temperatures between 320°F to 360°F encompasses the SB GEO, Inc. property. The reservoir data obtained to date indicates that the high and moderate temperature areas are isolated from each other. In addition to the high and moderate temperature areas, there are numerous low temperature areas in and around the Steamboat KGRA. The low temperature areas vary in measured temperatures, with temperatures >180°F noted. The low temperature areas have not been investigated in detail. Delineation of the low temperature areas is based on data from wells drilled for domestic groundwater use. The hydrogeologic environment of the low temperature fluid occurrence is not clear.

Subsurface production and injection intervals in the SB GEO, Inc. area occur in highly fractured granodiorite and volcanics at depths below ground surface of ≈ 400 feet to 600 feet. The permeability of this fractured reservoir system is abnormally high, even when compared to other fractured geothermal systems in the world. The permeability of the geothermal system is orders of magnitude greater than the shallow groundwater system located to the north of the geothermal production and injection area. The fractures in the area are postulated to be steeply dipping vertical fractures striking in a north to northeast direction. The geothermal system being produced by SB GEO, Inc. is bounded to the north by a fault of unknown strike and dip.

The produced geothermal fluid has a total dissolved solids content (TDS) of ≈ 2200 parts per million. There is no consumptive use of geothermal fluid, and therefore, the reinjected fluid has the same chemistry as the produced fluid. Groundwater in the immediate vicinity of the SB GEO, Inc. power plant is classified as a calcium-bicarbonate type. The geothermal production fluid and shallow low temperature geothermal wells in the area are a sodium-chloride type brine.

Between January 1987 and January 1990 \approx 7 billion gallons of fluid have been produced from the geothermal reservoir. Volumetrically, 6.6 billion gallons of water have been reinjected. However, on a mass basis 52 billion pounds of geothermal fluid have been produced and reinjected into the geothermal system. There have been no notable changes in either the produced geothermal fluid temperature or the produced fluid chemistry over the plant operating period.

Many of the domestic groundwater wells and shallow low temperature geothermal monitor wells in the area have well completions that allow for production from shallow groundwater aquifers and deeper geothermal zones. Monitoring data from nearby domestic groundwater wells and shallow low temperature geothermal wells have shown, in some cases, decreasing water levels and changes in fluid chemistry (increasing TDS). Decreasing groundwater levels in the groundwater and shallow low temperature geothermal wells is most likely due to the recent five year drought period and increases in water production from the shallow groundwater system in the South Truckee Meadows area. For wells completed in both groundwater aquifers and deeper geothermal zones, the decrease in available groundwater has manifested itself in a relative increase in the amount of geothermal fluid produced from the well. Thus, the TDS has slowly increased from wells where water levels have been decreasing over time.

In conclusion, the four years of production and injection operations at the SB GEO, Inc. geothermal power plant have shown no adverse impacts on either the geothermal system or the nearby groundwater system. The produced geothermal fluid chemistry and temperature have remained constant over time. Many of the domestic groundwater wells in the area have shown decreasing water levels and increasing TDS since the monitoring program was initiated, 2 years prior to geothermal operations at the SB GEO, Inc. power plant. The monitoring data indicates that increased production and injection from the geothermal system will not have any adverse impact on the nearby groundwater aquifers.

5.

5

SB GEO, Inc. (SBG) owns and operates a nominal 7 MW_e air cooled binary power plant which is located within the Steamboat Springs Known Geothermal Resource Area (KGRA). The Steamboat KGRA is approximately 9 miles south of the city of Reno, Nevada, as shown in Figure 1. Three production wells produce an aggregate \approx 3700 gpm of 338°F fluid from production zones at depths between 530 feet and 630 feet below ground surface. Production and injection well locations are shown in Figure 2. Two injection wells, IW-2 and IW-3, are currently available to the project for brine disposal purposes. Well IW-3 is the primary reinjection well which currently returns fluid to the geothermal system at depths between 400 feet and 520 feet. Reinjection temperature varies during the year between 200°F to 230°F due to the air cooled condensing method used for power plant operations.

Water level and produced fluid temperature and chemistry monitoring of the local groundwater system began in 1985, two years prior to full scale geothermal production and injection operations. This monitoring program was initiated in response to concerns of several local homeowners that geothermal development may have an adverse impact on the local groundwater system. The monitoring well locations used in the SBG monitoring program are shown in Figure 3. Several of the monitor wells, Peigh, Pine Tree, Flame, Herz Geothermal, Herz Domestic, Brown School and Trans-Sierra #3, are existing domestic wells. Three additional observation, wells, OW-1, OW-2 and OW-3, are located within the lease area and are monitored for water levels. These three wells were drilled as geothermal exploration wells during the early portion of geothermal development. Water samples and water levels are taken on a monthly basis for several off-site monitor wells. Several of the monitor wells have experienced a change in use or have had well pump failures since the initiation of the project and, therefore, are no longer available for monitoring.

This report describes the monitoring data that has been obtained during the six year period between 1985 to 1990. The data are analyzed for selected geothermal wells and monitor wells. Comparisons of the data over time are shown. The detailed individual well data are given in the Appendices following this report.

2.0) Geologic Description of the Steamboat Area

(Geology by Peter van de Kamp, Cornelis Corp., Napa, California)

2.1) Introduction

The geology of the Steamboat Springs area was mapped in detail by Thompson and White (1964) and their work forms the basis for the geological evaluation of the SB GEO, Inc. leases in the northeastern Steamboat Hills area. That information is supplemented with considerable subsurface data obtained in drilling for geothermal production and injection by SBG. The Thompson and White report includes a detailed geological map and several cross-sections through the area. This report presents a new cross section through the SBG geothermal area based on surface and subsurface data obtained since Thompson and White completed their study.

2.2) Rocks Present in the Area

The oldest rock unit present in the northeast Steamboat Hills is the granodiorite of Jurassic-Cretaceous age (estimated as 150 to 80 million years old). The granodiorite underlies the SBG leases and is penetrated by several wells as indicated on a north-south cross-section, Figure 4. Younger sediments, volcanic rocks and alluvial deposits overlie the granodiorite.

The granodiorite ranges from very fine to coarse-grained and generally shows little internal structure other than faults, fractures, and joints. Within it there are quartz veins and aplite and pegmatite dikes. Major minerals in the granodiorite are quartz, plagioclase, and K-feldspar with variable biotite, muscovite, chlorite, and amphibole with accessory sphene, zircon, apatite, epidote, pyrite, and magnetite. In some samples, plagioclase is zoned and it ranges from fresh to intensely sericitized and some grains are partially replaced by calcite. K-feldspar includes orthoclase, microcline, and perthites.

In outcrop it is apparent that there has been fracturing and faulting in the granodiorite. These features are also evidenced in drill cuttings from the subsurface by fragments of protomylonite and calcite veins (fracture fillings) in rock fragments. Hydrothermal alteration in and adjacent to fractures is shown by intense sericitization +/- kaolinization of plagioclase, in some cases accompanied by calcite replacement of feldspar as well as altered biotite. The biotite is more or less "bleached" to pale tan from deep brown or green and contains numerous minute grains of opaque material, probably iron oxides.

An unconformity between the granodiorite and the overlying Miocene Alta Formation represents a time hiatus of approximately 60 million years. The hiatus represents the late Cretaceous and Early Tertiary Laramide uplift and erosion event which removed several kilometers thickness of older metamorphic rocks into which the granodiorite was intruded to expose the granodiorite. Subsequently, volcaniclastic sediments and volcanic flows of the Alta Formation and the Kate Peak Formation were deposited on the eroded granodiorite. These volcanic units represent volcanic activity which accompanied the Oligocene-Miocene tectonic extension in the Basin and Range Province. In the SBG lease area, these volcanics and volcaniclastic sediments are up to 500 feet thick.

The Alta Formation is an early to mid-Miocene soda trachyte occurring mostly as lava flows and pyroclastics. In well IW-1 there is a 300

foot thick section of volcaniclastic sediments underlying volcanic flow rocks of the Alta Formation Where fresh, the volcanics are black, glassy rocks with plagioclase and hornblende phenocrysts. More commonly the rock is altered and is grey to purple.

The Kate Peak Formation, overlying the Alta Formation, is late Miocene to Pliocene age and is composed of andesitic volcanic flows and tuff-breccias up to several hundred feet thick.

Above the Tertiary volcanics there is an erosional unconformity representing late Pliocene and Pleistocene uplift and erosion. This event caused erosion of volcanics and granodiorite toward the south as indicated on the cross-section, Figure 4,. Alluvium now covers the erosionally thinned volcanics and granodiorite southward across the SBG field.

The alluvial sands, gravels, and boulder conglomerates are the youngest deposits in the area and represent debris eroded from rocks in the mountains west of the SBG lease area. These deposits are about 100 feet to 300 feet thick in the lease area and thin to the south toward bedrock outcrops but thicken to the north and east into the South Truckee Meadows area. In the area of the SBG production and injection wells, there is abundant silica sinter in the alluvium deposited from ancient hot springs which once flowed in the vicinity of the wells. The effect of the sinter is to cement the unconsolidated alluvium into a hard rock with much lower porosity and permeability than the alluvium in the surrounding South Truckee Meadows area.

2.3) <u>Geologic Structure</u>

The SBG leases are in an area of the northeastern Steamboat Hills which is part of the larger Steamboat Hills structural block which was uplifted relative to areas to the east, north, and west in Late Tertiary and Recent times. The uplift is bounded by steep dipping north-northeast and east-northeast trending normal faults with displacements of hundreds to 1000 feet or more. Faults with similar orientations also cut through the Steamboat Hills Block but appear to have relatively small displacements. In the vicinity of the SBG leases, the north-northeast trending faults are most significant for production of geothermal fluids.

The SBG production and injection wells are located along a north-northeast trending fault zone. In the distant past, this fault zone issued geothermal fluids to the surface where active hot springs and silica sinter precipitation, similar to the modern situation at the Steamboat Hot Springs located to the east, occurred. The fault of importance to SBG production is parallel to the Mud Volcano Fault, which is located about 4000 feet to the west. The Mud Volcano fault also has previously active geothermal manifestations. From available data, a possible orientation of SBG productive fault is estimated to be striking north 10 to 20 degrees east and dipping 80 to 85+ degrees west. This interpretation is based on the geometry of the surface fault trace and the intersections of lost circulation zones in the subsurface.

Production wells PW-1 and PW-3 and injection wells IW-2 and IW-3 have high permeabilities which are apparently related to the fractures in the north-northeast trending fault zone. Production well PW-2, which has a lower productivity than the other production wells, may have only partially penetrated the fracture zone. Observation well IW-1 (formerly classified as an injection well) may have less transmissivity because it is located several hundred feet west of the productive fault zone. The geologic information also suggests that a fault is located to the north of injection well IW-3. This fault may isolate IW-1 from the production field. A comparison of temperature data (discussed below) between injection wells IW-3 and IW-1 indicates that this fault is acting as a boundary to the northerly movement of geothermal fluid. The strike and dip of this fault is unknown. The actual boundary mechanism is not clear at this time. However, there is a distinct vertical offset and a decrease in temperatures in well IW-1. This well, IW-1, is the most northerly deep well in the field and the only well in which the volcanoclastic sediments have been found.

3.0) Production and Injection Well Data

3.1) Introduction

Production and injection rates are monitored continuously. Produced and injected fluid temperatures and pressures are monitored. In addition, downhole pressures in the production and injection wells are monitored. Fluid samples are analyzed for chemistry, pH and electrical conductivity annually.

Three production wells, PW-1, PW-2 and PW-3 (PW denotes production well) and two injection wells, IW-2 and IW-3 (IW denotes injection well), are used for the project. Injection well IW-3 is the primary injector with IW-2 used as a back-up well. The locations of the wells are shown in Figure 2. The wells are spaced relatively close together, approximately 500 feet (\approx 5 acre well spacing in oil field terminology). This close spacing is allowable due to the high permeability of the reservoir (transmissivity of \approx 2,000,000 md-ft). The injection area is located 500 feet from production well PW-1. No reservoir cooling has taken place due to reinjection. Reservoir testing has shown that there is hydraulic pressure communication between the production and injection wells.

3.2) Well Completion Data

The north-south cross section shown in Figure 4 also schematically represents the well completions for the production and injection wells (detailed well completion information are given in Appendices 1 through 5). The production intervals are located between 530 feet and 630 feet in granodiorite. Data from a recently drilled production well, located south of the existing production wells, indicates that the production interval extends to the south.

The injection zone is located between 400 feet and 520 feet. Injection well IW-2 was perforated at 400 feet in the volcanics and is also open to the granodiorite. The injection zone in IW-3 is located in both the volcanics and apparently at the contact between the volcanics and the deeper granodiorite.

3.3) Production and Injection Well Fluid Chemistry and Temperature

Table 1 shows the major chemical constituents of the produced fluid (detailed production fluid chemistry data are given in Appendices 1 through 3). Samples of production fluid are taken on a yearly basis. The geothermal brine chemistry has remained essentially constant over time and is similar for each of the production wells. The fluid is reinjected without removal of steam in the binary power plant process, and therefore, the injected fluid chemistry is the same as the produced fluid chemistry (ignoring a small amount of scale that forms in the heat exchangers). The brine is a sodium chloride type fluid which has a total dissolved solids (TDS) content of 2200 parts per million (ppm). The fluid is high in Boron (42 ppm) with an arsenic level of 1.5 ppm.

Constituent	Dissolved Content (ppm)
TDS	2200
Cl	780
Ca	15
Mg	0
Na	605
K	59
SiO_2	300
F	2.1
В	42.5
As	1.5
SOA	106

Table 1 Chemical Constituents of Geothermal Brine at the SB GEO, Inc. Geothermal Field Steamboat Springs, Nevada

Figure 5 shows the static temperature versus depth data for selected wells in the well field. Maximum temperatures are approximately 338° F. Maximum temperatures occur between 300 feet to 600 feet in the production and injection wells (PW-1, PW-2, PW-3, IW-2, IW-3). Well IW-1, the northerly most well in the field, has a maximum temperature of $\approx 300^{\circ}$ F at a depth of ≈ 800 feet. This data, along with the geologic information discussed above, and the fact that the transmissivity of well IW-1 is much lower than the production and injection wells, suggests that there is a flow boundary between this well and the production and injection field. The strike and dip of this boundary has not been determined.

Produced fluid temperature has remained relatively constant at 338°F. Injection temperature varies with time of the year due to atmospheric temperature effects on the plant cooling system. Power plant modifications in December of 1988 have reduced the injected fluid temperature to between 200°F and 230°F.

3.4) Production and Injection History

Figure 6 shows the monthly average production rates for each of the production wells. Flow rates varied considerably during the first year due to power plant modifications and well pump problems. Production rates have been relatively constant over the last 3 years at \approx 3700 gpm.

Figure 6 also displays the injection rate versus time for injection wells IW-2 and IW-3. Well IW-3 is normally used during power plant operations with IW-2 acting as a back-up well. The casing in well IW-3 reportedly "fell" several inches during late 1988 (reports vary on the amount of casing drop from several inches to 18 inches). The well was shut-in and an additional casing string was cemented inside the existing casing from 366 feet to surface (see Appendix 4). There are no data to determine whether there was any damage to the original casing in IW-3. During the IW-3 shut-in and workover period, back-up injection well IW-2 was used for reinjection.

Figure 6 also shows the total produced fluid and total injected fluid versus time. Approximately 7 billion gallons of water have been produced as of the end of 1990. The total injected volume is on the order of 6.6 billion gallons of water. The produced fluid volume and injected fluid volume are not equal due to the difference in temperature between produced and injected fluid. On a mass basis, the produced and injected masses are equal at 52 billion pounds.

It should be noted that no production well cooling has been observed. If the production and injection wells were completed in a homogeneous sandstone type reservoir, breakthrough (the appearance of injection fluid at the production wells) at well PW-1 would have occurred after 15 days. Thermal breakthrough of cooled injected fluid would have been ~25 days. By this time all of the production wells would have been cooled to the injected fluid temperature. The fact that there has been no cooling of the production wells indicates that the reservoir consists of steeply dipping fractures (as noted in the geologic structure). The reservoir structure and strong upward movement of hot geothermal fluids appears to cause the injected fluid to move vertically downward rather than laterally through the system.

4.0) Monitor Well Data

4.1) Introduction

Three observation wells are located on the site, OW-1, OW-2 and OW-3 (OW denotes observation well). These wells are small diameter wells drilled early in the geothermal project for exploration purposes. Well IW-1 was originally drilled as an injection well but the well injectivity was too low for use in the project. The well locations are shown in Figure 2. Well IW-1 and the observation wells are monitored for downhole pressure with capillary tubing and surface pressure gauge. In addition, these wells have low wellhead pressures that are measured. The pressure monitoring data are not shown in this report due to numerous measurement problems, unknown setting depth of the tubing, changes in equipment with time, incomplete data set, etc.

Seven privately owned domestically used wells are monitored off-site (these wells have been denoted by the owners name and termed monitor wells). The well locations are shown in Figure 3. The wells were drilled by local home owners or industrial users for private use. The owners have allowed SBG to monitor their wells. The wells were drilled as domestic groundwater wells. Drilling and completion data are ambiguous (except for the Herz Geothermal well).

Monitoring of the wells began in December 1984, two years prior to full scale geothermal production and injection operations. Full chemical analyses have been carried out quarterly and partial chemical analyses (partial analyses includes fluid temperature, TDS, Cl, B, As, SO₄, electrical conductivity and pH) are performed monthly. Water levels are measured monthly on wells with access for level equipment. Chemical analyses are carried out on waters from pumped wells. In some cases, well pumps have failed or wells have been modified in a manner that do not allow further monitoring. Table 2 details the type of monitoring performed on each of the wells.

Well Name	Chemical Analyses	Water Level	Fluid Temperature
Herz Geothermal	х	x	x
Herz Domestic	x		x
Peigh	х		X
Pine Tree	Х	х	X
Flame ¹	Х	х	x
Trans-Sierra #3 ¹	X	х	x
Brown School	X		

Table 2 SB GEO, Inc. Off-site Monitoring Program Steamboat Springs, Nevada

Note 1: indicates well no longer available

4.2) Monitor Well Completions

The monitor wells have been drilled and completed to groundwater well standards set forth by the Nevada Division of Water Resources (DWR). Groundwater wells in this area are typically drilled and completed by drilling the well to its total depth. The casing string is inserted in the well with the desired amount of slotted section at the bottom of the string and the upper portion blank. The slotted interval is gravel packed from the bottom of the hole to the top of the slotted casing interval. The blank upper portion of the string is cemented to the surface. Well casing diameters vary. Geologic materials encountered during drilling are interpreted by the well driller.

Detailed well completions and geologic descriptions are not available for the monitor wells. One of the monitor wells, Herz Geothermal well, was drilled in 1948 and some data are available in USGS reports by White (1968). The other monitor wells are assumed to be drilled between 1950's through the 1970's. DWR records are available for several wells in the area. However, the DWR records do not give detailed locations of the wells. In many cases, several wells have been drilled at the same reported location. Owners of the wells are usually not clear which well is which due to the fact that the wells were drilled years ago. In some cases the original well owner is not available. Available data are presented in Appendices 6 through 11.

4.3) Monitor Well Fluid Chemistry, Water Level and Temperature Data

Data plots from the monitor wells (except Trans-Sierra #3) are discussed individually in the following sections. Comparisons of the data are then made. The chemistry data have been plotted on Piper Diagrams (Piper, 1944) to allow for a visual inspection of well fluid chemistry changes with time. Temperature and water level data are also plotted with time. Monthly data from the monitoring wells are given in Appendices 6 through 11.

4.3.1) Pine Tree Ranch Well

Figure 7 shows the water level and produced fluid temperature and TDS data obtained from the Pine Tree Ranch Well (see Figure 3 for well locations). The upper data plot shows the produced fluid temperature and TDS versus time. The plot shows that as the temperature of the fluid increases the TDS increases. The lower data plot shows the well water level and produced fluid temperature as a function of time. As well static water levels decrease fluid temperature increases. There is also an annual cyclic variation in temperature that correlates with the cyclic variation in water level. In addition, the data indicates that water levels were decreasing prior to 1985. It is not clear how long water levels have been declining in the South Truckee Meadows area.

Figure 8 shows the water chemistry plotted on a Piper Diagram. The Piper Diagram represents the major cations and anions as a percent of total milliequivalents per liter (meq/l). The the Pine Tree Ranch fluid has increased over time in Cl and Na+K while decreasing in Ca, Mg and HCO₃.

4.3.2) Peigh Domestic Well

Figure 9 shows the data on produced fluid temperature and TDS versus time. The data show the TDS cyclically varying with time. There does not seem to be any direct relationship between fluid temperature and TDS. There are no water level data for this well. The produced fluid temperature is 85° F to 90° F, elevated above the mean annual air temperature of 50° F for this area. The TDS is low at 240 ppm. The chloride content (see Appendix 6) is 5 ppm.

Figure 10 is a Piper Diagram for the fluid chemistry. The data show no change in fluid chemistry with time. The well water for the Peigh Well is assumed to be groundwater with little or no geothermal component (this will be discussed in more detail below). The water is classified as a Ca-HCO₃ (calcium - bicarbonate) type water.

4.3.3) Flame Well

Figure 11 shows the water level and temperature and TDS of the produced fluid for the Flame well. This well may have been in use when the Flame Bar (located on Highway 431) was in existence. It should be noted that this well is located approximately 400 feet south of the Pine Tree Ranch Well. The data shows the the TDS has been increasing since 1985, two years prior to geothermal operations in the area. The TDS was 425 ppm in 1985 and increased to 1200 ppm in 1986. The fluid temperature increased from 50°F to 130°F during the same period. The reason for the decrease in temperature and increase in water level beginning in the first quarter of 1989 is unclear. However, this decrease in temperature occurred near to the time when the Flame Bar closed. Changes in well use may have affected the data.

Figure 12 depicts the well fluid chemistry on a Piper Diagram. The Ca has remained low and the Na+K high. The Cl has increased with time while the HCO_3 has decreased.

4.3.4) Herz Geothermal Well

Figure 13 shows the water level and produced fluid temperature and TDS for the Herz Geothermal well. This well had a measured bottom hole temperature of 180°F and a water level of 60 feet 54 days after it was drilled in 1948. The well has a TDS of ~1150 ppm and a produced fluid temperature of 125°F. The data plot shows that the water level was initially increasing from 1985 to the first quarter of 1988. During this period the TDS and temperature were falling slightly. The water level and temperature data indicate that as the water level increased the well temperature decreased. Following the first quarter of 1988, the fluid TDS and temperature increased as water levels decreased. This variation of temperature and TDS with water level is similar to the behavior in other wells. However, the increasing water level is not . The reason for this increasing water level is not clear. However, previous reports by van de Kamp and Goranson (1990) have noted this water level behavior in other wells in the area.

Figure 14 shows the water chemistry plotted on a Piper Diagram. The fluid chemistry has not changed with time. The fluid is classified as a Na-Cl brine. This fluid has the same signature as the SBG produced geothermal fluid.

4.3.5) Herz Domestic Well

Figure 15 shows the water level and the produced fluid temperature and TDS of the Herz Domestic well. The ≈ 220 ppm TDS is low. Prior to 1989, this well has large annual cyclic variations in the average produced fluid temperature. The fluid temperature varies with the time of the year by 35°F (from a minimum of 45°F to a maximum of 80°F). The TDS and temperature of the fluid began to increase in 1989. The water level began decreasing in 1986. In general, this well behaves similar to other wells in the area with an increase in temperature and TDS with decreasing water levels.

Figure 16 is a plot of the water chemistry on a Piper Diagram. The Cl has remained low while the Mg and Ca have decreased. The Na+K, HCO_3 and Cl have remained essentially constant over time. The trend in chemistry of this well is not clear. The 1990 data indicates that the Cl is beginning to increase and the HCO_3 is beginning to decrease. Additional data are needed to discern a trend.

4.3.6) Brown School Well

Figure 17 shows two plots of the TDS versus temperature for the Brown School Well at different TDS scale values. The TDS of this well has increased from 220 ppm to 1200 ppm since the middle of 1988. The upper plot demonstrates that the temperature and TDS of the fluid varies cyclically, as do other wells in the area, with the time of year. There is no increase in the average fluid temperature with time. This is clearly different from other monitor wells in the area that show good correlation between well temperature and TDS (ie, increase in TDS with an increase temperature).

Figure 18 shows plots of Cl, B and Cl/B ratio. The Cl-B plot shows that the Cl began increasing in the first quarter of 1988. However, the B did not begin to increase until about nine months later. The Cl-Cl/B plot indicates that the Cl/B ratio began to increase when the Cl began to increase. The Cl/B ratio reached a maximum of 310. The Cl/B ratio began decreasing as the B level began to increase.

Figure 19 is a Piper Diagram for the Brown School fluid. The data show that Cl is increasing and the Ca and Mg are decreasing. In addition the HCO₃ has decreased along with the Na+K.

It should be noted at this point that the geothermal water in the Steamboat Springs area has a constant Cl/B ratio of about 20. The fact that the Cl/B ratio reached a maximum of 310 in the Brown School well indicates that the source of the Cl was <u>not geothermal fluid</u>. It is also interesting to note that the CL/B ratio is <u>exponentially</u> declining to a level near that of geothermal fluids in the area. This exponential decline suggests that a slug of Cl rich solution had entered the aquifer system in which this well is completed.

