Chapter 5. HYDROLOGY AND HYDROGEOCHEMISTRY

By: Burkhard W. Bohm, Roger L. Jacobson, Michael E. Campana, and Neil L. Ingraham

5.0 HYDROLOGY AND HYDROGEOCHEMISTRY

5.1 Introduction

5.1.1 Purpose and Scope

The purpose of this portion of the study is to provide hydrologic and hydrogeochemical input to the construction of the Dixie Valley geothermal model. Since some of the most important aspects of hydrothermal reservoir assessment are the fluid characteristics and flow parameters, the hydrology and hydrogeochemistry of a particular reservoir must be considered in the formulation of any hydrothermal reservoir model, even a conceptual or qualitative one. Our primary efforts were devoted to extensive isotopic and hydrochemical sampling and interpretation of these data as direct and indirect indicators of the nature of the reservoir. Most of the work focused on the area of greatest interest to Southland Royalty Company, the northern half of Dixie Valley (between Dixie Meadows and Sou Hot Springs). The study also involved sampling outside this particular region.

The major tasks of the hydrologic-hydrogeochemical study are as follows:

- (1) Review the available hydrologic and hydrogeochemical data.
- (2) Obtain water samples from selected wells, hot springs and cold springs.
- (3) Analyze water samples for major, minor and selected trace chemical constituents and environmental isotopes.
- (4) Collect temperature and other data from selected wells and springs.
- (5) Estimate recharge rates and source areas and groundwater flow rates.
- (6) Estimate reservoir geometry.
- (7) Provide estimates of reservoir water chemistry and, using geothermometry, reservoir temperatures.
- (8) Provide hydrologic and hydrogeochemical input to the formulation of a conceptual model of the Dixie Valley hydrothermal system.

The interpretation of the environmental isotope data was intended to supplement the hydrogeochemical data and provide additional

hydrologic information, particularly with respect to recharge to the reservoir. However, the complete suite of isotope data has not yet been received. The interpretations and conclusions presented herein have been made without the benefit of any isotope data, and are based almost solely upon the hydrogeochemistry. This is not an ideal approach, but was dictated by circumstance. Therefore, this chapter is incomplete since it is devoted primarily to the hydrogeochemistry of the study area with little discussion of the hydrology. An addendum to this chapter will be written as soon as the isotope data have been received, interpreted and integrated with the rest of the information.

5.1.2 Methods and Analytical Techniques

Approximately 100 samples of the thermal and non-thermal waters were collected. The collection generally involved filtration through a 0.45