5.0) Comparison and Interpretation of the Monitor Well Data

5.1) Introduction

Comparisons of the data obtained from the monitor wells can be made in several ways. The Piper Diagrams can be used to interpret the chemistry data in terms of mixing models and classify the well fluids as to there water facies (Back, 1962). The water classification can delineate groundwater, geothermal fluids and mixed groundwater-geothermal fluids. However, the fluid temperature data suggests that all of the monitor wells may have some geothermal component. Other methods can be used in geothermal evaluations to determine mixing models (Cl/B ratios, Cl-enthalpy plots, etc.) but they are not relevant to this report.

Detailed interpretation of the monitor well chemistry behavior versus time is hampered by the unknown well completions. Measured bottom hole temperatures in some wells are as high as 180°F. Produced fluid temperatures are elevated with respect to the mean annual air temperature in this area. The monitor wells have temperatures that vary with the time of the year. The produced fluid temperature variations correlate with the cyclic variation of well fluid water levels. There are no detailed temperature surveys for the monitor wells. nor are any geologic interpretations available. The correlation of cyclic water level variations with produced fluid temperature indicates that the monitor wells are completed in both a shallow groundwater aquifer(s) system and a deeper(?) geothermal system.

5.2) Water Chemistry Data Interpretation

Figure 20 is Piper Diagram with the water facies delineated. Data from 1985 and 1990 are shown on the plot (data for 1990 are not available for several wells and 1989 data are used). Also included on the Figure are data from the SBG production field. The Peigh well (P) is a Ca-HCO₃ type fluid. This fluid has low TDS, low Cl and low temperature and is assumed to be pure groundwater. The geothermal production fluid (X) is high in Cl and Na and low in HCO₃ and is classified as a Na-Cl brine. Mixing of geothermal fluid and groundwater (in the absence of any chemical reaction between the two) will be represented as a data point that would be located along a straight line drawn between the geothermal fluid (point X) and the groundwater well (point P). It is obvious that several of the wells fall along this line in 1985 and 1990.

Another graphical representation of the chemistry data that includes the magnitude of the dissolved solids content is made on a Schoeller Diagram (Schoeller, 1955). This plot is shown in Figure 21. This Figure also allows for a division to be made between the well fluid chemistries. The upper curve shows the Peigh groundwater well. The middle plot shows the wells that are mixed geothermal-groundwater wells and the lower plot shows the geothermal wells. The groundwater wells are high in Mg, Ca and HCO₃. The geothermal wells are high in Na and K, Cl and B (SiO₂ also) and low in Ca, Mg and HCO₃. Visually (or analytically) the groundwater and geothermal fluids can be mixed with the output being the middle plot of Figure 21. (Note: The Herz Domestic well (HD) and the Brown School (B) initially show up in the "No Dominant" type category of water classification. It is assumed that they are mixed geothermal and groundwater fluids. However, as shown below, they do not behave over time exactly as would be predicted from a non-reactive mixing model. Additional fluids may be in the area that are mixing with the fluids in these two wells. Additional geothermal fluids (and possibly groundwater fluids) exist in the area immediately east of Brown School.)

Figure 22 is a Piper Diagram with data from 1985 and 1990 along with arrows showing the trend in the data for individual wells. As mentioned above there are three different types of well fluid; groundwater, mixed geothermal-groundwater, and geothermal fluid. An explanation of each of the wells is given below (letter(s) in parentheses in the text are the letter designations used in Figure 22):

<u>The Peigh (P)</u> well is a assumed to be a pure groundwater well (although its fluid temperature is 90°F, above the mean average annual surface temperature of 50°F). The chemistry data indicates that there has been no change in the fluid chemistry over time.

<u>The Herz Geothermal (HG)</u> well is essentially geothermal fluid. There has been no change over time in the type of fluid in the well, although the TDS has gone up with time.

<u>The Pine Tree Ranch (PT)</u> well originally had a low TDS and temperature. In 1985 the well clearly had the fluid signature of a groundwater well. Over time the well has slowly produced a larger portion of geothermal fluid relative to groundwater fluid. However, there are large excursions in the TDS in 1988 and 1989 the reason for which is unknown.

<u>The Flame (F)</u> well is located 400 feet south of the Pine Tree Ranch well. The Flame well had a TDS that was somewhat higher than the Peigh groundwater well in 1985. The TDS increased from 425 ppm to 1200 ppm between 1985 to 1986. However, the well has slowly increased in the amount of geothermal fluid produced. The TDS is much higher than the Pine Tree Ranch well, whereas the temperatures are similar. It is assumed that the Flame well and Pine Tree Ranch wells are completed in different horizons.

<u>The Herz Domestic (HD)</u> well chemistry behavior is somewhat odd. The well has not changed in Ca and Mg, while the chloride has increased slightly. The Na and K have remained the same while the HCO_3 has decreased slightly. This behavior is not consistent with mixing of the Peigh groundwater type fluid and the Herz Geothermal well type fluid. It is possible that other types of groundwater or geothermal fluids are in this area. The Brown School (B) well chemistry behavior is also somewhat odd. The percent of Cl and HCO₃ in the fluid is similar to that of the geothermal fluids. However, the Na and K have decreased over time. This behavior also can not be explained by a mixing model with groundwater and geothermal fluids noted in the other monitoring wells. This may indicate that there are additional fluids in the area that are not noted in the monitor wells. It is also of interest that this well behaves similar to the Herz Domestic well. Both of these wells are located further north of the Steamboat Hills area than the other monitor and geothermal wells. It also should be noted that several geothermal wells are located east of the Brown School well with reported temperatures as high as $240^{\circ}F$.

5.3) Water Level and Temperature Data Interpretation

The groundwater levels in the South Truckee Meadows area have been declining since 1985. The South Truckee Meadows Improvement District (STMGID) has drilled several groundwater production wells and monitor wells north and northwest of the SBG monitor well area. In addition, Yankee Caithness Joint Venture, LP (YCJV) operates a steam flash power plant in the Steamboat Hills area south of the SB GEO, Inc. plant. YCJV monitors several wells in the area south, west and east of the SBG monitor wells area. The STMGID and YCJV monitor well data clearly show that water levels in South Truckee Meadows have been falling since 1985 and continue to fall (see van de Kamp and Goranson, 1990 and Goranson et al, 1990). The falling groundwater levels are most likely due to the prevailing drought conditions and the increased groundwater use by domestic and industrial users in the South Truckee Meadows area.

The SBG monitor well temperature and water level data show cyclic variations, long term decline in water levels and an increase in temperature over time. As water levels cyclically vary through the year the produced fluid temperature and TDS similarly vary. As well water levels fall the TDS and temperature of the produced fluids increase. When the water levels rise the TDS and temperature of the fluids decrease. Over time, produced fluid temperatures and TDS have increased as water levels have declined. This suggests that the monitor wells in this area are completed into aquifers that contain both groundwater and geothermal fluid. The monitor well completions and the aquifers penetrated are not known. However, it can be assumed that they are completed as other groundwater wells in the area with long slotted intervals and a 50 foot blank liner and cement cap at the top of the well.

There are two possible mechanisms to explain the temperature versus water level behavior. If we assume that monitor wells are completed in unconfined (or unsaturated) groundwater aquifers and a deeper geothermal aquifer (confined or completely saturated) then as groundwater levels decline the shallow unconfined aquifers will be reduced in the amount of groundwater they supply to the well bore. Since the flow rate from the monitor wells is constant over time (approximately) then the amount of geothermal fluid produced will increase with respect to the amount of groundwater produced from the well. Thus, the temperature and TDS of the fluid will increase and the chemical signature of the produced fluid will change with the fluid signature reflecting the increase in produced geothermal fluid (as shown in the Piper Diagrams for the well fluids).

Another possible mechanism is that as water levels decline geothermal influx into the shallow aquifer system increases. This allows for the geothermal fluid to "saturate" (or occupy) a larger thickness of the aquifer system that the well penetrates. Therefore, when the well is produced, a larger fraction (as compared to when water levels were high) of geothermal fluid will be produced. This again will allow for an increase in the temperature and TDS of the produced fluid and a change in its fluid signature.

The actual reservoir mechanism that has allowed the well temperatures and TDS to vary annually and increase over time is probably a combination of the above mechanisms. The cyclic variation is probably due to a decline in groundwater influx into the well, while the increase in temperature over time is due to an increased influx of geothermal fluid into the aquifer system.

6.0) Discussion of Production, Injection and Monitor Well Data

The geothermal fluid produced from the monitor wells is locally available to the wells. There are several low temperature geothermal areas located around the Steamboat Hills area. Wells have been drilled shallow to obtain cool groundwater, while a nearby (within 100 feet) deeper well will be drilled to intercept geothermal fluids for domestic heating. The low temperature geothermal aquifers have not been completely delineated. There are numerous low temperature systems to the north and east of Steamboat Hills. Several of these systems are located directly east of the Steamboat Hills area and hydraulically up gradient (ie; in locations that would require geothermal fluid to flow up "hill"). Several low temperature hot spring areas are located (or formerly located) two to four miles north of the Steamboat Hills area (Zolezzi and Damonte Hot Springs). In addition there are several hot spring areas and warm wells located in the Reno and Huffaker Hills area, miles north of the Steamboat Hills area.

The origin of the low temperature geothermal fluids in the South Truckee Meadows area is not clear. The low temperature fluids have been produced from domestic wells for many years, prior to geothermal production and injection operations. It is not clear whether the heated fluids have moved laterally away from the Steamboat Hills area or whether they are flowing vertically upward through fractures in the bedrock underlying the alluvium. Fluid mixing calculations, using the Peigh type groundwater and the SBG geothermal fluid, do not yield consistent results.

Of main concern to the geothermal operators, local homeowners, and various State and County Agencies is "What effect have geothermal production and injection operations had on the local groundwater system in the vicinity of Steamboat Hills?". It is clear from the production, injection and monitoring data obtained over the last six years, by both of the geothermal operators at Steamboat Springs, that there has been no effect on the local groundwater system from geothermal operations. The geothermal fluids produced from the low temperature monitor wells are similar in chemical signature to the SBG production wells. The shallow domestic groundwater wells have intercepted and produced geothermal fluid long before geothermal operations began in the area. The chemistry of the monitor wells has changed with time for several of the wells. However, these changes were beginning before geothermal operations commenced and are in fact due to domestic well completions that intercept both groundwater aquifers and a deeper low temperature geothermal system. Recent drought conditions and increased use of groundwater in the South Truckee Meadows area have caused groundwater levels to decline. This appears to have allowed geothermal fluid in the subsurface to migrate vertically upwards into the domestically used shallow aguifers. This influx of geothermal fluid, along with the decline in the amount of groundwater supply available to enter the wells, has allowed well temperatures and TDS to increase with time.

Another aspect that should be noted is that if reinjected geothermal fluid were moving laterally away from the production and injection area, one would expect water levels to rise in the area to the north. This is due to the fact that the injection well(s) are located physically closer to the northern monitor wells than the production wells (see Goranson 1989). There have been no water level increases in the area, only water level declines. In addition, the closest wells, the SBG production wells would be the first to see the injected fluid, and, by this time, the production wells would have cooled to the injected fluid temperature.

The injection and production wells are completed into the same highly permeable geothermal system. This is born out in; 1) the temperature of the injection wells is the same as the production wells, 2) the productivity (injectivity) of the injection wells is similar to the production wells, and 3) the chemistry of the production and injection wells is similar. The local groundwater wells have permeabilities that are orders of magnitude lower than the geothermal system. Fluid flow is always along the path of least resistance, which in this case is through the geothermal system and not outward into the groundwater area. In addition, the geologic and well temperature data suggest that there are flow boundaries to the north of the injection area. This would also reduce fluid movement to the north.

There has been concern that geothermal injection operations have caused the changes noted in the chemistry of the Brown School well. The chemistry data indicates that Cl began increasing nine months before B increases were noted. Since Cl and B are, in most cases, conservative (nonreactive) elements there is no way to explain the time delay in the B reaching the well. In addition, the initial Cl/B ratio (310) is much greater than that of the geothermal fluids (20). It is obvious that the Cl increase had to come from an extraneous source, other than reinjected geothermal fluid. However, it is likely that the Brown School well is producing a larger portion of geothermal fluid than in the past, similar to other wells in the area. Again, it should be noted that the Brown School well is located very near to an area where shallow wells have been drilled into a low temperature geothermal system with measured temperatures >240°F.

7.0) Conclusion

This report summarizes and interprets the production, injection and monitor well data obtained over the past six years by SB GEO, Inc. Over 7 billion gallons of geothermal fluid have been produced and 6.6 billion gallons of geothermal fluid have been reinjected as of the end of 1990. The injection wells are completed in the same geothermal system as the production wells. The geothermal injection wells are located 500 feet from the production area. No production well cooling has been observed. Six shallow domestic groundwater wells have been monitored, beginning in 1985. Full scale geothermal production and injection operations were established in 1987.

The shallow groundwater monitoring program has established that the monitor wells are completed in both shallow groundwater aquifers and deeper(?) low temperature geothermal zones. Groundwater levels have been declining in the area since 1985, due to drought conditions and increased water use in the South Truckee Meadows area. The decrease in groundwater levels has caused the domestic monitor wells to produce a larger amount of low temperature geothermal fluid, relative to the amount of groundwater produced, than they had produced in the past. The increased low temperature fluid production is manifested as an increase in produced fluid temperature and total dissolved solids content. One well, the Brown School well, has shown an increase in the produced total dissolved solids content due to an extraneous, other than geothermal fluid, source of chloride.

The monitoring program has been completely successful in developing an understanding of the behavior of the local groundwater system. Geothermal production and injection operations at Steamboat have had no deleterious effects on the local groundwater system. In addition, no reduction in geothermal reservoir output has been noted.

In conclusion, production and injection operations will continue to have no effect on the local groundwater system. Increased production and injection of geothermal fluids are similarly expected to have no effect on the local groundwater system. Continued monitoring of the nearby groundwater system is recommended to gain further understanding of the interaction between the low temperature geothermal system(s) and the shallow groundwater system located north of the SB GEO, Inc operations area.

References

- Back, W. 1966 Hydrochemical Facies and Groundwater Flow Patterns in Northern Part of Atlantic Coastal Plain. USGS Prof. Paper 498 -A
- Goranson, C. 1989 Reservoir Engineering Study of the Steamboat Springs Geothermal System, Washoe County, Nevada Unpublished Report Prepared for Yankee Caithness Joint Venture, LP
- Goranson, C. 1990 An Interpretation of the Relationship Between the Local Groundwater System and the Shallow Moderate Temperature Geothermal Areas in the Steamboat Springs Geothermal and South Truckee Meadows Area Unpublished Report Prepared for Yankee Caithness Joint Venture, LP
- Goranson, C., van de Kamp, P. and DeLong, T. 1990 Geothermal Injection and Monitoring Program at the Caithness Power, Inc. Flash Steam Power Plant Steamboat Springs, Nevada Proceedings of the Symposium on Subsurface Injection of Geothermal Fluids. Oct. 1990, Santa Rosa, CA
- Piper, A. M. 1944 A Graphic Procedure in the Geochemical Interpretations of Water Analyses. Trans. Amer. Geophys Union, 25.
- Thompson, G.A. and White, D.E., 1964, Regional geology of the Steamboat Springs area, Washoe County, Nevada, U.S. Geol. Survey, Prof. Paper 458-A
- Schoeller, H. 1955 Geochimie des eaux Souterraines Rev. Ins. Franc. Petrole, Paris
- van de Kamp, P. and Goranson, C. 1990 Summary of the Hydrological Characteristics of the Steamboat Hills Area, Nevada Unpublished Report prepared for Yankee Caithness Joint Venture, LP
- White, D. 1968 Hydrology, Activity, and Heat Flow of the Steamboat Springs Thermal System, Washoe County, Nevada USGS Prof. Paper 458-C

•

i .

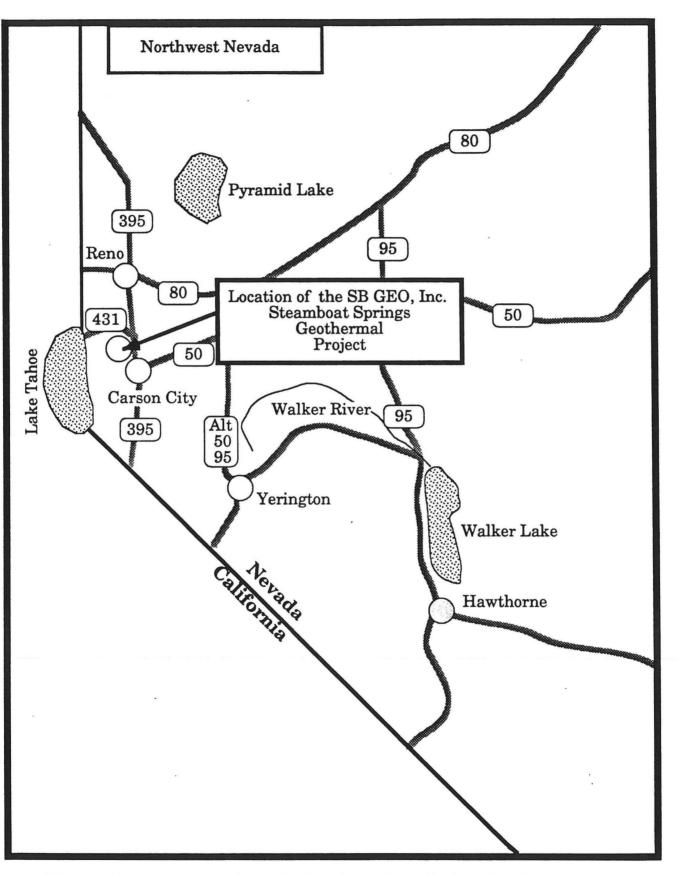


Figure 1) Location of the SB GEO, Inc. Steamboat Springs Geothermal Project

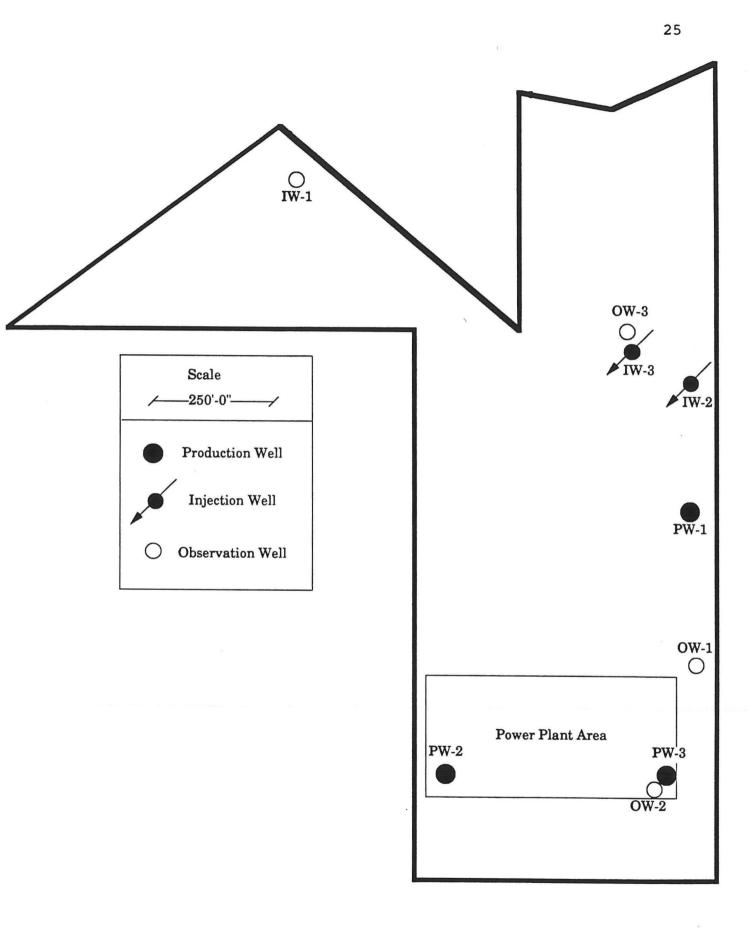
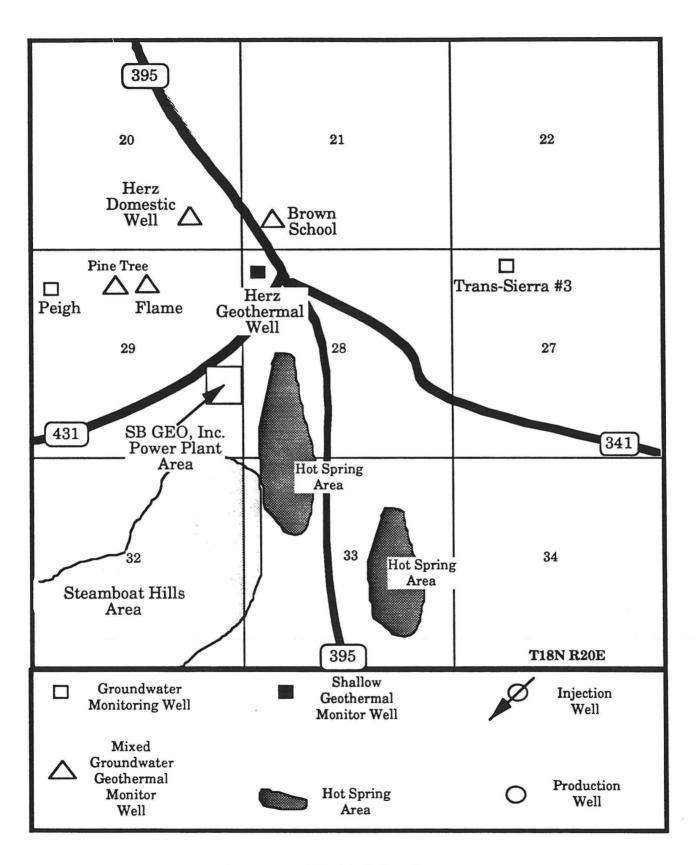
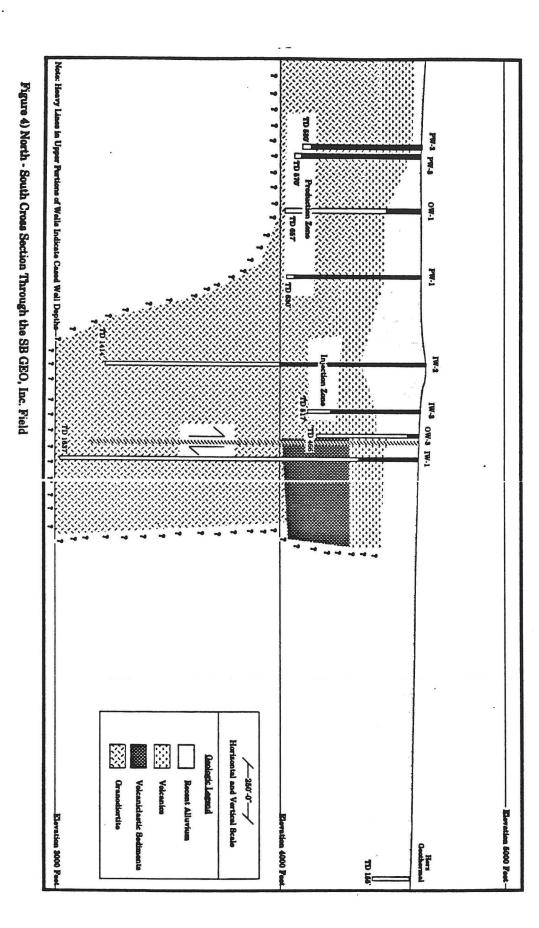



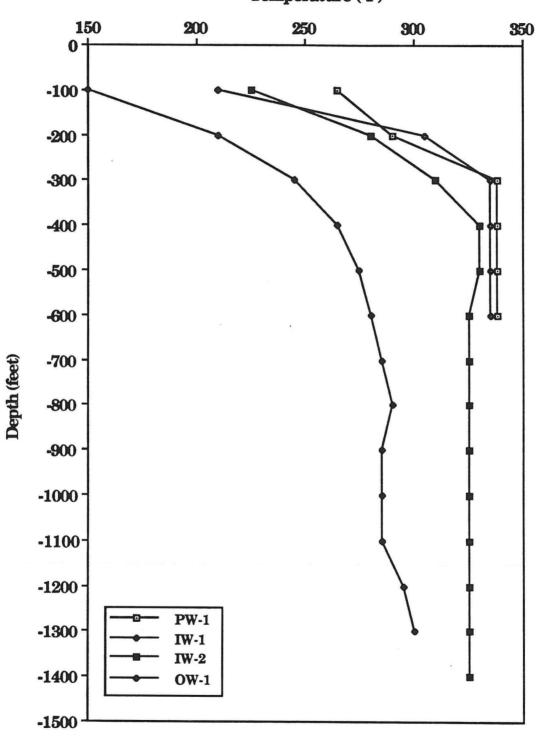
Figure 2) SB GEO, Inc. Production and Injection Well Locations

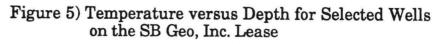


3

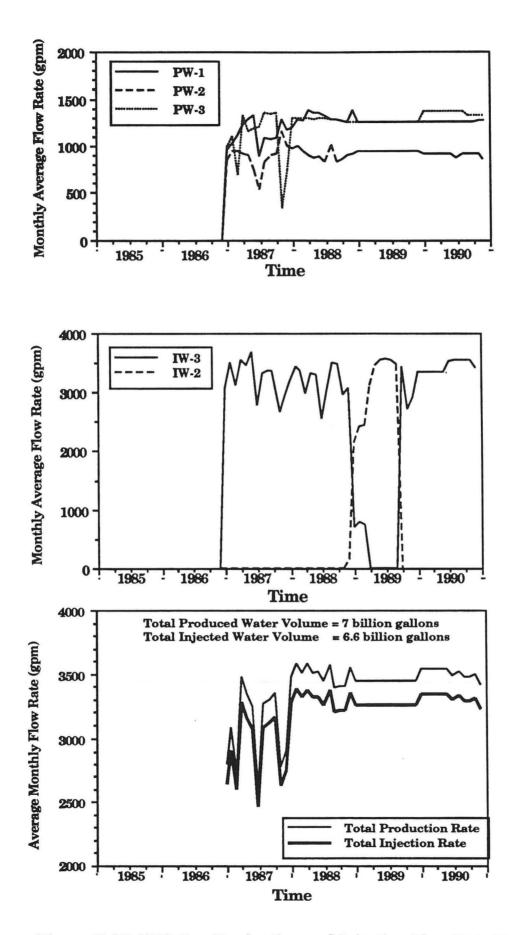
2

L

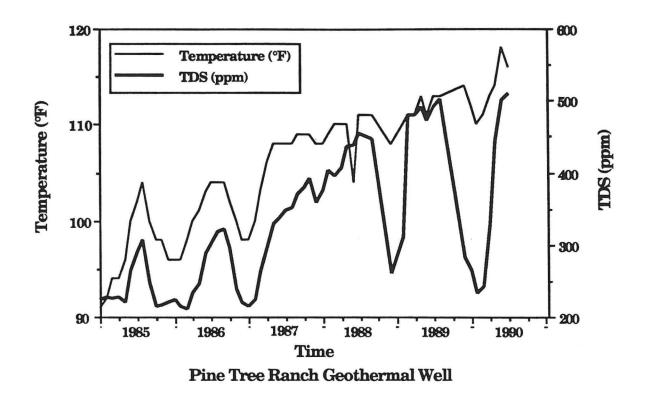

Figure 3) Location of SB GEO, Inc. Monitoring Wells

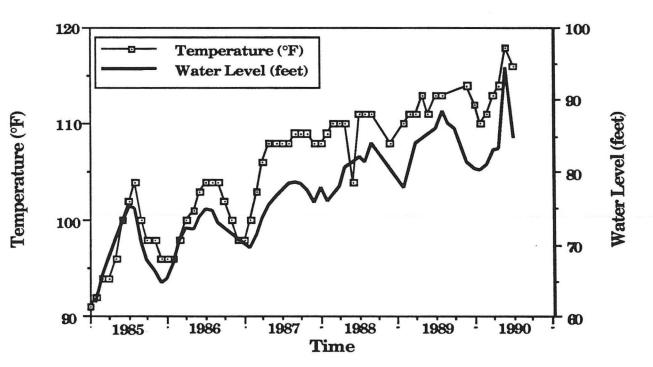


[.]27

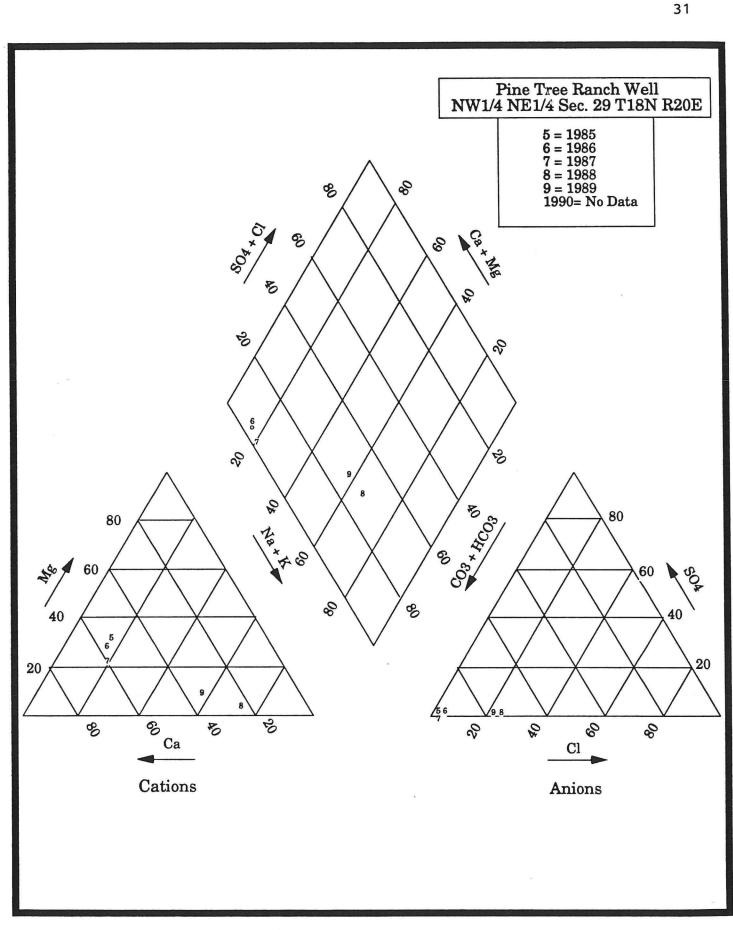

•

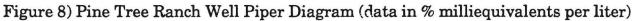
1. e. t. . .

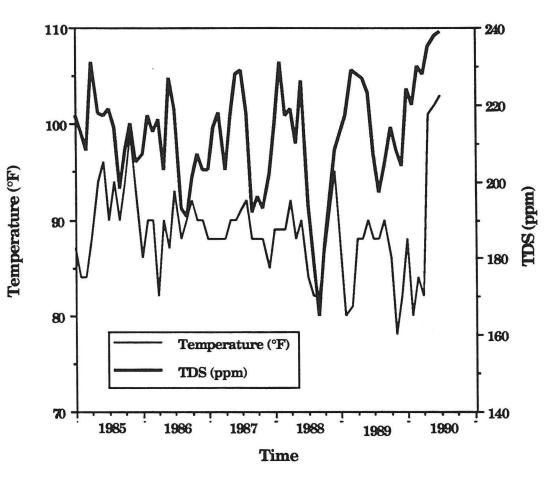




Temperature (°F)







L

Figure 9) Peigh Domestic Well Temperature and TDS Plot

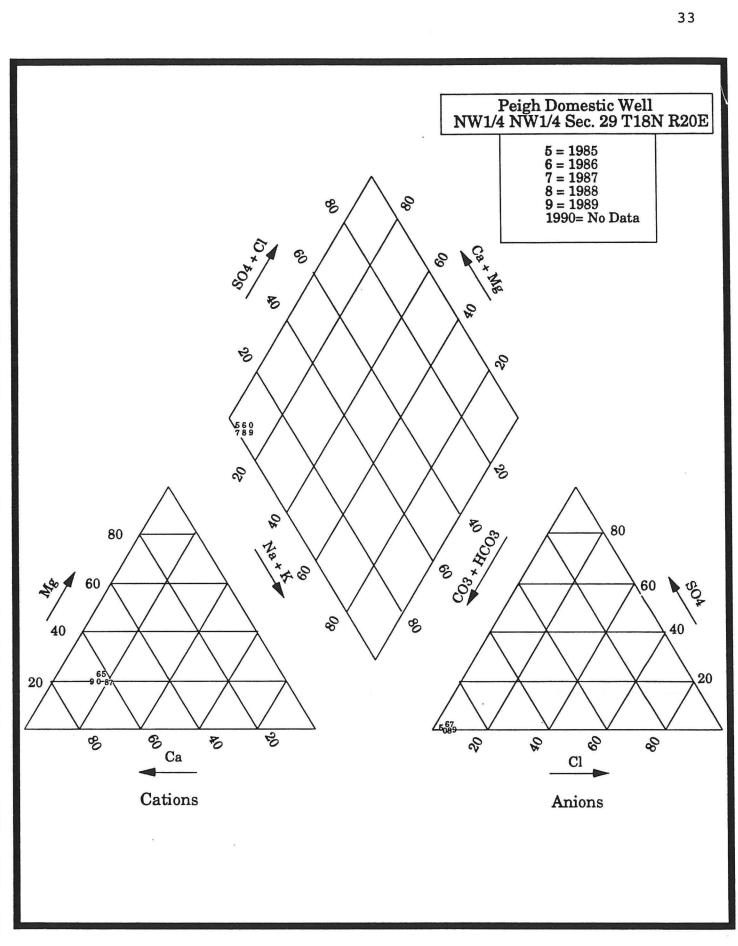


Figure 10) Peigh Domestic Well Piper Diagram (data in % milliequivalents per liter)

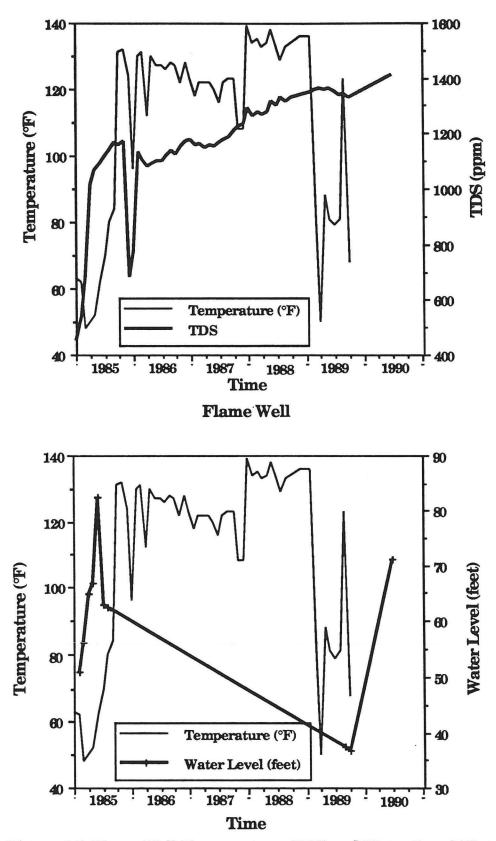
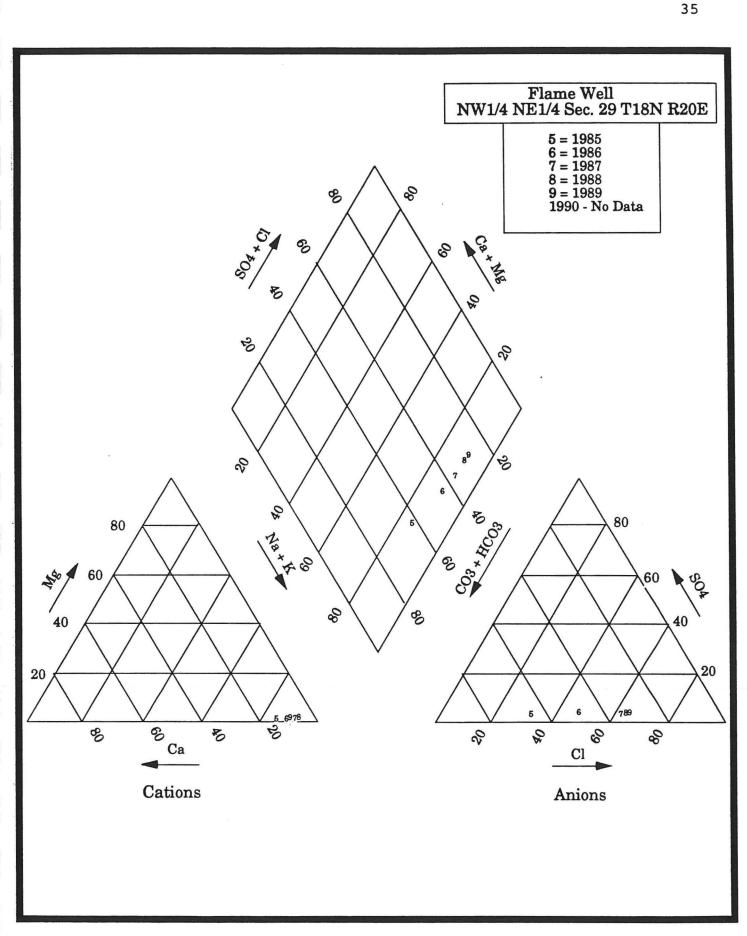
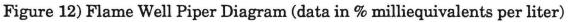




Figure 11) Flame Well Temperature, TDS and Water Level Plot

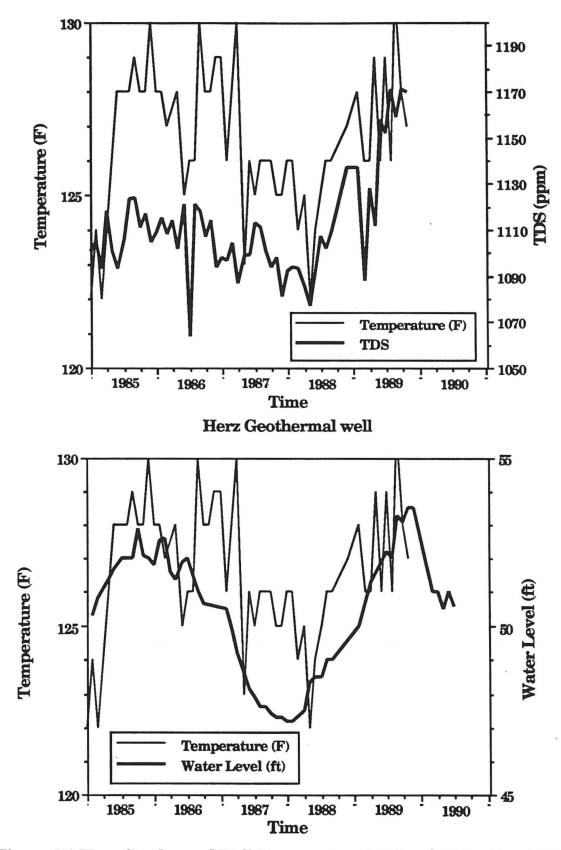


Figure 13) Herz Geothermal Well Temperature, TDS and Water Level Plot

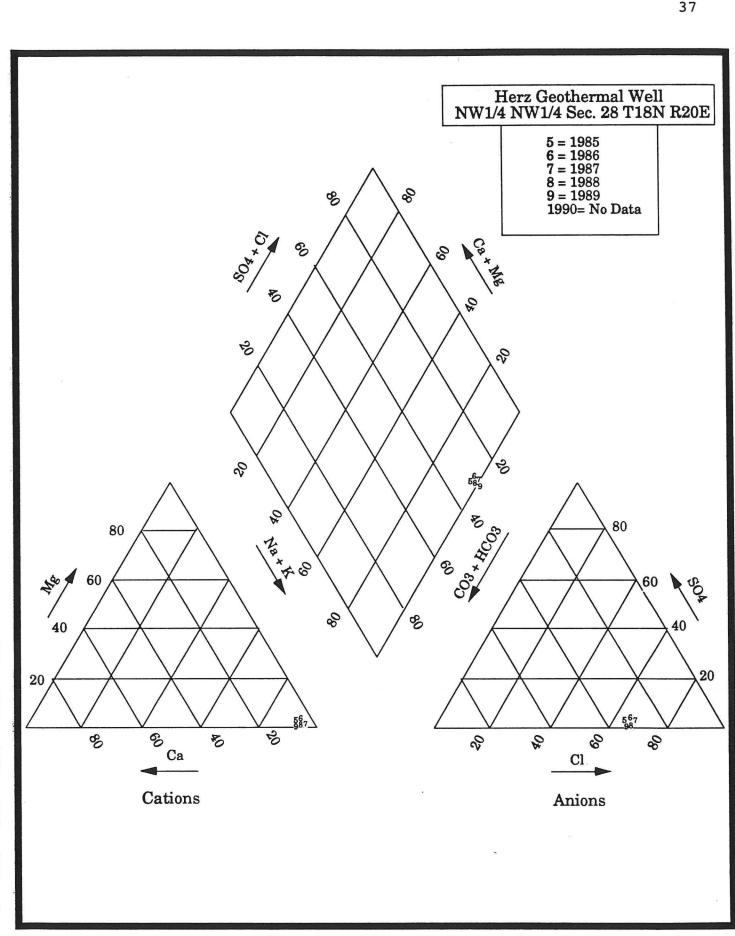


Figure 14) Herz Geothermal Well Piper Diagram (data in % milliequivalents per liter)

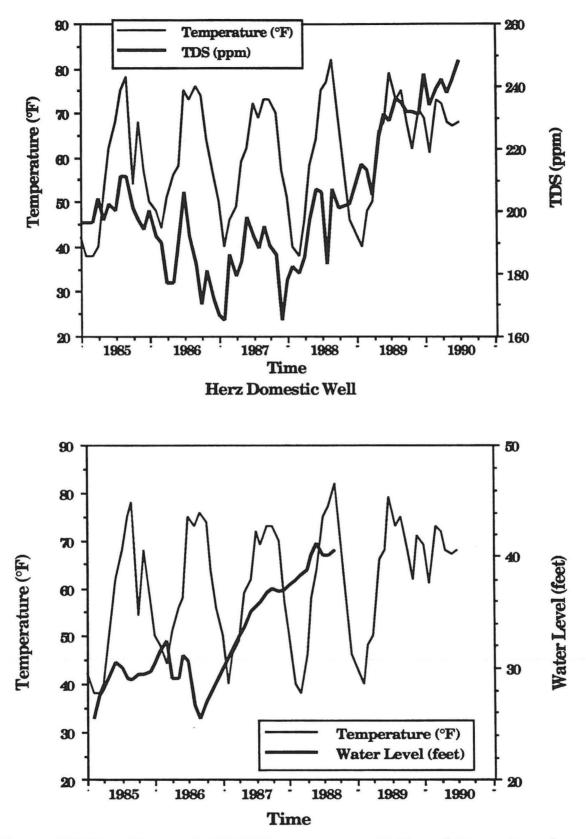


Figure 15) Herz Domestic Well Temperature, TDS and Water Level Plot

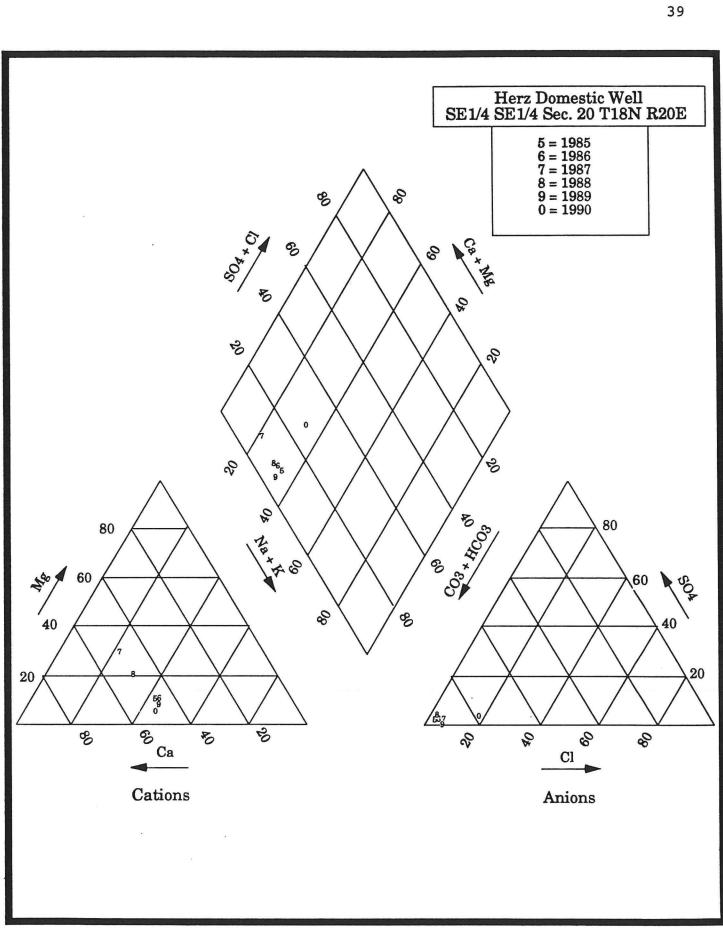
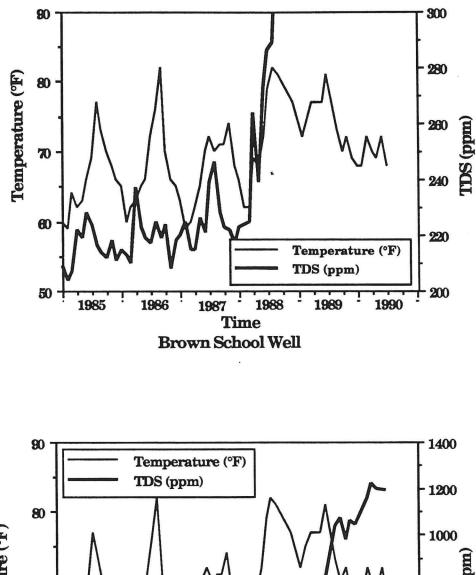



Figure 16) Herz Domestic Well Piper Diagram (data in % milliequivalents per liter)

L

.

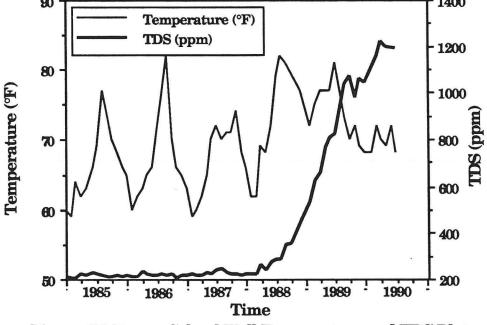
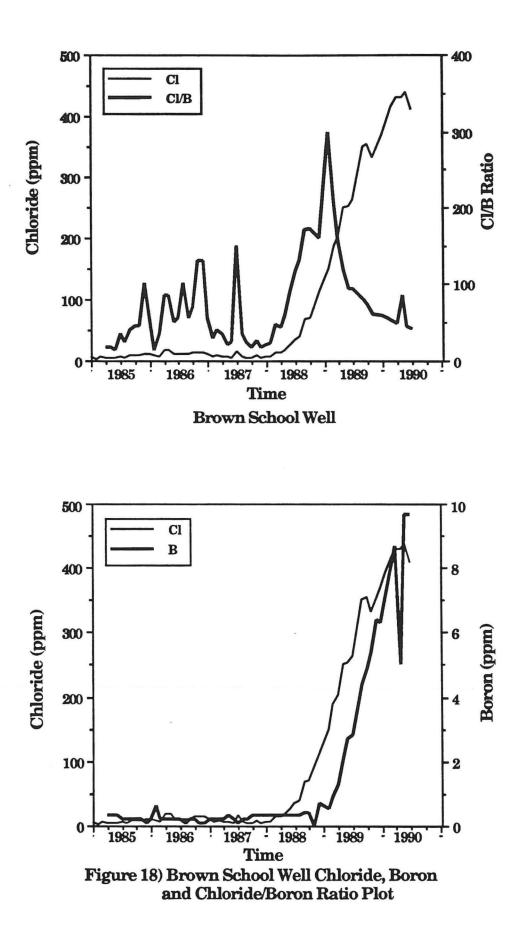
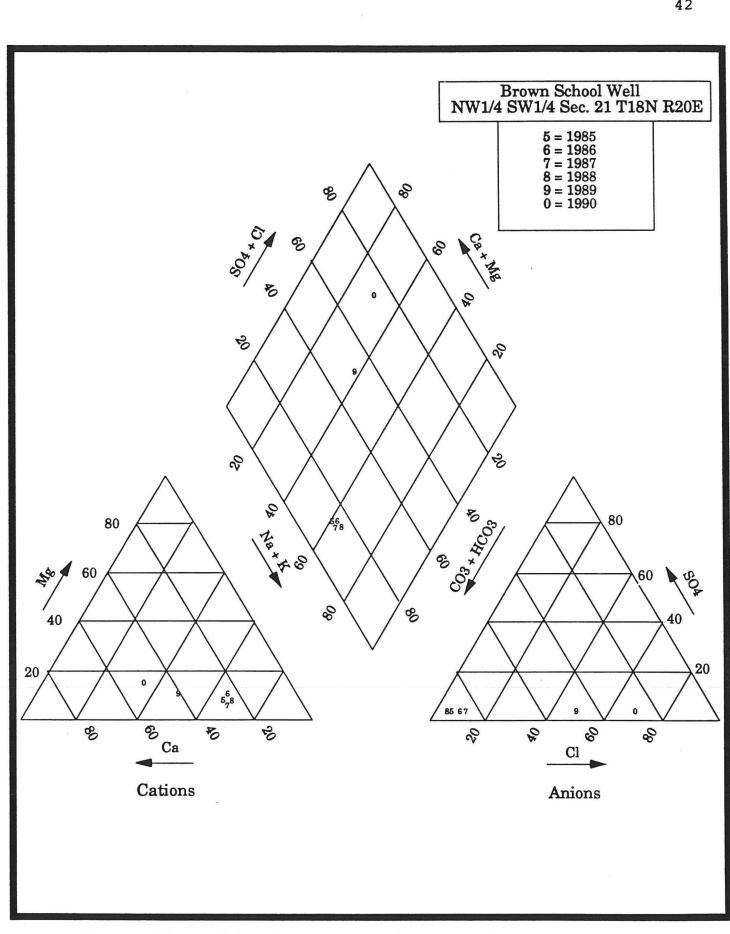
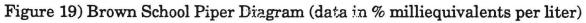
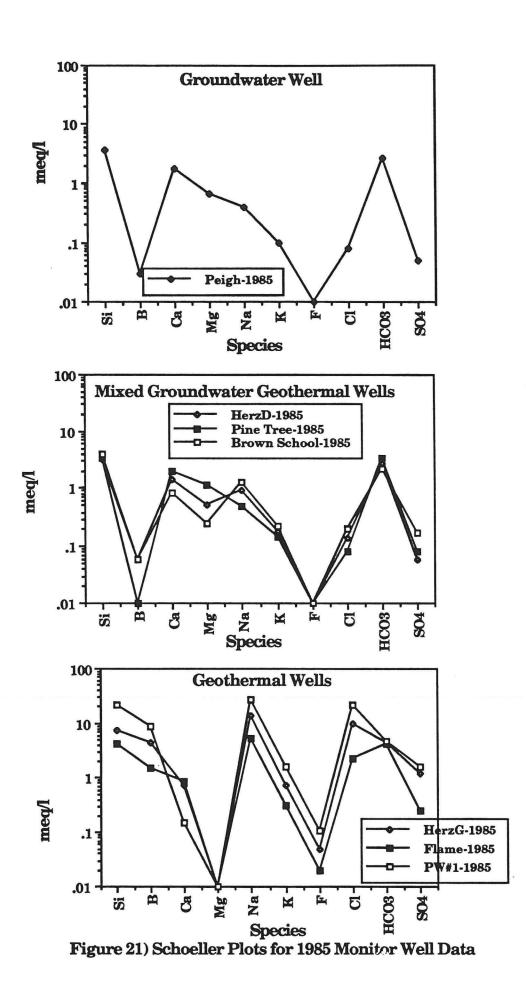




Figure 17) Brown School Well Temperature and TDS Plot




1

-

]

.

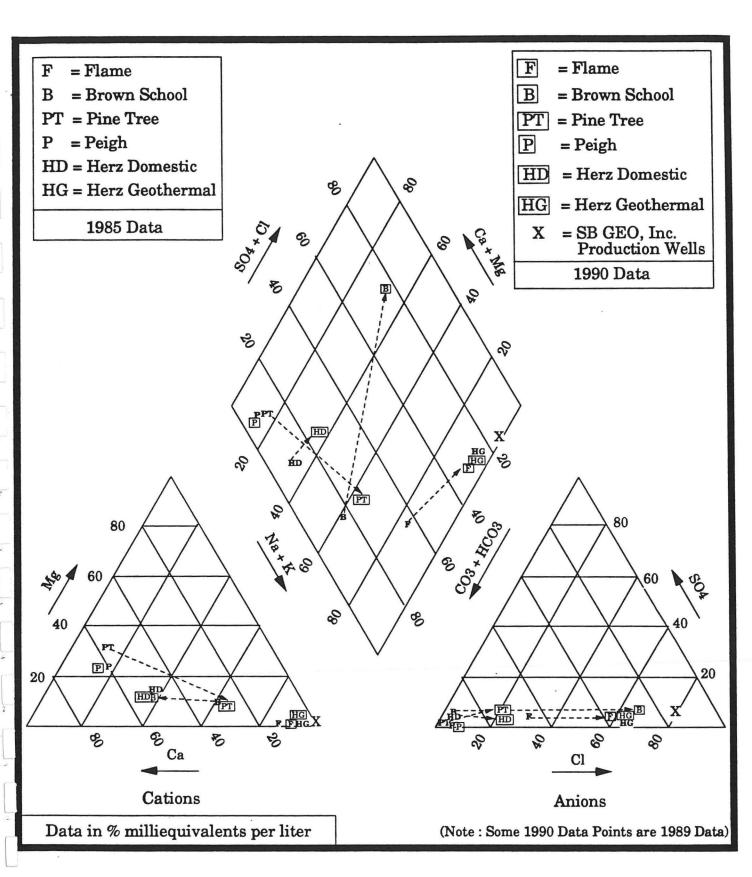


Figure 22) Piper Diagrams for Data from 1985 and 1990 for SB GEO, Inc. Monitor Wells and 1990 Data for SB GEO, Inc. Production Wells

Summary and Interpretation of Six Years of Groundwater Monitoring Data and Four Years of Geothermal Production and Injection Well Operations at the SB GEO, Inc Geothermal Binary Power Plant Steamboat Springs, Nevada

Volume II Appendices

Prepared for SB GEO, Inc.

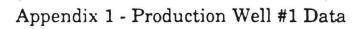
by Colin Goranson January 1991 (415) 234-0522

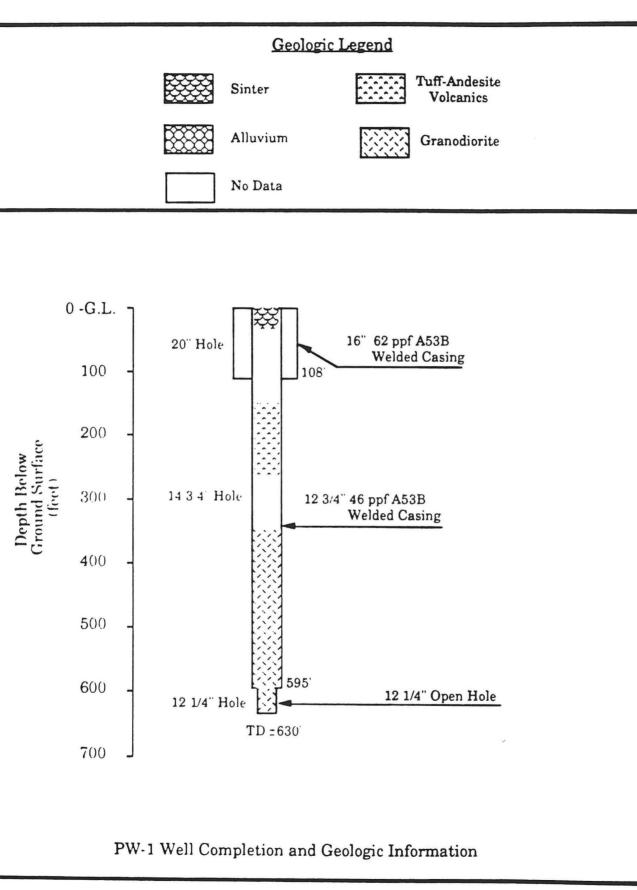
Table of Contents

 $[\!\!\!\!\!]$

Volume I

Executive Summary1
1.0) Introduction4
2.0) Geologic Description of the Steamboat Area (by P.C. van de Kamp)
2.1) Introduction4
2.2, Rocks Present in the Area5
2.3) Geologic Structure6
3.0, Production and Injection Well Data7
3.1) Introduction7
3.2) Well Completion Data7
3.3) Production and Injection Well Fluid Chemistry and Temperature
3.4 Production and Injection History9
4.0) Monitor Well Data10
4.1) Introduction10
4.2) Monitor Well Completions11
4.3) Monitor Well Fluid Chemistry, Water Level and Temperature Data12
4.3.1) Pine Tree Ranch Well12
4 .3.2) Peigh Domestic Well 1 2
4.3.3) Flame Well 1 3
4.3.4) Herz Geothermal Well13


4.3.5) Herz Domestic Well13
4.3.6) Brown School Well14
5.0) Comparison and Interpretation of the Monitor Well Data14
5.1) Introduction14
5.2) Water Chemistry Data Interpretation15
5.3) Water Level and Temperature Data Interpretation17
6.0) Discussion of Production, Injection and Monitor Well Data18
7.0) Conclusion
References
Figures


-

.

Volume II Appendices

Appendix 1 - Production Well #1 Data1-9
Appendix 2 - Production Well #2 Data 10-18
Appendix 3 - Production Well #3 Data 19-27
Appendix 4 - Injection Well Completions
Appendix 5 - Observation Well Completions
Appendix 6 - Peigh Well Monitor Data 36 - 45
Appendix 7 - Pine Tree Ranch Well Monitor Data
Appendix 8 - Flame Well Monitor Data
Appendix 9 - Herz Geothermal Well Monitor Data
Appendix 10 - Herz Domestic Well Monitor Data
Appendix 11 - Brown School Well Monitor Data

U

		Dis	solved s	olids co	ntent (j	opm)	Ι	n	neq./lit	er					% meq.			
	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990
CI	771.0	0.0	800.0	780.0	810.0	811.0	21.72	0.00	22.54	21.97	22.82	22.85	37.7	# # #	38.6	37.9	36.6	39.1
Ca	3.0	0.0	8.0	15.0	14.0	15.5	0.15	0.00	0.40	0.75	0.70	0.78	0.3	* * *	0.7	1.3	1.1	1.3
Mg	0.0	0.0	0.0	0.0	0.0	0.8	0.00	0.00	0.00	0.00	0.00	0.07	0.0	* * *	0.0	0.0	0.0	0.1
Na	637.0	0.0	614.0	605.0	676.0	618.0	27.70	0.00	26.70	26.30	29.39	26.87			-			
K	64.0	0.0	63.0	59.0	68.0	59.0	1.64	0.00	1.62	1.51	1.74	1.51						
SiO2	319.0	0.0	304.0	290.0	309.0	276.0	21.24	0.00	20.24	19.31	20.57	18.37						
HCO3	296.0	0.0	329.0	351.0	356.0	273.0	4.85	0.00	5.39	5.75	5.84	4.48	8.4	# # #	9.2	9.9	9.4	7.7
F	2.0	0.0	2.0	2.1	2.3	2.0	0.11	0.00	0.11	0.11	0.12	0.11						
В	31.0	0.0	44.0	42.5	42.0	42.0	8.61	0.00	12.22	11.81	11.67	11.67						
As	2.8	0.0	2.2	1.4	2.6	2.6												
SO4	102.0	0.0	112.0	106.0	117.0	118.0	1.59	0.00	1.75	1.66	1.83	1.84	2.8	# # #	3.0	2.9	2.9	3.2
Ca+Mg							0.15	0.00	0.40	0.75	0.70	0.84	0.3	# # #	0.7	1.3	1.1	1.4
SO4+Cl							23.31	0.00	24.29	23.63	24.65	24.69	40.4	# # #	41.6	40.8	39.5	42.3
Na+K							29.34	0.00	28.31	27.82	31.13	28.38	50.9	# # #	48.5	48.0	50.0	48.6
CO3+HCO3							4.85	0.00	5.39	5.75	5.84	4.48	8.4	# # #	9.2	9.9	9.4	7.7
Total	2227.8	0.0	2278.2	2252.0	2396.9	2217.9	57.65	0.00	58.39	57.95	62.32	58.39	2.3	# # #	-1.7	-1.4	2.2	0.1

No

ion

Production Well No. 1 Chemistry Data (meq/l)

.

.

ω

Date		Dec-84	Jan-85	Feb 85	Mar-85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	Dec-85
Time		0	30	61	.91	122	152	182	213	243	274	304	334	365
Flow Rate (gpr	m)													
Water Level														
TDS														2066.0
Cl														771.0
Ca														3.0
Mg														0.0
Na														637.0
K														64.0
SiO2														319.0
HCO3														296.0
F														2.0
B														31.0
As	1													2.8
SO4														102.0
SiO2(°F)														417
Na/K (°F)														365
Na/K/Ca (°F) B=.														597
Na/K/Ca (°F) B=1	1.33													3242
Cl/B														24.9

Production Well No. 1 Chemistry Data (ppm, gpm) - Page 1

Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	426	456	486	517	547	578	608	638	669	699	730
Flow Rate (gpm)												0
Water Level												
TDS												
Cl												
Ca												
Mg												
Na												
К												
SiO2												
HCO3												
F												
В												
As												
SO4												
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F) β=.33												
Na/K/Ca (°F) β=1.33												
Cl/B												

Production Well No. 1 Chemistry Data (ppm, gpm) - Page 2

S

Date	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87	Sep-87	Oct-87	Nov-87	Dec-87
Time	760	790	821	851	882	912	942	973	1003	1034	1064	1094
Flow Rate (gpm)	959	1028	1114	1230	1280	1320	881	1091	1070	1088	1287	1162
Water Level												
TDS												2200.0
Cl												800.0
Ca												8.0
Mg												0.0
Na												614.0
К												63.0
SiO2												304.0
HCO3												329.0
F												2.0
В												44.0
As												2.2
SO4												112.0
SiO2(°F)												410
Na/K (°F)												369
Na/K/Ca (°F) β=.33												573
Na/K/Ca (°F) ß=1.33												2245
CI/B												18.2

.

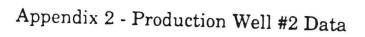
.

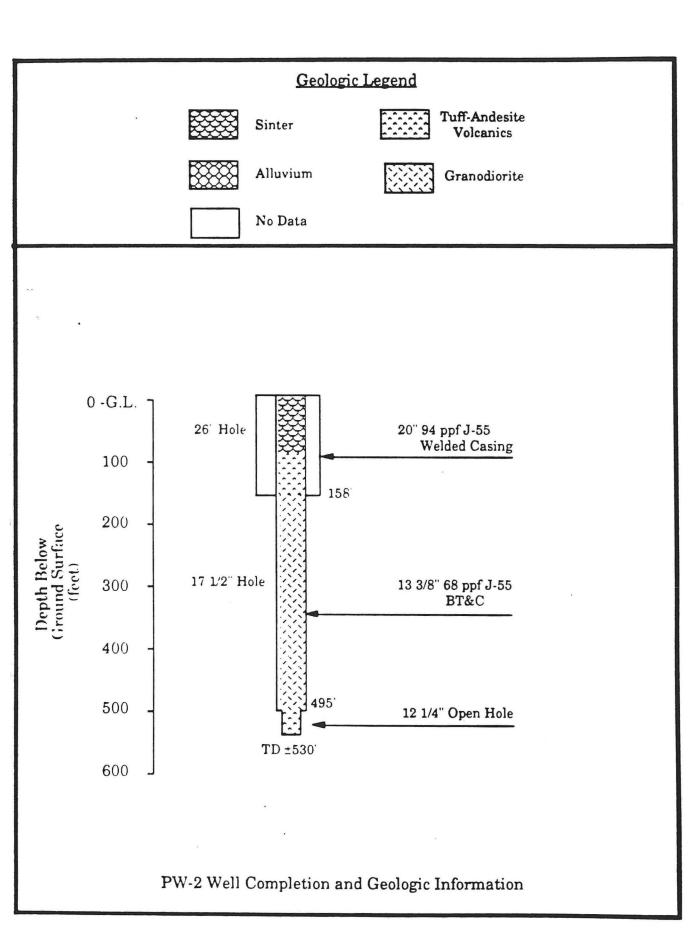
 ${\mathcal T}_{i}^{(1)}$

σ

Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88	Jun-88	Jul-88	Aug-88	Sep-88	Oct-88	Nov-88	Dec-88
Time	1125	1155	1186	1216	1246	1277	1307	1338	1368	1398	1429	1459
Flow Rate (gpm)	1201	1278	1270	1381	1357	1352	1322	1283	1278	1266	1250	1382
Water Level												
TDS												
Cl												
Ca												
Mg												
Na												
К												
SiO2												
HCO3												
F												
В												
As												
SO4												
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F) B=.33												
Na/K/Ca (°F) B=1.33												
Cl/B												

1


 $\overline{\qquad}$


Date	Jan-89	Feb-89	Mar-89	May-89	Jun-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89
Time	1490	1520	1550	1581	1611	1642	1672	1702	1733	1763	1794
Flow Rate (gpm)	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
Water Level											
TDS	2185.0										2242.0
Cl	780.0										810.0
Ca	15.0										14.0
Mg	0.0										0.0
Na	605.0										676.0
к	59.0										68.0
SiO2	290.0										309.0
HCO3	351.0										356.0
F	2.1										2.3
В	42.5										42.0
As	1.4										2.6
SO4	106.0										117.0
SiO2(°F)	404										412
Na/K (°F)	358										365
Na/K/Ca (°F) B=.33	548										560
Na/K/Ca (°F) B=1.33	1806						-				1989
Cl/B	18.4										19.3

Date	Jan-90	Feb-90	Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90	Dec-90
Time	1824	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Flow Rate (gpm)	1250	1250	1250	1250	1250	1250	1250	1247	1251	1252	1252	1272
Water Level												
TDS												2227.0
Cl												811.0
Ca												15.5
Mg												0.8
Na												618.0
К												59.0
SiO2												276.0
HCO3												273.0
F												2.0
В												42.0
As												2.6
SO4												118.0
SiO2(°F)												397
Na/K (°F)												354
Na/K/Ca (°F) B=.33												545
Na/K/Ca (°F) ß=1.33												1795
Cl/B												19.3

Production Well No. 1 Chemistry Data (ppm, gpm) - Page 6

.

Dissolved solids content (ppm) meq./liter % meg. 1985 1986 1987 1988 1989 1990 1987 1988 1987 1985 1986 1989 1990 1985 1986 1988 1989 1990 810.0 CI 0.0 0.0 800.0 840.0 802.0 22.82 22.54 23.66 22.59 # # # 37.7 39.0 0.00 0.00 # # # 37.5 40.5 Ca 0.0 0.0 10.0 6.0 10.0 14.0 0.00 0.50 0.30 0.70 0.00 0.50 # # # # # # 0.8 0.5 0.8 1.3 Mg 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 # # # # # # 0.0 0.0 0.0 0.0 616.0 576.0 0.0 Na 0.0 649.0 684.0 0.00 0.00 28.22 26.78 29.74 25.04 K 0.0 0.0 63.0 63.0 73.0 59.0 0.00 0.00 1.62 1.62 1.87 1.51 Si02 331.0 325.0 0.0 0.0 319.0 275.0 22.04 21.24 18.31 0.00 21.64 0.00 HCO3 0.0 337.0 337.0 # # # 0.0 290.0 248.0 0.00 0.00 5.52 4.75 5.52 4.07 # # # 9.1 8.2 8.7 7.3 F 0.13 2.2 2.2 0.0 0.0 2.4 2.4 0.00 0.00 0.12 0.12 0.13 12.36 11.72 B 42.2 0.00 0.0 0.0 44.5 43.8 41.5 0.00 12.17 11.53 As 0.0 0.0 1.9 0.2 2.0 2.7 **SO4** 114.0 115.0 119.0 118.0 0.00 0.00 1.78 1.80 1.86 1.84 # # # # # # 2.9 3.1 2.9 3.3 0.0 0.0 Ca+Mg 0.50 0.30 0.70 0.5 1.3 0.00 0.00 0.50 # # # # # # 0.8 0.8 SO4+Cl 0.00 24.60 24.33 25.52 24.44 # # # 42.1 43.8 0.00 # # # 40.7 40.4 Na+K 0.00 0.00 29.83 28.40 31.61 26.56 # # # # # # 49.3 49.1 47.6 50.1 5.52 CO3+HCO3 5.52 0.00 0.00 4.75 4.07 # # # # # # 9.1 8.2 8.7 7.3 Total 0.0 0.0 2362.6 2255.2 2434.6 2138.6 0.00 0.00 60.46 57.78 63.16 55.76 # # # # # # 0.3 -0.7 1.7 -2.2

Production Well No. 2 Chemistry Data (meq/l) (### = No Data)

.

Date	Dec-84	Jan-85	Feb-85	Mar 85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	Dec-85
Time	0	30	61	91	122	152	182	213	243	274	304	334	365
Flow Rate (gpm)													
Water Level													
TDS													
CI													
Ca							34. 						
Mg													
Na													
К													
SiO2													
HCO3													
F													
В													
As													
SO4													
SiO2(°F)													
Na/K (°F)													
Na/K/Ca (°F) B=.33													
Na/K/Ca (°F) B=1.33													
Cl/B													

Production Well No. 2 Chemistry Data (ppm, gpm) - Page 1

Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	426	456	486	517	547	578	608	638	669	699	730
Flow Rate (gpm)												0
Water Level												
TDS												
Cl												
Са												
Mg												
Na												
К												
SiO2												
HCO3												
F												
В												
As												
SO4												
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F) B=.33												
Na/K/Ca (°F) B=1.33												
Cl/B												

Proc _____ 70. 2

Date	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87	Sep-87	Oct-87	Nov-87	Dec-87
Time	760	790	821	851	882	912	942	973	1003	1034	1064	1094
Flow Rate (gpm)	849	943	943	921	899	7.40	531	833	900	914	1160	1000
Water Level												
TDS												2234.0
CI												810.0
Ca												10.0
Mg												0.0
Na												649.0
К												63.0
SiO2												331.0
HCO3						7.						337.0
F												2.2
В												44.5
As												1.9
SO4												114.0
SiO2(°F)												422
Na/K (°F)												357
Na/K/Ca (°F) ß=.33												561
Na/K/Ca (°F) β=1.33												2112
Cl/B												18,2

Production Well No. 2 Chemistry Data (ppm, gpm) - Page 3

. .

15

k.

•

.

Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88	Jun 88	Jul-88	Aug-88	Sep-88	Oct-88	Nov-88	Dec-88
Time	1125	1155	1186	1216	1246	1277	1307	1338	1368	1398	1429	1459
Flow Rate (gpm)	978	1006	946	897	871	881	833	1014	834	866	900	918
Water Level												
TDS												
Cl												
Са												
Mg												
Na												
к												
SiO2												
HCO3												
F												
В												
As												
SO4												
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F) B=.33												
Na/K/Ca (°F) B=1.33												
CI/B												

P ction II N

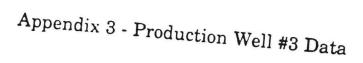
Production Well No. 2 Chemistry Data (ppm, gpm) - Page 4

Date	Jan-89	Feb-89	Mar-89	Apr-89	May-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89
Time	1490	1520	1550	1581	1611	1642	1672	1702	1733	1763	1794
Flow Rate (gpm)	950	950	950	950	950	950	950	950	950	950	950
Water Level											
TDS	2176.0										2318.0
Cl	800.0										840.0
Ca	6.0										10.0
Mg	0.0										0.0
Na	616.0										684.0
К	63.0										73.0
SiO2	319.0										325.0
HCO3	290.0										337.0
F	2.2										2.4
В	43.8										42.2
As	0.2										2.0
SO4	115.0										119.0
SiO2(°F)	417										420
Na/K (°F)	368										378
Na/K/Ca (°F) ß=.33	580										579
Na/K/Ca (°F) B=1.33	2468										2282
Cl/B	18.3										19,9

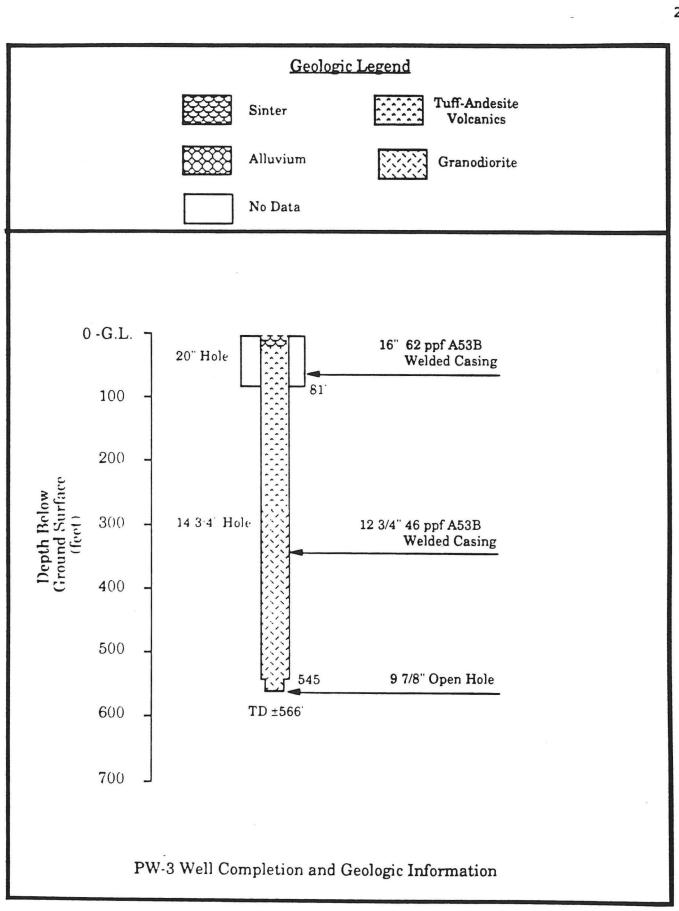
7rod 1 W 0. 2

Production Well No. 2 Chemistry Data (ppm, gpm) - Page 5

17


ц.

.


Date			Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90	Dec-90
Time	1824	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Flow Rate (gpm)	950	915	915	915	915	915	915	876	915	915	915	915
Water Level												
TDS												2113.0
Cl												802.0
Ca												14.0
Mg												0.0
Na												576.0
К												59.0
SiO2												275.0
HCO3												248.0
F												2.4
В												41.5
As												2.7
SO4												118.0
SiO2(°F)												396
Na/K (°F)												369
Na/K/Ca (°F) B=.33												555
Na/K/Ca (°F) ß=1.33												1829
CI/B												19.3

Production Well No. 2 Chemistry Data (ppm, gpm) - Page 6

.

.

		Diss	solved s	olids co	ntent (p	opm)		n	eq./lit	er					% meq.			
	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990
Cl	0.0	0.0	820.0	800.0	840.0	811.0	0.00	0.00	23.10	22.54	23.66	22.85	# # #	# # #	37.7	38.6	37.3	39.8
Ca	0.0	0.0	8.0	9.0	17.0	13.0	0.00	0.00	0.40	0.45	0.85	0.65	# # #	# # #	0.7	0.8	1.3	1.1
Mg	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	# # #	* # #	0.0	0.0	0.0	0.0
Na	0.0	0.0	658.0	620.0	674.0	613.0	0.00	0.00	28.61	26.96	29.30	26.65						
K	0.0	0.0	70.0	63.0	69.0	62.0	0.00	0.00	1.79	1.62	1.77	1.59						
SiO2	0.0	0.0	340.0	311.0	315.0	293.0	0.00	0.00	22.63	20.70	20.97	19.51						
HCO3	0.0	0.0	342.0	305.0	366.0	233.0	0.00	0.00	5.61	5.00	6.00	3.82	# # #	# # #	9.2	8.6	9.5	6.7
F	0.0	0.0	2.1	2.2	2.5	2.4	0.00	0.00	0.11	0.12	0.13	0.13						
В	0.0	0.0	44.4	43.8	43.2	43.0	0.00	0.00	12.33	12.17	12.00	11.94						
As	0.0	0.0	1.7	0.9	2.6	2.0												
SO4	0.0	0.0	108.0	112.0	119.0	119.0	0.00	0.00	1.69	1.75	1.86	1.86	# # #	* * *	2.8	3.0	2.9	3.2
Ca+Mg							0.00	0.00	0.40	0.45	0.85	0.65	# # #	# # #	0.7	0.8	1.3	1.1
SO4+Cl							0.00	0.00	24.79	24.29	25.52	24.70	# # #	# # #	40.5	41.7	40.2	43.0
Na+K							0.00	0.00	30.40	28.57	31.07	28.24	# # #	# # #	49.7	49.0	49.0	49.2
CO3+HCO3							0.00	0.00	5.61	5.00	6.00	3.82	# # #	# # #	9.2	8.6	9.5	6.7
Total	0.0	0.0	2394.2	2266.9	2448.3	2191.4	0.00	0.00	61.20	58.31	63.44	57.42	# # #	# # #	0.7	-0.5	0.6	0.6

Production Well No. 3 Chemistry Data (meq/l) (### = No Data)

.

.

Date	Dec-84	Jan-85	Feb-85	Mar-85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	Dec-85
Time	0	30	61		122	152	182	213	243	274	304	334	365
Flow Rate (gpm)													
Water Level													
TDS													
Cl													
Ca													
Mg													
Na													
к													
SiO2													
HCO3													
F													
В													
As													
SO4													
SiO2(°F)													
Na/K (°F)													
Na/K/Ca (°F) ß=.33													
Na/K/Ca (°F) B=1.33													
Cl/B													

Production Well No. 3 Chemistry Data (ppm. gpm) - Page 1

22

Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	426	456	486	517	547	578	608	638	669	699	730
Flow Rate (gpm)												0
Water Level												
TDS											1	
Cl											1 1	
Ca											1	
Mg											1	
Na											1 1	
К											[]	
SiO2	•										1	
HCO3											1	
F												
В												
As												
SO4												
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F) B=.33												
Na/K/Ca (°F) B=1.33												
CI/B												

;

٠

Production Vren No. 2

Production Well No. 3 Chemistry Data (ppm. gpm) - Page 2

Jan-87 Feb-87 Mar-87 Apr-87 May-87 Jun-87 Jul-87 Sep-87 Oct-87 Nov-87 Date Aug-87 Dec-87 Time 760 790 851 882 912 942 973 821 1003 1034 1064 1094 Flow Rate (gpm) 988 1104 691 1329 1160 1186 1194 1337 1354 333 748 1346 Water Level TDS 2169.0 Cl 820.0 Ся 8.0 Mg 0.0 Na 658.0 K 70.0 SiO2 340.0 HCO3 342.0 2.1 F B 44.4 1.7 As 108.0 **SO4** SiO2(°F) 426 Na/K (°F) 377 Na/K/Ca (°F) B=.33 582 Na/K/Ca (°F) ß=1.33 Cl/B 2390 18.5

Production Well No. 3 Chemistry Data (ppm. gpm) - Page 3

٠

.

٠

.

Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88	Jun-88	Jul-88	Aug-88	Sep-88	Oct-88	Nov-88	Dec-88
Time	1125	1155	1186	1216	1246	1277	1307	1338	1368	1398	1429	1459
Flow Rate (gpm)	1300	1300	1300	1300	1288	1292	1298	1275	1283	1269	1250	1248
Water Level												
TDS												
CI												
Са												
Mg												
Na												
К												
SiO2												
HCO3												
F												
В												
As												
SO4												
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F) B=.33												
Na/K/Ca (°F) B=1.33												
CI/B												

Pro on V No. :

.

Production Well No. 3 Chemistry Data (ppm. gpm) - Page 4

.

<u>____</u>

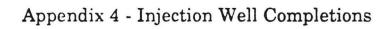
Date	Jan-89	Feb-89	Mar-89	Apr-89	May-89	Jun-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89
Time	1490	1520	1550	1581	1611	1642	1672	1702	1733	1763	1794	1824
Flow Rate (gpm)	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
Water Level												
TDS	2177.0										2296.0	
Cl	800.0										840.0	
Са	9.0										17.0	
Mg	0.0										0.0	
Na	620.0						jā.				674.0	
К	63.0										69.0	
SiO2	311.0										315.0	
HCO3	305.0										366.0	
F	2.2										2.5	
В	43.8										43.2	
As	0.9										2.6	
SO4	112.0										119.0	
SiO2(°F)	413										415	
Na/K (°F)	367										369	
Na/K/Ca (°F) B=.33	568										558	
Na/K/Ca (°F) B=1.33	2167										1891	
Cl/B	18.3				-						19,4	

Production wen No. .

Date	Jan-90	Feb-90	Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90
Time	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Flow Rate (gpm)	1370	1370	1370	1370	1370	1370	1373	1361	1317	1317	1320
Water Level											
TDS											2130.0
Cl											811.0
Ca											13.0
Mg			· ·								0.0
Na											613.0
К											62.0
SiO2											293.0
HCO3											233.0
F											2.4
В											43.0
As											2.0
SO4											119.0
SiO2(°F)											405
Na/K (°F)											366
Na/K/Ca (°F) β=.33											558
Na/K/Ca (°F) ß=1.33											1924
Cl/B											18.9

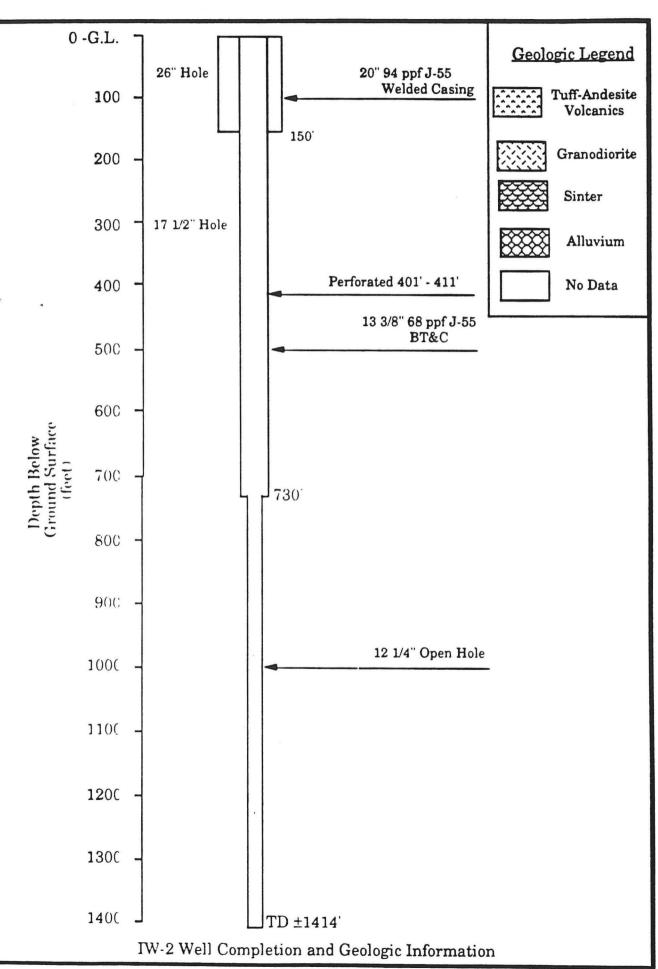
-'I N'

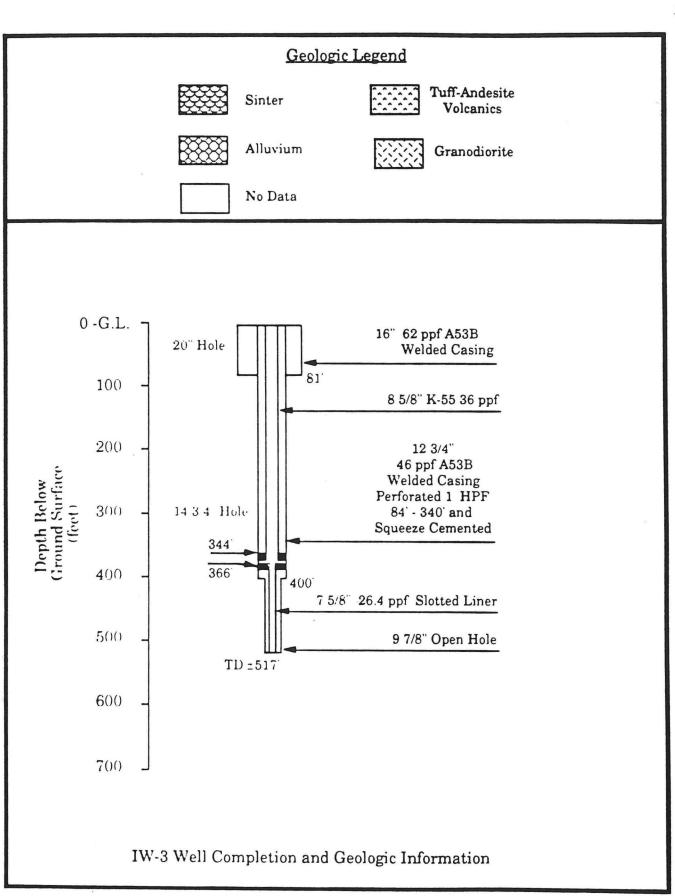
Production Well No. 3 Chemistry Data (ppm. gpm) - Page 6

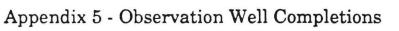

.

.

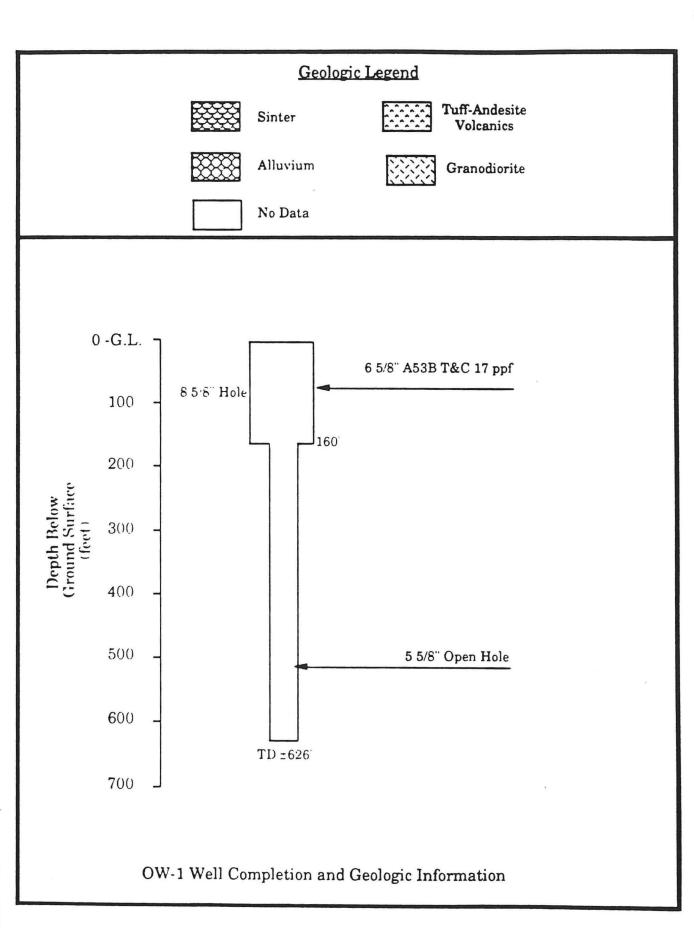
27

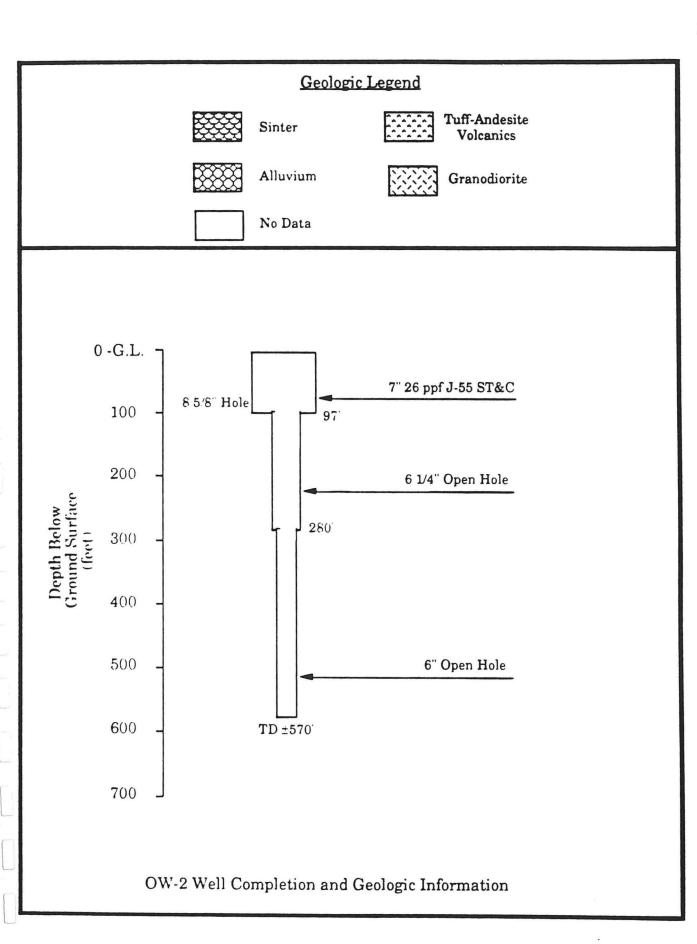

.

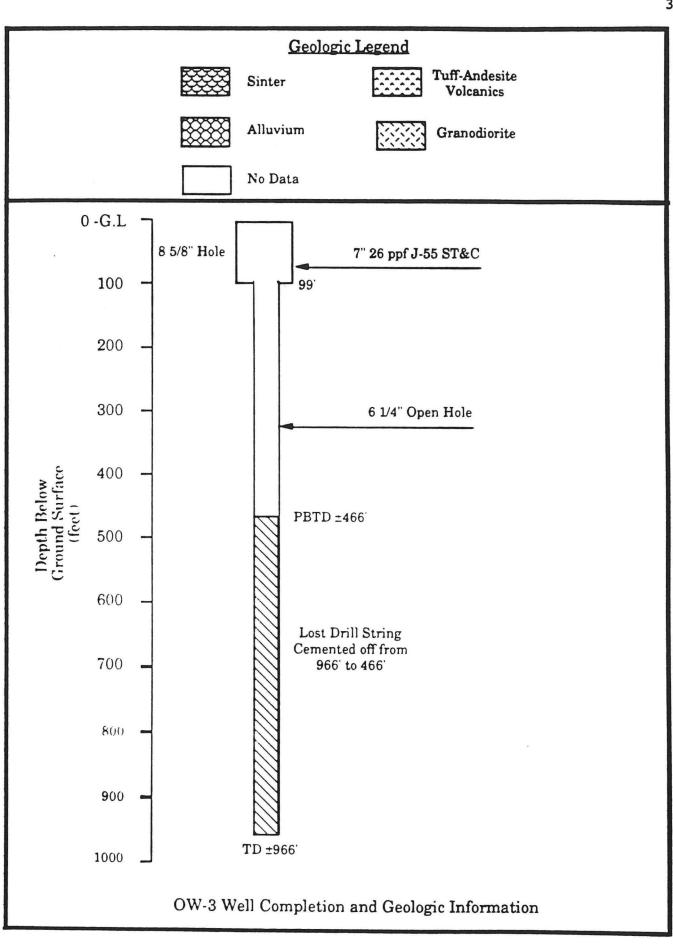


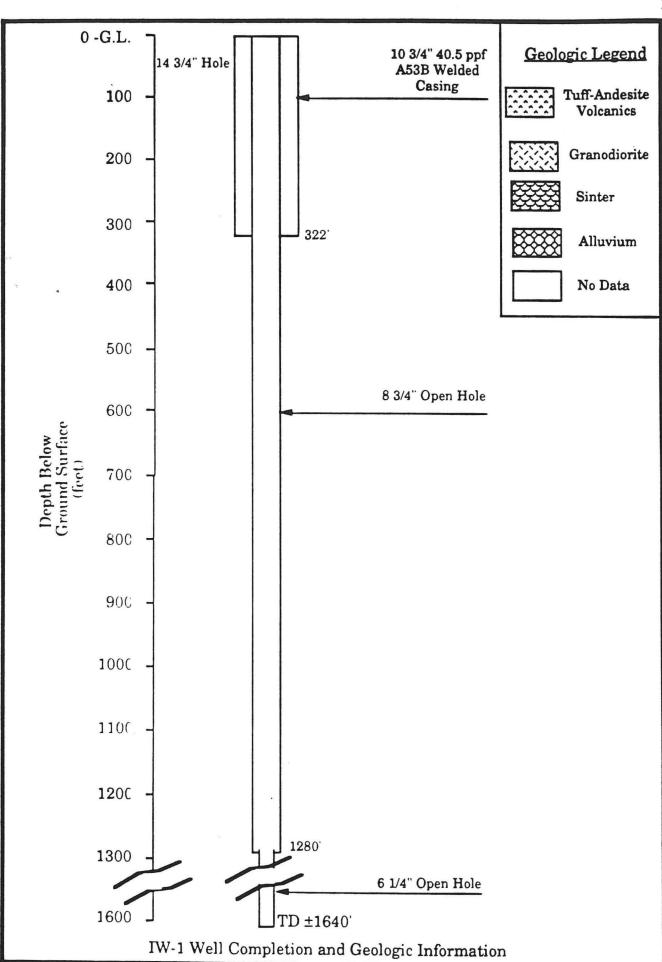


• .

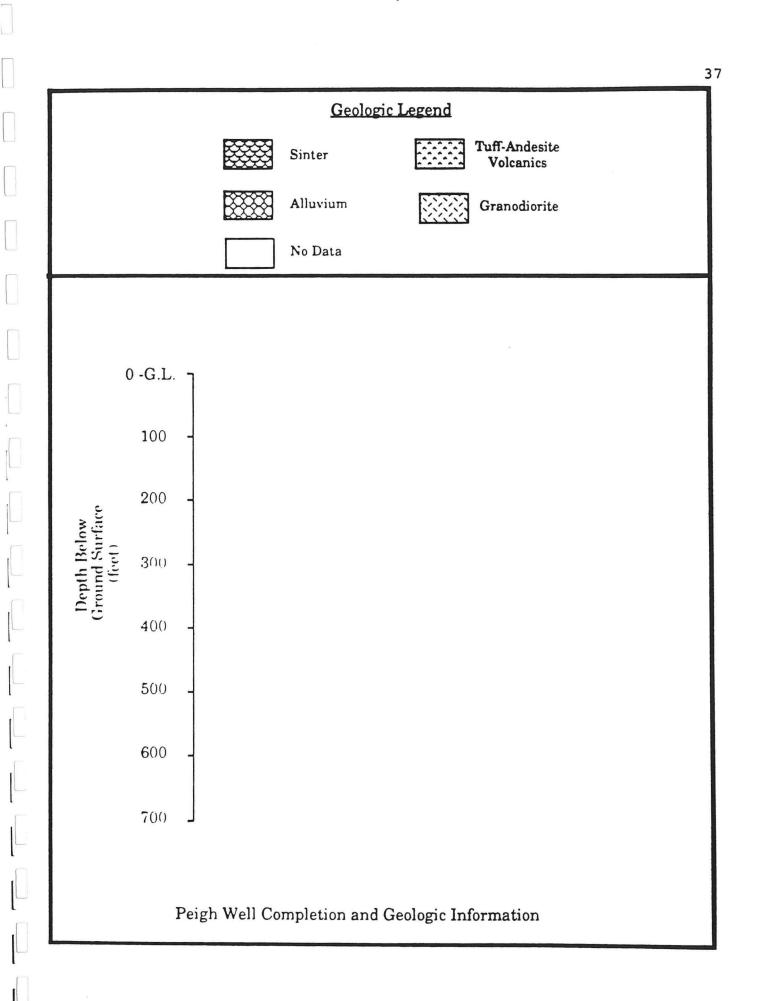

•

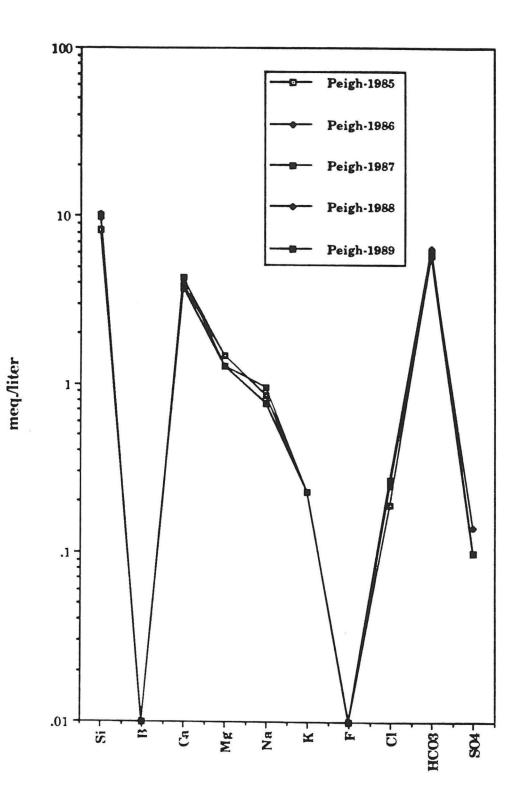






. .





Appendix 6 - Peigh Well Monitor Data

.

Species

		Diss	olved s	olids co	ntent (p	opm)		m	eq./lit	P r					% meq.			
	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990
Cl	3.0	3.0	4.0	3.0	6.0	5.0	0.08	0.08	0.11	0.08	0.17	0.14	1.5	1.5	2.0	1.4	2.8	2.2
Ca	35.0	35.0	34.0	38.0	39.0	42.0	1.75	1.75	1.70	1.90	1.95	2.10	30.6	30.5	30.1	31.3	32.3	32.4
Mg	8.0	8.0	7.0	8.0	7.0	8.0	0.67	0.67	0.58	0.67	0.58	0.67	11.7	11.6	10.3	11.0	9.7	10.3
Na	9.0	9.0	8.0	9.0	10.0	9.0	0.39	0.39	0.35	0.39	0.43	0.39						
К	4.0	4.0	4.0	4.0	4.0	5.0	0.10	0.10	0.10	0.10	0.10	0.13						
SiO2	56.0	66.0	67.0	70.0	68.0	71.0	3.73	4.39	4.46	4.66	4.53	4.73						
HCO3	163.0	163.0	168.0	178.0	171.0	181.0	2.67	2.67	2.75	2.92	2.80	2.97	46.8	46.6	48.8	48.1	46.4	45.8
F	0.0	0.1	0.1	0.1	0.1	0.1	0.00	0.00	0.00	0.00	0.00	0.00						
В	0.0	0.1	0.0	0.0	0.1	0.2	0.00	0.03	0.00	0.00	0.03	0.06						
As	0.0	0.0	0.0	0.0	0.0	0.0												
SO4	3.0	4.0	3.0	0.0	0.0	5.0	0.05	0.06	0.05	0.00	0.00	0.08	0.8	1.1	0.8	0.0	0.0	1.2
Ca+Mg							2.42	2.42	2.28	2.57	2.53	2.77	42.3	42.2	40.4	42.3	41.9	42.7
SO4+Cl							0.13	0.15	0.16	0.08	0.17	0.22	2.3	2.6	2.8	1.4	2.8	3.4
Na+K							0.49	0.49	0.45	0.49	0.54	0.52	8.6	8.6	8.0	8.1	8.9	8.0
CO3+HCO3							2.67	2.67	2.75	2.92	2.80	2.97	46.8	46.6	48.8	48.1	46.4	45.8
Total	281.0	292.2	295.1	310.1	305.2	326.3	5.71	5.73	5.65	6.06	6.04	6.47	1.9	1.6	-3.2	1.0	1.6	1.5

Peigh Domestic Well Data

Date	Dec-84	Jan-85	Feb-85	Mar-85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	Dec-85
Time	0	30	61	91	122	152	182	213	243	274	304	334	365
Temperature	87.0	84.0	84.0	88.0	94.0	96.0	90.0	94.0	90.0	94.0	99.0	93.0	86.0
Water Level													
TDS	217.0	213.0	208.0	231.0	218.0	217.0	219.0	214.0	198.0	208.0	215.0	205.0	207.0
Cl	3.0	3.0	4.0	3.0	3.0	3.0	2.0	2.0	4.0	2.0	2.0	3.0	3.0
Ca	35.0	39.0	38.0				39.0			36.0			35.0
Mg	8.0	8.0	8.0				8.0			8.0			8.0
Na	9.0	9.0	9.0				9.0			9.0			9.0
к	4.0	4.0	4.0				4.0			4.0			4.0
SiO2	56.0	68.0	71.0				73.0			68.0			66.0
HCO3	163.0	163.0	168.0				176.0			163.0			163.0
F	0.0	0.0	0.1				0.0			0.0			0.1
В	0.0	0.0	0.0	0.1	0.2	0.20	0.1	0.1	0.1	0.1	0.1	0.1	0.1
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	3.0	3.0	3.0	2.0	2.0	3.0	3.0	3.0	6.0	3.0	3.0	4.0	4.0
SiO2(°F)	225	242	246				248			242			239
Na/K (°F)	871	871	871		3		871			871			871
Na/K/Ca (°F), B=.33	546	544	544				544			546			546
Na/K/Ca (°F), B=1.33	432	424	426				424			430			432
C1/B				30.0	15.0	15.0	20.0	20.0	40.0	20.0	20.0	30.0	30.0

40

Peigh Domestic Well Data

.4

Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	-126	456	-186	517	547	578	608	638	669	699	730
Temperature	90.0	90.0	82.0	90.0	87.0	93.0	88,0	90,0	92.0	90.0	90.0	88.0
Water Level												
TDS	217.0	213.0	216.0	203.0	227.0	219.0	193.0	191.0	201.0	207.0	203.0	203.0
Cl	3.0	3.0	3.0	3.0	4.0	3.0	3.0	3.0	3.0	2.0	2.0	4.0
Ca			37.0			37.0			34.0			34.0
Mg			7.0			8.0			8.0			7.0
Na			9.0			9.0			9.0			8.0
К			4.0			4.0			4.0			4.0
SiO2			66.0			68.0			67.0			67.0
HCO3			176.0			176.0			161.0			168.0
F			0.0			0.0			0.0			0.1
В	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.0
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	3.0	3.0	3.0	2.0	3.0	3.0	6.0	5.0	5.0	4.0	4.0	3.0
SiO2(°F)			239			242			241			241
Na/K (°F)			871			871			871			939
Na/K/Ca (°F), B=.33			545			545			547			559
Na/K/Ca (°F), B=1.33			428			428			434			430
C1/B	30.0	30.0	30.0	30.0	40.0	30.0	30.0	15.0	30.0	20.0	20.0	

Peigh Domestic Monitor Well Data (ppm, feet, °F) - Page 2

Date	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87	Sep-87	Oct-87	Nov-87	Dec-87
Time	760	790	821	851	882	912	942	973	1003	1034	1064	1094
Temperature	88.0	88.0	88.0	90.0	90.0	91.0	92.0	88.0	88.0	88.0	85.0	89.0
Water Level												
TDS	214.0	218.0	203.0	217.0	228.0	229.0	218.0	192.0	196.0	193.0	202.0	215.0
Cl	2.0	3.0	2.0	3.0	4.0	3.0	2.0	1.0	2.0	2.0	3.0	3.0
Ca			38.0			43.0			31.0			38.0
Mg			7.0			8.0			7.0			8.0
Na			9.0			9.0			9.0			9.0
К			4.0			4.0			4.0			4.0
SiO2			70.0			71.0			67.0			70.0
HCO3			181.0			190.0			140.0			178.0
F			0.1			0.1			0.1			0.1
· B	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0
As	0.0											
SO4												
SiO2(°F)			245			246			241			245
Na/K (°F)			871			871			871			871
Na/K/Ca (°F), $\beta = .33$			544			541			549			544
Na/K/Ca (°F), B=1.33			426			416			441			426
C1/B			20.0				20.0		20.0	L		

Peigh Domestic Monitor Well Data (ppm, feet, °F) - Page 3

.

[] •

Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88	Jun-88	Jul-88	Aug-88	Sep-88	Oct-88	Nov-88	Dec-88
Time	1125	1155	1186	1216	1246	1277	1307	13338	1368	1398	1429	1459
Temperature	89.0	89.0	92.0	88.0	90.0	84.0	82.0	82.0			95.0	
Water Level												
TDS	231.0	217.0	219.0	210.0	226.0	194.0	179.0	165.0	183.0		208.0	
Cl	2.0	3.0	2.0	2.0	2.0	1.0	3.0	2.0	4.0		5.0	
Ca			40.0			31.0			29.0		38.0	
Mg			8.0			7.0			7.0		8.0	
Na			9.0			9.0			9.0		15.0	
К			4.0			3.0			3.0		4.0	
SiO2			68.0			67.0			64.0			
HCO3			181.0			149.0			139.0		168.0	
F			0.1			0.1			0.1		0.1	
в	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
As												
SO4												
SiO2(°F)			242			241			236			
Na/K (°F)			871			730			730		639	
Na/K/Ca (°F), B=.33			543			508			510		496	
Na/K/Ca (°F), B=1.33			422			408			413		445	
C1/B												

Peigh Domestic Well Data

Peigh Domestic Monitor Well Data (ppm, feet, °F) - Page 4

Date	Jan-89	Feb-89	Mar-89	May-89	Jun-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89
Time	1490	1520	1550	1581	1611	1642	1672	1702	1733	1763	1794
Temperature	80.0	81.0	88.0	88.0	90.0	88.0	88.0	90.0	86.0	78.0	82.0
Water Level											
TDS	217.0	229.0	228.0	227.0	223.0	207.0	197.0	204.0	214.0	208.0	204.0
Cl	6.0	7.0	6.0	5.0	6.0	3.0	4.0	4.0	3.0	3.0	3.0
Са	39.0										
Mg	7.0										
Na	10.0										
К	4.0										
SiO2	68.0										
HCO3	171.0										
F	0.1									0.1	0.1
В	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
As				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4										7.0	6.0
SiO2(°F)	242										
Na/K (°F)	816										
Na/K/Ca (°F), B=.33	534										
Na/K/Ca (°F), B=1.33	428										
C1/B	60.0								30.0		

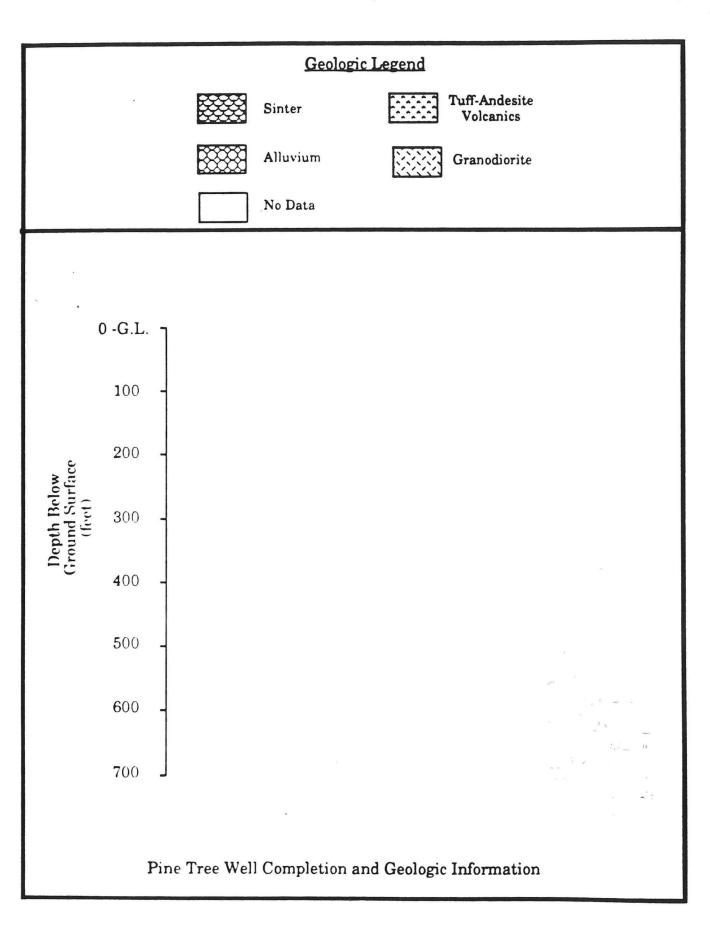
Peigh Domestic Monitor Well Data (ppm, feet, °F) - Page 5

reigh Domestic Well Data

-

-

-


Peigh Domestic Well Data

Date	Jan-90	Feb-90	Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90	Dec-90
Time	1824	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Temperature	88.0	80.0	84.0	82.0	101.0	102.0	103.0					94.0
Water Level												
TDS	224.0	220.0	230.0	228.0	235.0	238.0	239.0					241.0
Cl	3.0	3.0	4.0	3.0	5.0	3.0	2.0					5.0
Ca												42.0
Mg												8.0
Na												9.0
К												5.0
SiO2												71.0
HCO3												181.0
F	0.1	0.1	0.1	0.1	0.1	0.1	0.1					0.1
В	0.0	0.0	0.0	0.0	0.0	0.0	0.0					0.2
As	0.0	<0.003	< 0.003	<0.003	<0.003	<0.003	< 0.003					0.0
SO4	4.0	5.0	6.0	5.0	5.0	5.0	5.0					5.0
SiO2(°F)												246
Na/K (°F)												1007
Na/K/Ca (°F), B=.33												576
Na/K/Ca (°F), B=1.33												444
C1/B												25.0

1. .

= (

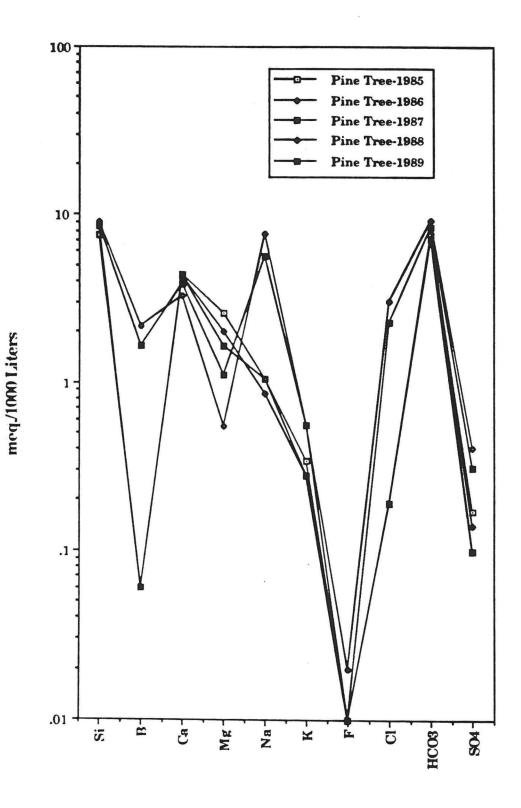
Appendix 7 - Pine Tree Ranch Well Monitor Data

l

I

|

[


1

1

[

|

I

ſ

I

-

d

d

Species

		Diss	olved s	olids co	ntent (p	(mq		m	eq./lite	Pr					% meq.			
	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990
Cl	3.0	3.0	3.0	49.0	37.0	0.0	0.08	0.08	0.08	1.38	1.04	0.00	1.1	1.2	1.3	12.2	10.4	* * *
Ca	40.0	39.0	39.0	30.0	35.0	0.0	2.00	1.95	1.95	1.50	1.75	0.00	27.2	28.8	29.2	13.2	17.4	* * *
Mg	14.0	11.0	9.0	3.0	6.0	0.0	1.17	0.92	0.75	0.25	0.50	0.00	15.9	13.5	11.2	2.2	5.0	* * *
Na	11.0	9.0	11.0	80.0	59.0	0.0	0.48	0.39	0.48	3.48	2.57	0.00						
K	6.0	5.0	5.0	10.0	10.0	0.0	0.15	0.13	0.13	0.26	0.26	0.00						
SiO2	51.0	58.0	58.0	62.0	58.0	0.0	3.40	3.86	3.86	4.13	3.86	0.00						
HCO3	207.0	198.0	198.0	261.0	232.0	0.0	3.39	3.25	3.25	4.28	3.80	0.00	46.1	47.9	48.6	37.8	37.8	* * *
F	0.1	0.1	0.1	0.2	0.1	0.0	0.00	0.01	0.00	0.01	0.01	0.00						
В	0.0	0.1	0.1	3.5	2.7	0.0	0.00	0.03	0.03	0.97	0.75	0.00						
As	0.0	0.0	0.0	0.0	0.0	0.0												
SO4	5.0	4.0	3.0	12.0	9.0	0.0	0.08	0.06	0.05	0.19	0.14	0.00	1.1	0.9	0.7	1.7	1.4	* * *
Ca+Mg							3.17	2.87	2.70	1.75	2.25	0.00	43.1	42.3	40.4	15.4	22.4	# # #
SO4+Cl							0.16	0.15	0.13	1.57	1.18	0.00	2.2	2.2	2.0	13.8	11.8	* * *
Na+K							0.63	0.52	0.61	3.73	2.82	0.00	8.6	7.7	9.1	33.0	28.1	***
CO3+HCO3							3.39	3.25	3.25	4.28	3.80	0.00	46.1	47.9	48.6	37.8	37.8	* * *
Total	337.1	327.2	326.2	510.7	448.8	0.0	7.35	6.78	6.68	11.33	10.06	0.00	3.3	-0.1	-1.1	-3.2	0.8	# # #

Pine Tree Ranch Well Chemistry Data (meq/l) (### = No Data)

5. 1

-

Pine Tree Ranch Geothermal Well Data

Date	Dec-84	Jan-85	Feb-85	Mar-85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	Dec-85
Time	0	30	61	91	122	152	182	213	243	274	304	334	365
Temperature	91.0	92.0	94.0	94.0	96.0	100.0	102.0	104.0	100.0	98.0	98.0	96.0	96.0
Water Level		61.8	65.7	68.2	70.8	73.2	75.2	75.0	70.3	67.8	66.2	64.7	65.4
TDS	224.0	227.0	225.0	227.0	220.0	264.0	290.0	306.0	248.0	214.0	217.0	220.0	224.0
Cl	3.0	3.0	4.0	3.0	4.0	12.0	23.0	28.0	15.0	4.0	3.0	3.0	3.0
Ca	40.0	41.0	41.0				47.0			39.0			39.0
Mg	14.0	13.0	12.0				13.0			10.0			11.0
Na	11.0	9.0	9.0				21.0			11.0			9.0
К	6.0	6.0	6.0				8.0			6.0			5.0
SiO2	51.0	62.0	60.0				64.0			60.0			58.0
HCO3	207.0	203.0	200.0				232.0			193.0			198.0
F	0.1	0.1	0.1				0.1			0.1			0.1
В	0.0	0.0	0.0	0.1	0.3	0.40	1.1	1.6	0.4	0.2	0.1	0.1	0.1
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	5.0	3.0	3.0	3.0	3.0	12.0	8.0	8.0	5.0	2.0	2.0	2.0	4.0
SiO2(°F)	217	234	231				236			231			228
Na/K (°F)	994	1139	1139				792			994			1007
Na/K/Ca (°F), B=.33	585	606	606				558			586			578
Na/K/Ca (°F), B=1.33	479	468	468				533			481			450
C1/B	•			30.0	13.3	30.0	20.9	17.5	37.5	20.0	30.0	30.0	30.0

Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	426	456	486	517	547	578	608	638	669	699	730
Temperature	96.0	98.0	100.0	101.0	103.0	104.0	104.0	104.0	102.0	100.0	98.0	98.0
Water Level	67.5	70.4	72.3	72.3	73.7	74.9	74.7	73.0				
TDS	214.0	211.0	234.0	247.0	289.0	302.0	318.0	321.0	296.0	239.0	221.0	214.0
C1	2.0	4.0	8.0	13.0	20.0	26.0	28.0	30.0	28.0	9.0	4.0	3.0
Ca			39.0			48.0			44.0			39.0
Mg			9.0			11.0			9.0			9.0
Na			17.0			23.0			35.0			11.0
К			6.0			8.0			9.0			5.0
SiO2			56.0			62.0			56.0			58.0
HCO3			207.0	× .		239.0			239.0			198.0
F			0.1			0.1			0.1			0.1
В	0.1	0.1	0.3	0.5	1.0	1.5	1.9	2.2	1.6	0.2	0.1	0.1
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	3.0	3.0	5.0	5.0	7.0	9.0	9.0	9.0	9.0	5.0	3.0	3.0
SiO2(°F)			225			234			225			228
Na/K (°F)			756	х.		749			626			884
Na/K/Ca (°F), B=.33			541			548			527			557
Na/K/Ca (°F), B=1.33			500			535			583			458
C1/B	20.0	40.0	26.7	26.0	20.0	17.3	14.7	13.6	17.5	45.0	40.0	30.0

Pine Tree Ranch Monitor Well Data (ppm, feet, °F) - Page 2

5

¥.

Date	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87	Sep-87	()ct-87	Nov-87	
Time	760	790	821	851	882	912	942	973	1003	10:34	1064	1094
Temperature	100.0	103.0	106.0	108.0	108.0	108.0	108.0	109.0	109.0	109.0	108.0	108.0
Water Level	69.5	71.5	73.6	75.4	76.8		78.5	78.6	78.5	77.6	75.9	78.0
TDS	224.0	263.0	296.0	329.0	337.0	347.0	351.0	369.0	379.0	391.0	358.0	375.0
Cl	5.0	19.0	27.0	32.0	36.0	39.0	42.0	44.0	48.0	51.0	52.0	49.0
Ca			43.0			35.0			32.0			30.0
Mg			8.0			5.0			3.0			3.0
Na			36.0			62.0			76.0			80.0
K			8.0			10.0			11.0			10.0
SiO2			60.0			63.0	-		62.0			62.0
HCO3			239.0			256.0			261.0			261.0
F			0.1			0.2			0.2			0.2
В	0.2	1.0	2.2	2.8	3.1	3.2	3.2	3.5	3.3	3.7	3.6	3.5
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	3.0	7.0	12.0	10.0	10.0	10.0	11.0	12.0	11.0	12.0	12.0	12.0
SiO2(°F)			231			235			234			234
Na/K (°F)			575			478			450			414
Na/K/Ca (°F), B=.33			508			494			490			475
Na/K/Ca (°F), B=1.33			568			659			701			694
C1/B	25.0	19.0	12.3	11.4	11.6	12.2	13.1	12.6	14.5	13.8	14.4	14.0

Pine Tree Ranch Geothermal Well Data

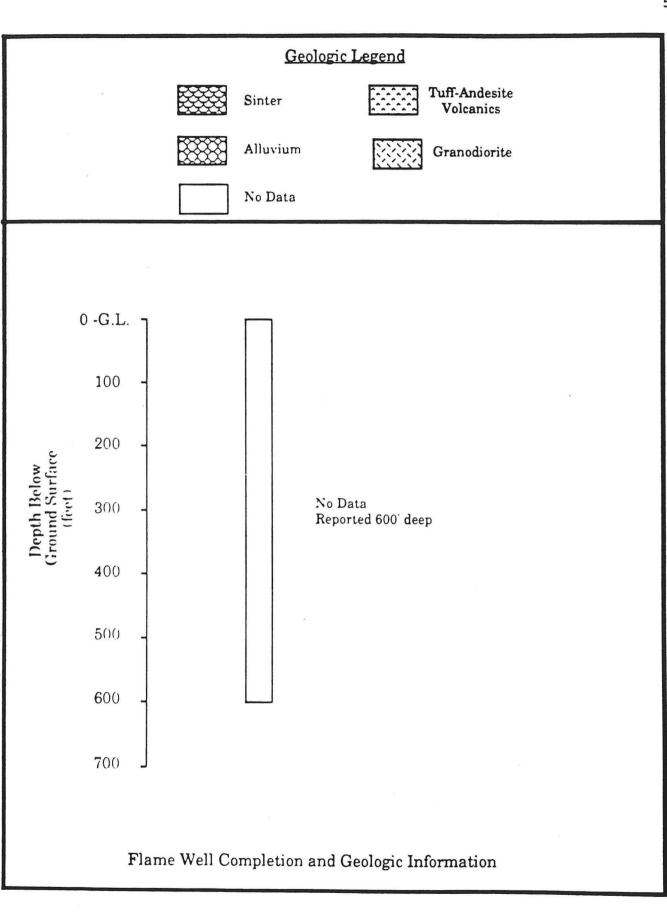
Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88	Jun-88	Jul-88	Aug-88	Sep-88	Oct-88	Nov-88	Dec-88
Time	1125	1155	1186	1216	1246	1277	1:307	1338	1368	1398	1429	1459
Temperature	109.0	110.0	110.0	110.0	104.0	111.0	111.0	111.0			108.0	
Water Level	76.0	77.0	78.2	80.5	81.3	82.1	81.3	84.0				
TDS	403.0	395.0	407.0	436.0	438.0	454.0	450.0	447.0			261.0	
Cl	57.0	57.0	59.0	67.0	68.0	71.0	75.0	74.0			25.0	
Са			29.0			29.0				0	34.0	
Mg			2.0			1.0					6.0	
Na			91.0			107.0					35.0	
К			11.0			12.0					13.0	
SiO2			65.0			67.0					53.0	
HCO3			273.0			283.0					215.0	
F			0.2			0.2					0.1	8
В	3.9	4.0	4.1	4.1	4.2	4.3	4.4	4.3			2.0	
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	
SO4	12.0	13.0	13.0	14.0	14.0	15.0	14.0	15.0			7.0	
SiO2(°F)			238			241					220	
Na/K (°F)			406			389					779	
Na/K/Ca (°F), B=.33			476			474			1		589	
Na/K/Ca (°F), B=1.33			726			756					676	
C1/B	14.6	14.3	14.4	16.3	16.2	16.5	17.0	17.2			12.5	

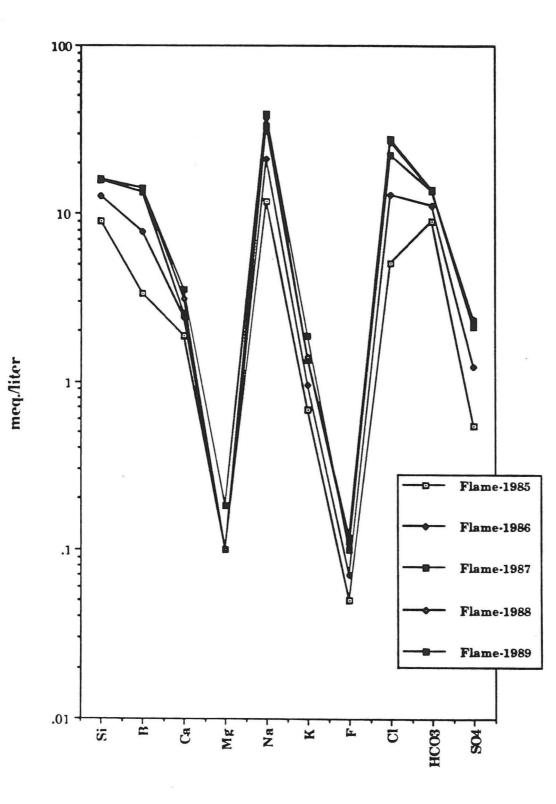
Date	Jan-89	Feb-89	Mar-89	May-89	Jun-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89
Time	1490	1520	1550	1581	1611	1642	1672	1702	1733	1763	1794
Temperature	110.0	111.0	111.0	113.0	111.0	113.0	113.0				114.0
Water Level	77.9		84.0			86.0	88.3	86.6	85.9		81.4
TDS	311.0	481.0	480.0	492.0	473.0	492.0	502.0				283.0
CI	37.0	84.0	83.0	91.0	82.0	89.0	90.0				24.0
Ca	35.0										
Mg	6.0										
Na	59.0										
К	10.0										
SiO2	58.0										
HCO3	232.0										
F	0.1										0.1
В	2.7	4.4	4.7	4.6	4.5	4.8	4.9				1.6
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0			3	0.0
SO4	9.0	16.0	16.0	17.0	16.0	17.0	17.0				7.0
SiO2(°F)	228										
Na/K (°F)	492										
Na/K/Ca (°F), B=.33	498										
Na/K/Ca (°F), B=1.33	656										
Cl/B	13.7	19.1	17.7	19.8	18.2	18.5	18.4				15.0

.

Pine Tree Ranch Monitor Well Data (ppm, feet, °F) - Page 5

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 					
have a second	1 3		ine	Rar	reot	al V	"Date


 $\square$ 


Date	<b>Jan-9</b> 0	Feb-90	Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90	Dec-90
Time	1824	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Temperature	112.0	110.0	111.0	113.0	114.0	118.0	116.0					
Water Level	80.4	80.2	81.0	83.0	83.3	94.5	84.8					
TDS	265.0	234.0	243.0	329.0	443.0	500.0	509.0					
Cl	12.0	10.0	11.0	45.0	79.0	94.0	94.0					
Ca												
Mg												
Na												
К												
SiO2												
HCO3												
F	0.2	0.1	0.1	0.1	0.1	0.2	0.0			e.		
. <b>B</b>	1.5	1.1	1.0	2.0	3.8	4.4	4.7					
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0				·	
SO4	6.0	5.0	5.0	10.0	15.0	17.0	17.0					
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F), B=.33												
Na/K/Ca (°F), B=1.33												
C1/B	8.0	9.1	11.0	22.5	20.8	21.4	20.0					

.









Species

		Diss	olved s	olids co	ntent (j	ipm)		n	neq./lit	er					% meq.			
	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990
Cl	81.0	208.0	360.0	430.0	450.0	ND	2.28	5.86	10.14	12.11	12.68	# # #	17.3	25.8	29.8	31.6	31.5	# # #
Ca	17.0	22.0	23.0	28.0	32.0	ND	0.85	1.10	1.15	1.40	1.60	# # #	6.5	4.8	3.4	3.7	4.0	# # #
Mg	0.0	0.0	0.0	0.0	1.0	ND	0.00	0.00	0.00	0.00	0.08	# # #	0.0	0.0	0.0	0.0	0.2	# # #
Na	123.0	222.0	346.0	389.0	406.0	ND	5.35	9.65	15.04	16.91	17.65	* * *						
К	12.0	17.0	24.0	25.0	33.0	ND	0.31	0.44	0.62	0.64	0.85	# # #						
SiO2	62.0	86.0	108.0	108.0	109.0	ND	4.13	5.73	7.19	7.19	7.26	# # #						
HCO3	251.0	312.0	376.0	376.0	388.0	ND	4.11	5.11	6.16	6.16	6.36	# # #	31.3	22.5	18.1	16.1	15.8	# # #
F	0.4	0.6	0.9	1.0	0.9	ND	0.02	0.03	0.05	0.05	0.05	# # #						
В	5.5	12.8	21.8	23.1	23.2	ND	1.53	3.56	6.06	6.42	6.44	# # #						
As	0.4	0.8	1.2	1.5	1.0	ND												
SO4	16.0	36.0	62.0	69.0	68.0	ND	0.25	0.56	0.97	1.08	1.06	# # #	1.9	2.5	2.8	2.8	2.6	###
Ca+Mg							0.85	1.10	1.15	1.40	1.68	# # #	6.5	4.8	3.4	3.7	4.2	# # #
SO4+Cl							2.53	6.42	11.11	13.19	13.74	# # #	19.2	28.3	32.6	34.4	34.1	# # #
Na+K							5.66	10.09	15.66	17.55	18.50	# # #	43.0	44.4	45.9	45.8	45.9	# # #
CO3+HCO3							4.11	5.11	6.16	6.16	6.36	# # #	31.3	22.5	18.1	16.1	15.8	# # #
Total	568.3	917.2	1322.9	1450.6	1512.1	0.0	13.15	22.72	34.08	38.31	40.28	# # #	-1.1	-1.5	-1.4	-1.0	0.2	# # #

Date	Dec-84	Jan-85	Feb-85	Mar-85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	Dec-85
Time	0	30	61	91	122	152	182	213	243	274	304	334	365
Temperature	63.00	62.00	48.00		52.00	62,00	70.00	80.00	84.00	131.00	132.00	124.00	96.00
Water Level		51.04	56.02	64.77	66.77	82.55	62.87	62.53	61.94				
TDS	451.00	541.00	685.00	1014.00	1068.00	1090.00	1118.00	1140.00	1169.00	1156.00			
C1	81.00	112.00	165.00	290.00	325.00	330.00	345.00	350.00	355.00	360.00	365.00	162.00	
Са	17.00	19.00	20.00				22.00			23.00			22.00
Mg	0.00	0.00	0.00				0.00			0.00			0.00
Na	123.00	149.00	199.00				338.00			360.00			222.00
К	12.00	13.00	16.00				23.00			24.00			17.00
SiO2	62.00	77.00	83.00				105.00			107.00			86.00
HCO3	251.00	271.00	298.00				368.00			368.00			312.00
F	0.44	0.46	0.52				1.08			1.01			0.63
В	5.50	6.90	10.60	17.60	18.40	18.50	19.80	21.00	19.40	22.30			
As	0.37	0.58	0.62	1.23	1.35	1.22	1.25	1.22	1.24				0.79
SO4	16.00	22.00	31.00	52.00	56.00	57.00	64.00	61.00	60.00	and the second se	61.00	31.00	
SiO2(°F)	234	253	260				284			286			264
Na/K (°F)	359	336	320				290			286			311
Na/K/Ca (°F) B=0.33	473	465	465				464			463			462
Na/K/Ca (°F) B=1.33	850	867	940				1091			1103			950
C1/B	14.7	16.2	15.6	16.5	17.7	17.8	17.4	16.7	18.3	16.1	16.8	17.4	16.3

Wennata

Flame Well Monitor Data (ppm, feet, °F) - Page 1

60

•

Flame Wel	I Data
-----------	--------

Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	426	456	486	517	547	578	608	638	669	699	730
Temperature	130.00	131.00	112.00	130,00	127.00	127.00	126.00	128.00	127.00	122.00	128.00	123.00
Water Level												
TDS	1134.00	1107.00	1083.00	1092.00	1103.00	1103.00	1120.00	1137.00	1127.00			1179.00
Cl	345.00	330.00	325.00	330.00	325.00	317.00	330.00	333.00	340.00	355.00	365.00	
Са			25.00			21.00			22.00			23.00
Mg			0.00			0.00			0.00			0.00
Na			308.00			317.00			339.00			346.00
К			22.00			23.00			22.00			24.00
SiO2			101.00			103.00		*	103.00			108.00
HCO3			361.00			304.00			366.00			376.00
F			1.03			1.06			1.07			0.93
В	20.50	20.40	19.70	20.20	19.40	19.90	20.00	20.10	21.00	21.20	21.40	
As	1.15	1.28	1.24	1.25	1.26	1.35	1.30	1.25	1.30	1.24	1.20	
SO4	58.00	60.00	57.00	61.00	55.00	<b>60</b> .00	59.00	56.00	60.00	68.00	64.00	
SiO2(°F)			280			282			282			286
Na/K (°F)			298			301			282			293
Na/K/Ca (°F) B=0.33			464			471			459			467
Na/K/Ca (°F) B=1.33			1037			1095			1076			1099
Cl/B	16.8	16.2	16.5	16.3	16.8	15.9	16.5	16.6	16.2	16.7	17.1	16.5

•

Flame Well Data

12

.

Date	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87	Sep-87	Oct-87	Nov-87	Dec-87
Time	760	790	821	851	842	912	942	973	1003	1034	1064	1094
Temperature	118.00	122.00	122.00	122.00	120.00	116.00	122.00	123.00	123,00	108.00	108.00	139.00
Water Level												
TDS	1160.00	1164.00	1149.00	1159.00	1153.00	1168.00	1179.00	1189.00	1210.00			
Cl	350.00	350.00	345.00	355.00	355.00	360.00	375.00	375.00	390.00	405.00	405.00	430.00
Са			23.00			23.00			24.00			28.00
Mg			0.00			0.00			0.00			0.00
Na			351.00			348.00			369.00			389.00
К			23.00			24.00			24.00			25.00
SiO2			107.00			104.00			106.00			108.00
HCO3			373.00			373.00			368.00			376.00
F			0.97			1.03			0.99			1.03
В	21.50	22.20	21.80	21.30	21.70	22.00	21.60	21.80	22.40			
As	1.18	1.14	1.13	2.50	1.29	1.20	1.23	1.20				1.45
SO4	63.00	62.00	<b>62</b> .00	61.00	62.00	59.00	65.00	64.00	the state of the s	64.00	67.00	
SiO2(°F)			286			283			285			286
Na/K (°F)			283			292			282			280
Na/K/Ca (°F) B=0.33			460			466			460			458
Na/K/Ca (°F) B=1.33			1085			1099			1096			1081
C1/B	16.3	15.8	15.8	16.7	16.4	16.4	17.4	17.2	17.4	18.3	18.2	18.6

Flame Well Data

						and the second			Contraction of the local division of the loc			
Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88		Jul-88	Aug-88	Sep-88		Nov-88	
Time	1125	1155	1186	1216	1246	1277	1307	1:3:38	1368	1398	1429	1459
Temperature	134.00	135.00	133.00	134.00	138,00	133.00	129.00	133.00			136.00	
Water Level												
TDS	1263.00	1277.00	1269.00	1277.00	1316.00	1303.00	1330.00	1319.00	1331.00		1342.00	
Cl	415.00	442.00	405.00	415.00	425.00	430.00	450.00	435.00	445.00		455.00	
Ca			27.00			29.00			30.00		31.00	
Mg			0.00			0.00			0.00		1.00	
Na			370.00			393.00			389.00		379.00	
К			26.00			27.00			26.00		33.00	
SiO2			107.00			108.00			107.00		108.00	
HCO3			378.00			381.00			383.00		386.00	
F			0.93			0.95			0.90		0.88	
В	22.40	23.30	23.00	22.90	23.50	23.70	23.80	24.20	23.30		24.60	
As	1.10	1.17	1.17	1.16	1.15	1.09	1.07	1.16	1.04		1.08	
SO4	66.00	66.00	64.00	65.00	68.00	<b>69</b> .00	66.00	69.00	68.00		68.00	
SiO2(°F)			286			286			286		286	
Na/K (°F)			296			292			287		336	
Na/K/Ca (°F) B=0.33			468			466			461		494	
Na/K/Ca (°F) B=1.33			1097			1101			1078		1154	
Cl/B	18.5	19.0	17.6	18.1	18.1	18.1	18.9	18.0	19.1		18.5	

C

Date	Jan-89	Feb-89	Mar-89	May-89	Jun-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89
Time	1490	1520	1550	1581	1611	1642	1672	1702	17:33	1763	1794
Temperature	136.00	82.00	50.00	88.00	81.00	79.00	81.00	123.00	68,00		
Water Level								37.50	36.80		
TDS	1352.00	1362.00	1366.00	1362.00	1363.00	1354.00	1342.00	1345.00	1331.00		
C1	450.00	450.00	455.00	455,00	450.00	450.00	450.00	450.00	445.00		
Са	32.00										
Mg	1.00										
Na	406.00						2				
К	33.00										
SiO2	109.00										
HCO3	388.00										
F	0.89										
В	23.20	24.80	23.70	24.40	24.20	24.00			24.10		
As	1.01	1.01	1.19	0.91	0.96	1.10		0.77	0.82		
SO4	<b>68.0</b> 0	69.00	68.00	69.00	70.00	69.00	69.00	67.00	68.00		
SiO2(°F)	287										
Na/K (°F)	322										
Na/K/Ca (°F) B=0.33	487										
Na/K/Ca (°F) ß=1.33	1154				10.2						
Cl/B	19.4	18.1	19.2	18.6	18.6	18.8	19.0	18.7	18.5		

## Flame Well Monitor Data (ppm, feet, °F) - Page 5

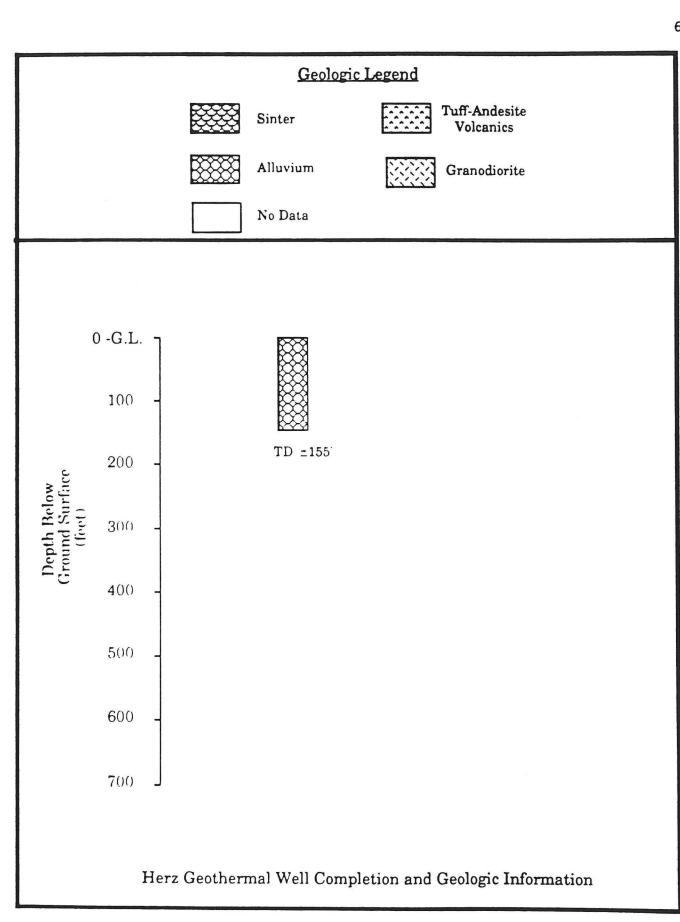
.

Flame Well Data

Date	Jan-90	Feb-90	Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90	Dec-90
Time	1824	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Temperature												
Water Level							71.10					
TDS							1415.00					
CI							485.00					
Ca												
Mg												
Na					×							
К												
SiO2												
HCO3												
F							0.84					
В							25.70					
As							1.27					
SO4							72.00					
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F) B=0.33												
Na/K/Ca (°F) B=1.33												
C1/B							18.9					

I PW Data

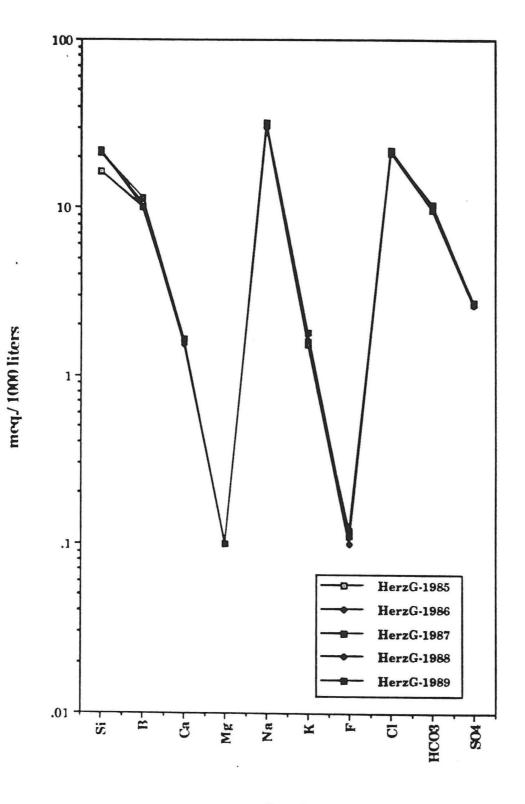
1


Flame Well Monitor Data (ppm, feet, °F) - Page 6

65



Appendix 9 - Herz Geothermal Well Monitor Data


. .



L

·[____

1



Species

68

·

.

		Diss	solved s	olids co	ntent (p	pm)		m	neq./lit	rr					% meq.			
	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990
Cl	355.0	350.0	340.0	340.0	355.0	0.0	10.00	9.86	9.58	9.58	10.00	0.00	32.1	31.9	30.8	33.2	32.6	# # #
Ca	15.0	15.0	15.0	14.0	15.0	0.0	0.75	0.75	0.75	0.70	0.75	0.00	2.4	2.4	2.4	2.4	2.4	# # #
Mg	0.0	0.0	0.0	0.0	1.0	0.0	0.00	0.00	0.00	0.00	0.08	0.00	0.0	0.0	0.0	0.0	0.3	# # #
Na	323.0	321.0	326.0	311.0	334.0	0.0	14.04	13.96	14.17	13.52	14.52	0.00						
K	28.0	27.0	27.0	27.0	32.0	0.0	0.72	0.69	0.69	0.69	0.82	0.00						
SiO2	111.0	133.0	136.0	133.0	131.0	0.0	7.39	8.85	9.05	8.85	8.72	0.00						
HCO3	268.0	271.0	288.0	268.0	276.0	0.0	4.39	4.44	4.72	4.39	4.52	0.00	14.1	14.4	15.2	15.2	14.7	# # #
F	1.0	0.0	1.0	1.0	1.0	0.0	0.05	0.00	0.05	0.05	0.05	0.00						
В	16.5	16.9	18.5	17.5	16.6	0.0	4.58	4.69	5.14	4.86	4.61	0.00						
As	0.5	0.5	0.6	0.5	0.5	0.0				с.								
SO4	80.0	77.0	78.0	0.0	0.0	0.0	1.25	1.20	1.22	0.00	0.00	0.00	4.0	3.9	3.9	0.0	0.0	###
Ca+Mg							0.75	0.75	0.75	0.70	0.83	0.00	2.4	2.4	2.4	2.4	2.7	# # #
SO4+Cl							11.25	11.06	10.80	9.58	10.00	0.00	36.1	35.8	34.7	33.2	32.6	###
Na+K							14.76	14.65	14.87	14.21	15.34	0.00	47.4	47.4	47.7	49.2	50.0	* * *
CO3+HCO3							4.39	4.44	4.72	4.39	4.52	0.00	14.1	14.4	15.2	15.2	14.7	###
Total	1198.0	1211.4	1230.1	1112.0	1162.0	0.0	31.15	30.90	31.13	28.88	30.70	0.00	-0.4	-0.3	0.3	3.3	5.4	# # #

.

Date	Dec-84	Jan-85	Feb-85	Mar-85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	the second se
Time	0	- 30	61	91	122	152	182	213	243	274	304	334	365
Temperature	122	124	122	124	126	128	128	128	129	128	128	130	128
Water Level		50.32	50.8	51.12	51.36	51.69	51.97	52	51.98	52.89	52.06	51.95	51.75
TDS	1101	1105	1093	1118	1101	1093	1106	1123	1124	1111	1117	1105	1109
Cl	355	350	340	340	350	340	350	350	355	345	345	340	350
Ca	15	15	15				15			15			15
Mg	0	0	0				0			0			0
Na	323	318	315				318			324			321
К	28	28	28				28			28			27
SiO2	111	133	131				137			133			133
HCO3	268	264	266				268			264			271
F	0.98	0.98	0.97				1.02			0.99			0
В	16.5	16.3	16.6	17.4	17.2	17.5	17.5	17.5	18.2	18.3	17	18.1	16.9
As	0.543	0.595	0.555	0.565	0.6	0.558	0.52	0.525	0.545	0.567	0.57	0.495	0.525
SO4	80	77	75	79	75	77	77	76	78	81	79	78	71
SiO2(°F)	289	309	307				312			309			309
Na/K (°F)	335	338	340				338			334			329
Na/K/Ca (°F), B=.33	502	504	504				504			502			498
Na/K/Ca (°F), B=1.33	1262	1260	1258				1260			1262			1245
C1/B	21.5	21.5	20.5	19.5	20.3	19.4	20.0	20.0	19.5	18.9	20.3	18.8	20.7

Herz Geothermal Monitor Well Data (ppm, feet, °F) - Page 1

.

70

]

X

Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	426	456	486	517	547	578	608	638	669	699	730
Temperature	128	127	120	128	125	126	126	1:30	128	128	129	129
Water Level	52.54	52.56	51.61	51.35	51.87	52.03	51.46	50.98	50.71			
TDS	1115	1108	1114	1102	1121	1064	1121	1118	1107	1114	1094	1098
Cl	345	345	345	345	345	355	375	350	350	345	345	340
Ca			15			15			15			15
Mg			0			0			0			0
Na			314			309			322			326
K			28			27			27			27
SiO2			126			131			132			136
HCO3			276			298			273			288
F			0.98			0.97			1			1.04
В	15.2	17.1	17.6	17.6	17.3	17.4	17.7	17.4	18.1	17.7	17.6	18.5
As	0.5	0.55	0.48	0.475	0.41	0.32	0.465	0.49	0.5	0.51	0.54	0.575
SO4	80	76	75	78	74	60	77	76	75	79	84	78
SiO2(°F)			303			307			308			311
Na/K (°F)			340			336			328			326
Na/K/Ca (°F), B=.33			505			501			497			496
Na/K/Ca (°F), ß=1.33			1258			1240			1246			1248
Cl/B	22.7	20.2	19.6	19.6	19.9	20.4	21.2	20.1	19.3	19.5	19.6	18.4

-

Herz Geothermal Monitor Well Data (ppm, feet, °F) - Page 2

71

Date	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87	Sep-87	Oct-87	Nov-87	Dec-87
Time	760	790	821	851	882	912	942	973	1003	1034	1064	1094
Temperature	126	128	130	123	126	125	126	126	126	125	125	126
Water Level	50.45	49.9	49.2	48.6	48.1	47.9	47.6	47.6	47.4	47.3	47.3	47.2
TDS	1097	1104	1087	1099	1099	1113	1111	1101	1094	1098	1081	1092
CI	340	340	340	340	340	340	340	335	340	345	340	340
Ca			14			15			14			14
Mg			0			0			0			0
Na			327			320			324			311
К			27			28			27			27
SiO2			137			132			134			133
HCO3			273			276			267			268
F			0.92			0.97			0.99			1.03
В	18.2	18.6	18	18	18.1	18.2	18.2	18	18.2	17.4	17.4	17.5
As	0.45	0.55	0.505	0.55	0.51	0.445	0.58	0.57	0.495	0.505	0.478	0.49
SO4												
SiO2(°F)			312			308			310			309
Na/K (°F)			325			337			327			335
Na/K/Ca (°F), B=.33			498			503			498			502
Na/K/Ca (°F), B=1.33			1268			1261			1267			1261
C1/B	18.7	18.3	18.9	18.9	18.8	18.7	18.7	18.6	18.7	19.8	19.5	19.4

Herz Geothermal Monitor Well Data (ppm, feet, °F) - Page 3

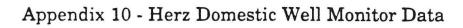
72

Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88	Jun-88	Jul-88	Aug-88	Sep-88		Nov-88	
Time	1125	1155	1186	1216	1246	1277	1307	1338	1368	1398	1429	1459
Temperature	126	124	125	122	121	125	126	126			127	
Water Level	47.2		47.5	48.3	48.5	48.5	49	49				
TDS	1094	1093	1085	1077	1092	1107	1102	1109	1118		1137	
Cl	340	340	325	355	360	340	350	345	350		360	
Ca			14			15			15		16	
Mg			0			0			0		1	
Na			305			315			323		321	
К			27			27			28		33	
SiO2			134			132			132		129	
HCO3			273			273			249		281	
F			0.96			0.99			0.98		0.89	
В	17.5	17.6	17.2	17.1	17.2	17.4	17.5	17.6	17.4		18.3	
As	0.486	0.508	0.445	0.455	0.447	0.47	0.47	0.43	0.45		0.455	
SO4												
SiO2(°F)			310			308			308		305	
Na/K (°F)			339			332			335		370	
Na/K/Ca (°F), B=.33			504			499			502		524	
Na/K/Ca (°F), B=1.33			1258			1243			1262		1315	
C1/B	19.4	19.3	18.9	20.8	20.9	19.5	20.0	19.6	20.1		19.7	

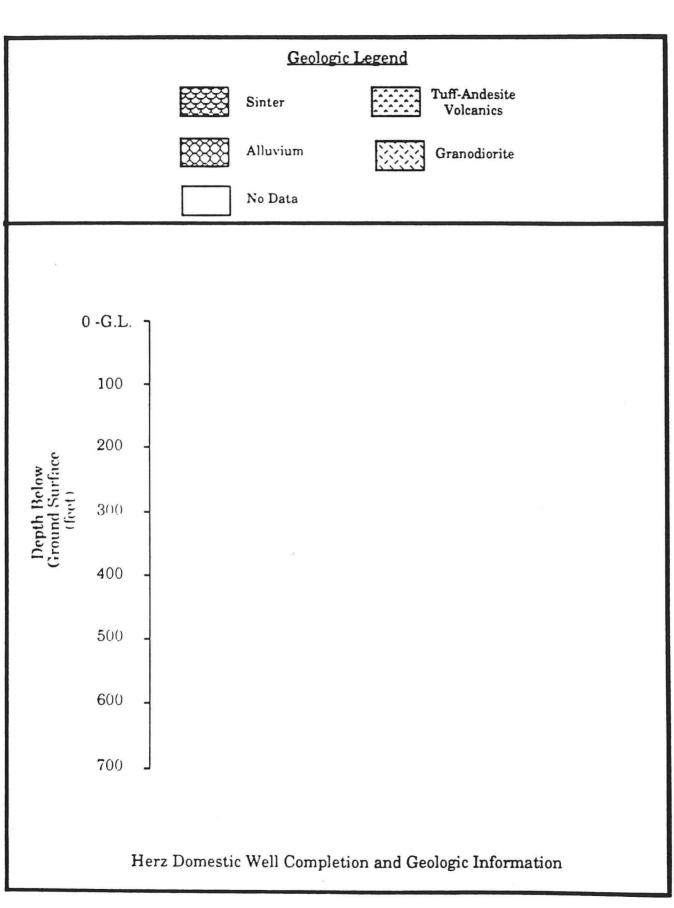
.

Herz Geothermal Well Data

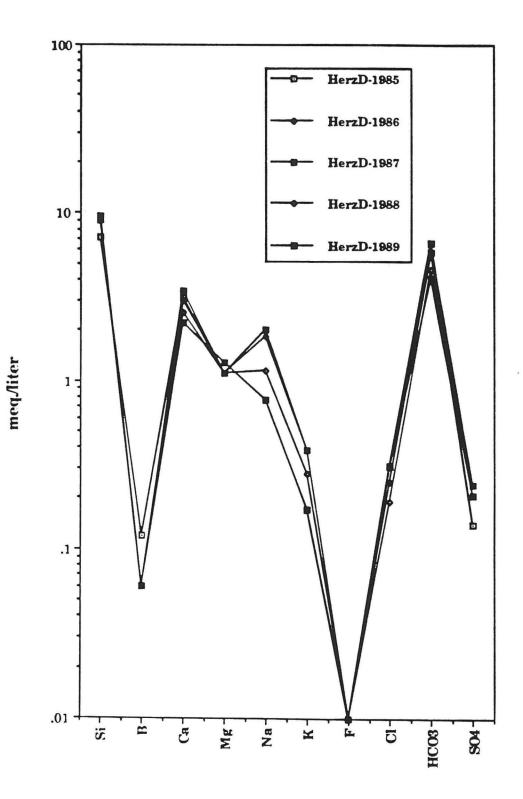
;


Date	Jan-89	Feb-89	Mar-89	May-89	Jun-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89
Time	1490	1520	1550	1581	1611	1642	1672	1702	1733	1763	1794
Temperature	128	126	126	129	126	129	126	131	128	127	
Water Level	50		41.3			52.2	52	53.3	53.1	53.5	53.5
TDS	1137	1088	1128	1112	1158	1152	1171	1159	1171	1170	
Cl	355	365	370	370	375	375	390	375	370	380	
Ca	15										
Mg	1										
Na	334										
К	32										
SiO2	131										
HCO3	276										
F	0.97									0.94	
В	16.6	17.8	17.9	18.2	18.2	18.1	18.7	18.6	18.7	19	
As	0.45	0.296	0.38	0.348	0.439	0.495	0.4	0.405	0.4	0.408	
SO4										86	
SiO2(°F)	307										
Na/K (°F)	355										
Na/K/Ca (°F), B=.33	517										
Na/K/Ca (°F), B=1.33	1327										
C1/B	21.4	20.5	20.7	20.3	20.6	20.7	20.9	20.2	19.8	20.0	

.


Herz Geothermal Monitor Well Data (ppm, feet, °F) - Page 5

Date	Jan-90	Feb-90	Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90	Dec-90
Time	1824	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Temperature												
Water Level		46.4	51	51	50,5	51	50.6					
TDS												
Cl												
Са												
Mg												
Na												
К												
SiO2												
HCO3												
F												
В												
As												
SO4												
SiO2(°F)												
Na/K (°F)												
Na/K/Ca (°F), B=.33												
Na/K/Ca (°F), B=1.33												
C1/B												






.



Į.



Species

		Diss	solved s	olids co	ntent (j	opm)		п	neq./lit	er					% meq.			
	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990
Cl	5.0	4.0	5.0	3.0	5.0	33.0	0.14	0.11	0.14	0.08	0.14	0.93	2.4	2.0	3.5	1.8	2.2	10.7
Ca	28.0	27.0	20.0	23.0	31.0	46.0	1.40	1.35	1.00	1.15	1.55	2.30	24.0	23.8	24.5	25.1	24.7	26.6
Mg	6.0	6.0	7.0	6.0	6.0	7.0	0.50	0.50	0.58	0.50	0.50	0.58	8.6	8.8	14.3	10.9	8.0	6.7
Na	21.0	19.0	8.0	12.0	21.0	30.0	0.91	0.83	0.35	0.52	0.91	1.30						
K	7.0	7.0	3.0	5.0	7.0	10.0	0.18	0.18	0.08	0.13	0.18	0.26						
SiO2	49.0	62.0	62.0	64.0	65.0	61.0	3.26	4.13	4.13	4.26	4.33	4.06						
HCO3	161.0	159.0	112.0	127.0	183.0	193.0	2.64	2.61	1.84	2.08	3.00	3.16	45.2	45.9	45.0	45.5	47.7	36.5
F	0.1	0.1	0.1	0.1	0.1	0.1	0.00	0.01	0.00	0.01	0.01	0.01						
В	0.2	0.1	0.0	0.0	0.1	0.5	0.06	0.03	0.00	0.00	0.03	0.14						
As	0.0	0.0	0.0	0.0	0.0	0.0												
SO4	4.0	7.0	6.0	7.0	0.0	8.0	0.06	0.11	0.09	0.11	0.00	0.13	1.1	1.9	2.3	2.4	0.0	1.4
Ca+Mg							1.90	1.85	1.58	1.65	2.05	2.88	32.6	32.5	38.8	36.1	32.6	33.3
SO4+Cl							0.20	0.22	0.23	0.19	0.14	1.05	3.5	3.9	5.8	4.2	2.2	12.2
Na+K							1.09	1.01	0.42	0.65	1.09	1.56	18.7	17.7	10.4	14.2	17.4	18.0
CO3+HCO3							2.64	2.61	1.84	2.08	3.00	3.16	45.2	45.9	45.0	45.5	47.7	36.5
Total	281.3	291.2	223.1	247.1	318.2	388.6	5.84	5.68	4.08	4.58	6.28	8.66	2.6	0.5	-1.5	0.5	0.0	2.6

•

Date	Dec-84	Jan-85	Feb-85	Mar-85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	Dec-85
Time	0	30	61	91	122	152	182	213	243	274	304	334	365
Temperature	42.0	38.0	38.0	40.0	52.0	62.0	68.0	75.0	78.0	54.0	68.0	57.0	50.0
Water Level		25.4	27.5	28.2	29.4	30.4	29.9	29.1	29.0	29.4	29.4	29.6	30.3
TDS	196.0	196.0	196.0	204.0	197.0	202.0	200.0	211.0	211.0	201.0	197.0	194.0	200.0
Cl	5.0	3.0	4.0	3.0	3.0	4.0	4.0	5.0	3.0	3.0	3.0	5.0	4.0
Са	28.0	28.0	28.0				27.0			26.0			27.0
Mg	6.0	6.0	6.0				6.0			5.0			6.0
Na	21.0	18.0	19.0				20.0			23.0			19.0
К	<b>7</b> :0	7.0	7.0				6.0			7.0			7.0
SiO2	49.0	60.0	60.0				62.0			5.0			62.0
HCO3	161.0	151.0	159.0				156.0			159.0			159.0
F	0.1	0.1	0.1	× .			0.1			0.1			0.1
В	0.2	0.0	0.0	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.2	0.1	0.1
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	4.0	4.0	5.0	4.0	5.0	6.0	7.0	8.0	6.0	6.0	6.0	6.0	7.0
SiO2(°F)	213	231	231				234			65			234
Na/K (°F)	730	802	776				685			691			776
Na/K/Ca (°F), B=.33	551	566	561				534			544			562
Na/K/Ca (°F), B=1.33	564	556	559				542			576			563
C1/B	25.0			15.0	10.0	20.0	13.3	25.0	15.0	15.0	15.0	50.0	40.0

Herz Domestic Well Monitor Data (ppm, feet, °F) - Page 1

1. .

= |

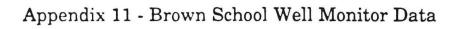
Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	426	456	486	517	547	578	608	638	669	699	730
Temperature	48.0	44.0	51.0	56.0	58.0	75.0	73.0	76.0	74.0	64.0	56.0	50.0
Water Level	31.4	32.5	29.1	29.1	31.1	30.5	26.7	25.4	27.0			
TDS	192.0	190.0	177.0	177.0	191.0	206.0	192.0	183.0	170.0	181.0	172.0	167.0
Cl	3.0	3.0	4.0	3.0	2.0	4.0	3.0	2.0	3.0	1.0	3.0	5.0
Ca			24.0			27.0			23.0			20.0
Mg			8.0			5.0			6.0			7.0
Na			8.0			21.0			13.0			8.0
К			4.0			7.0			5.0			3.0
SiO2			62.0			60.0			60.0			62.0
HCO3			132.0			168.0			134.0			112.0
F			0.1			0.1			0.1			0.1
В	0.5	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.0
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	5.0	6.0	9.0	5.0	7.0	6.0	7.0	5.0	5.0	5.0	5.0	6.0
SiO2(°F)			234			231			231			234
Na/K (°F)			939			730			796			784
Na/K/Ca (°F), B=.33			568			552			553			530
Na/K/Ca (°F), B=1.33			457			568			511			437
Cl/B	6.0	30.0	40.0	30.0	20.0	40.0	15.0	10.0	30.0	10.0	30.0	

				and the second se								
Date	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87	Sep-87	Oct-87	Nov-87	
Time	760	790	821	851	882	912	942	973	1003	1034	1064	1094
Temperature	40.0	46.0	49.0	59.0	62.0	72.0	69.0	73.0	73.0	70.0	57.0	51.0
Water Level	30.8	31.5	32.8	33.7	35.0	35.5	35.9	36.7	37.1	36.9	37.0	37.3
TDS	165.0	186.0	179.0	184.0	198.0	192.0	188.0	195.0	189.0	186.0	165.0	178.0
Cl	3.0	3.0	0.0	4.0	3.0	3.0	6.0	2.0	5.0	3.0	3.0	3.0
Ca			27.0			26.0			25.0			23.0
Mg			6.0			6.0			6.0			6.0
Na			15.0			17.0			19.0			12.0
К			6.0			6.0			6.0			5.0
SiO2			61.0			61.0			61.0			64.0
HCO3			151.0			154.0			142.0			127.0
F			0.1			0.1			0.1			0.1
В	0.1	0.1	0.1	0.1	0.1	0.0	0.2	0.1	0.2	0.1	0.1	0.0
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	6.0	6.0	7.0	9.0	6.0	7.0	8.0	6.0	7.0	6.0	7.0	7.0
SiO2(°F)			232			232			232			236
Na/K (°F)			816			756			707			837
Na/K/Ca (°F), B=.33			562			551			541			562
Na/K/Ca (°F), B=1.33			528			538			547			507
C1/B	30.0	30.0	0.0	40.0	30.0		30.0	20.0	25.0	30.0	30.0	

1

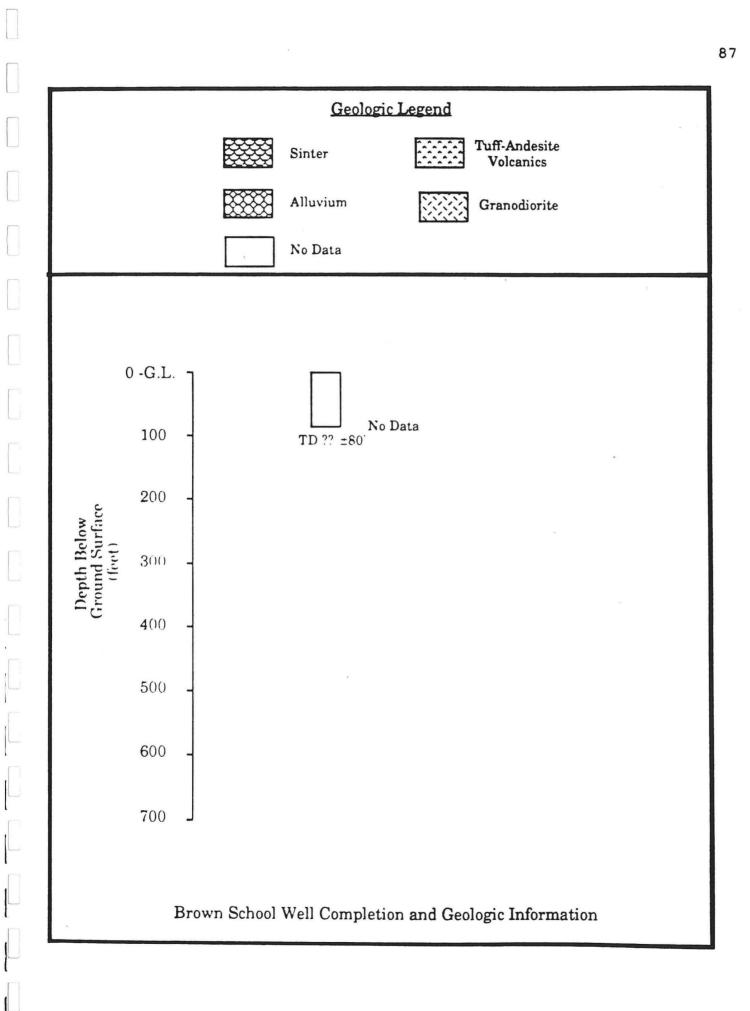
Herz Domestic Well Monitor Data (ppm, feet, °F) - Page 3

Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88	Jun-88	Jul-88	Aug-88	Sep-88	Oct-88	Nov-88	Dec-88
Time	1125	1155	1186	1216	1246	1277	1307	1:3:38	1368	1398	1429	1459
Temperature	40.0	38.0	46.0	58.0	64.0	75.0	77.0	82.0			46.0	
Water Level	37.8	38.3	38.8	40.1	41.1	40.0	40.1	40.5				
TDS	182.0	180.0	185.0	197.0	207.0	206.0	183.0	207.0	201.0		202.0	
Cl	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0		5.0	
Ca			26.0			28.0			28.0		31.0	
Mg			6.0			6.0			7.0		6.0	
Na			18.0			21.0			22.0		26.0	
К			6.0			7.0			7.0		7.0	
SiO2			60.0			61.0			61.0			
HCO3			154.0			171.0			166.0		178.0	
F			0.1			0.1			0.1		0.1	
В	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2			
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
SO4												
SiO2(°F)			231			232			232			
Na/K (°F)			730			730			710		643	
Na/K/Ca (°F), B=.33			545			551			546		527	
Na/K/Ca (°F), B=1.33			541			564			566		564	
C1/B	20.0	20.0	20.0	20.0	20.0	20.0	30.0	30.0	15.0			


Date	Jan-89	Feb-89	Mar-89	May-89	Jun-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89
Time	1490	1520	1550	1581	1611	1642	1672	1702	1733	1763	1794
Temperature	40.0	48.0	50.0	66.0	68.0	79.0	73.0	75.0	68.0	62.0	71.0
Water Level											
TDS	215.0	213.0	205.0	224.0	231.0	229.0	236.0	235.0	232.0	232.0	231.0
CI	5.0	4.0	2.0	6.0	8.0	9.0	12.0	15.0	12.0	11.0	13.0
Ca	31.0										
Mg	6.0										
Na	21.0										
К	7.0										
SiO2	65.0										
HCO3	183.0										
F	0.1									0.1	0.1
В	0.1	0.2	0.0	0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.0
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4										6.0	6.0
SiO2(°F)	238										
Na/K (°F)	730										
Na/K/Ca (°F), B=.33	548										
Na/K/Ca (°F), B=1.33	554										
C1/B	50.0	20.0		60.0	40.0	90.0	120.0	150.0	60.0	110.0	

Herz Domestic Well Monitor Data (ppm, feet, °F) - Page 5

Date	<b>Jan-9</b> 0	Feb-90	Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90	Dec-90
Time	1824	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Temperature	69.0	61.0	73.0	72.0	68.0	67.0	68.0					47.0
Water Level												
TDS	244.0	234.0	239.0	242.0	238.0	242.0	248.0					277.0
Cl	12.0	12.0	12.0	12.0	13.0	16.0	16.0					33.0
Са												46.0
Mg												7.0
Na												30.0
К												10.0
SiO2								-				61.0
HCO3		×										193.0
F	0.2	0.1	0.1	0.1	0.1	0.1	0.1					0.1
В	0.1	0.0	0.0	0.0	0.0	0.0	0.0					0.5
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0					0.0
SO4	4.0	6.0	6.0	6.0	6.0	6.0	6.0					8.0
SiO2(°F)												232
Na/K (°F)												730
Na/K/Ca (°F), B=.33												556
Na/K/Ca (°F), B=1.33												587
Cl/B	120.0											66.0




.



.

-



		Disso	lved so	olids co	ontent	(ppm)	m	eq./lit	.er					(	% meq			
	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990	1985	1986	1987	1988	1989	1990
Cl	7.0	10.0	11.0	6.0	150.0	480.0	0.20	0.28	0.31	0.17	4.23	13.52	3.8	5.0	5.4	3.1	27.4	35.4
Са	17.0	18.0	19.0	17.0	64.0	194.0	0.85	0.90	0.95	0.85	3.20	9.70	16.3	16.0	16.4	15.5	20.8	25.4
Mg	3.0	3.0	3.0	3.0	10.0	34.0	0.25	0.25	0.25	0.25	0.83	2.83	4.8	4.5	4.3	4.6	5.4	7.4
Na	30.0	33.0	33.0	35.0	73.0	126.0	1.30	1.43	1.43	1.52	3.17	5.48						
К	9.0	9.0	9.0	9.0	19.0	34.0	0.23	0.23	0.23	0.23	0.49	0.87						
SiO2	58.0	71.0	75.0	80.0	88.0	87.0	3.86	4.73	4.99	5.33	5.86	5.79						
HCO3	134.0	142.0	149.0	137.0	181.0	271.0	2.20	2.33	2.44	2.25	2.97	4.44	42.2	41.5	42.2	41.1	19.2	11.6
F	0.1	0.1	0.1	0.1	0.1	0.1	0.00	0.01	0.01	0.01	0.00	0.01						
В	0.0	0.2	0.2	0.3	0.5	13.2	0.00	0.06	0.06	0.08	0.14	3.67						
As	0.0	0.0	0.0	0.1	0.0	0.0												
SO4	11.0	12.0	11.0	13.0	34.0	87.0	0.17	0.19	0.17	0.20	0.53	1.36	3.3	3.3	3.0	3.7	3.4	3.6
Ca+Mg							1.10	1.15	1.20	1.10	4.03	12.53	21.2	20.5	20.7	20.1	26.2	32.8
SO4+Cl							0.37	0.47	0.48	0.37	4.76	14.88	7.1	8.4	8.3	6.8	30.9	38.9
Na+K							1.54	1.67	1.67	1.75	3.66	6.35	29.5	29.7	28.8	32.0	23.7	16.6
CO3+HCO3						-	2.20	2.33	2.44	2.25	2.97	4.44	42.2	41.5	42.2	41.1	19.2	11.6
Total	269.1	298.3	310.3	300.5	619.6	1326.3	5.20	5.61	5.79	5.47	15.42	38.21	1.3	0.3	-1.0	4.3	-0.2	-1.2

Date	Dec-84	Jan-85	Feb-85	Mar-85	Apr-85	May-85	Jun-85	Jul-85	Aug-85	Sep-85	Oct-85	Nov-85	Dec-85
Time	0	30	61	91	122	152	182	213	243	274	304	334	365
Temperature	60.0	59.0	64.0	62.0	63.0	66.0	69.0	77.0	73.0	70.0	68.0	66.0	65.0
Water Level													
TDS	209.0	204.0	207.0	222.0	219.0	228.0	224.0	216.0	214.0	212.0	218.0	211.0	215.0
CI	7.0	3.0	7.0	5.0	5.0	4.0	7.0	5.0	8.0	9.0	9.0	10.0	10.0
Ca	17.0	19.0	20.0				18.0			18.0			18.0
Mg	3.0	3.0	4.0				3.0			3.0			3.0
Na	30.0	30.0	31.0				32.0			34.0	7		33.0
К	9.0	9.0	9.0				9.0			9.0			9.0
SiO2	58.0	71.0	71.0				73.0			73.0			71.0
HCO3	134.0	137.0	144.0				142.0			142.0			142.0
F	0.1	0.1	0.1				0.1			0.1			0.1
В	0.0	0.0	0.0	0.3	0.3	0.30	0.2	0.2	0.2	0.2	0.2	0.1	0.2
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	11.0	11.0	12.0	13.0	12.0	12.0	13.0	12.0	12.0	11.0	11.0	11.0	12.0
SiO2(°F)	228	246	246				248			248			246
Na/K (°F)	685	685	672				660			637			648
Na/K/Ca (°F) B=.33	565	562	558				557			551			554
Na/K/Ca (°F) B=1.33	684	670	666				681			685			683
C1/B				16.7	16.7	13.3	35.0	25.0	40.0	45.0	45.0	100.0	50.0

Brown School Well Data

Brown School Monitor Data (ppm, feet, °F) - Page 1

Date	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
Time	395	426	456	486	517	517	578	608	638	669	699	730
Temperature	60.0	62.0	63.0	65.0	66.0	72.0	76.0	82.0	70.0	66.0	65.0	63.0
Water Level												
TDS	213.0	210.0	237.0	223.0	219.0	217.0	225.0	219.0	224.0	208.0	218.0	220.0
Cl	8.0	7.0	17.0	17.0	10.0	11.0	10.0	11.0	14.0	13.0	13.0	11.0
Са			19.0			18.0			19.0			19.0
Mg			3.0			3.0			3.0			3.0
Na			37.0			32.0			33.0			33.0
К			9.0			9.0			9.0			9.0
SiO2			73.0			71.0			72.0			75.0
HCO3			139.0			139.0			139.0			149.0
F			0.1			0.1			0.1			0.1
В	0.6	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.1	0.1	0.2
As	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO4	12.0	12.0	17.0	12.0	12.0	13.0	12.0	12.0	11.0	10.0	12.0	11.0
SiO2(°F)			248			246			247			251
Na/K (°F)			606			660			648			648
Na/K/Ca (°F) B=.33			541			557			553			553
Na/K/Ca (°F) B=1.33			683			681			676			676
C1/B	13.3	35.0	85.0	85.0	50.0	55.0	100.0	55.0	70.0	130.0	130.0	55.0

.

Date	Jan-88	Feb-88	Mar-88	Apr-88	May-88	Jun-88	Jul-88	Aug-88	Sep-88	Oct-88	Nov-88	
Time	1125	1155	1186	1216	1246	1277	1307	1338	1368	1398	1429	1459
Temperature	62.0	62.0	69.0	68.0	72.0	79.0	82.0	81.0			77.0	
Water Level												
TDS	224.0	225.0	264.0	239.0	273.0	286.0	289.0	350.0	353.0		449.0	
Cl	7.0	14.0	13.0	18.0	27.0	35.0	39.0	68.0	69.0		112.0	
Ca			18.0			26.0			37.0		55.0	
Mg			3.0			4.0			6.0		11.0	
Na			38.0			40.0			51.0		50.0	
К			9.0			12.0			15.0		19.0	
SiO2			81.0			86.0			86.0		90.0	
HCO3			139.0			149.0			156.0		163.0	
F			0.1			0.1			0.1		0.1	
В	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4		0.7	
As	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0		0.0	
SO4	13.0	14.0	14.0	15.0	15.0	16.0	17.0	20.0	19.0		27.0	
SiO2(°F)			258			264			264		268	
Na/K (°F)			597			685			677		790	
Na/K/Ca (°F) B=.33			540			569			569		599	
Na/K/Ca (°F) B=1.33			692			704			718		711	
C1/B	23.3	46.7	43.3	60.0	90.0	116.7	130.0	170.0	172.5		160.0	

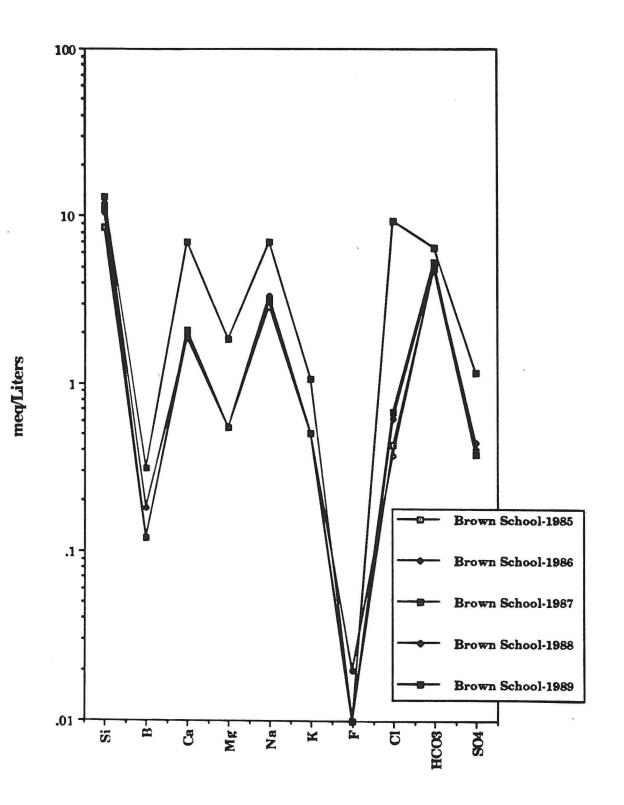
.

Brown School Monitor Data (ppm, feet, °F) - Page 4

Date	Jan-89	Feb-89	Mar-89	May-89	Jun-89	Jul-89	Aug-89	Sep-89	Oct-89	Nov-89	Dec-89	Jan-90
Time	1490	1520	1550	1581	1611	1642	1672	1702	17:3:3	1763	1794	1824
Temperature	72.0	75.0	77.0	77.0	77.0	81.0		73.0	70.0	72.0	69.0	68.0
Water Level												
TDS	537.0	625.0	661.0	767.0	804.0	825.0		1035.0	1073.0	976.0	1060.0	1045.0
Cl	150.0	188.0	203.0	250.0	253.0	263.0		350.0	355.0	333.0	730.0	370.0
Ca	64.0											
Mg	10.0											
Na	73.0											
К	19.0											
SiO2	88.0				8							
HCO3	181.0											
F	0.1									0.1	0.1	0.1
В	0.5	0.9	1.3	2.1	2.7	2.8		4.4	4.9	5.4	6.4	6.3
As	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
SO4	34.0	39.0	51.0	49.0	54.0	54.0		67.0	69.0	65.0	71.0	73.0
SiO2(°F)	266											
Na/K (°F)	630											
Na/K/Ca (°F) B=.33	555											
Na/K/Ca (°F) B=1.33	716											
C1/B	300.0	208.9	156.2	119.0	93.7	93.9		79.5	72.4	61.7	114.1	58.7

____.

prown	ocnool	well	Data
			~


Date	Feb-90	Mar-90	Apr-90	May-90	Jun-90	Jul-90	Aug-90	Sep-90	Oct-90	Nov-90	Dec-90
Time	1854	1885	1915	1946	1976	2006	2037	2067	2098	2128	2158
Temperature	68.0	72.0	70.0	69.0	72.0	68.0					74.0
Water Level											
TDS	1107.0	1155.0	1222.0	1198.0		1190.0					1349.0
Cl	395.0	415.0	430.0	430.0	440.0	410.0					480.0
Ca											194.0
Mg											34.0
Na											126.0
К											34.0
SiO2											87.0
HCO3											271.0
F	0.1	0.1	0.1	0.1 [.]	0.1	0.1					0.1
В	7.2	3.8	8.7	5.0	9.7	9.7					13.2
As	0.0	0.0	0.0	0.0	0.0	0.0					0.0
SO4	78.0	80.0	84.0	80.0	86.0	82.0					87.0
SiO2(°F)											265
Na/K (°F)											644
Na/K/Ca (°F) B=.33											560
Na/K/Ca (°F) B=1.33											721
C1/B	54.9	109.2	49.4	86.0	45.4	42.3					36.4

•

Brown School Monitor Data (ppm, feet, °F) - Page 6

.

]:



 $\square$ 

Ľ

Species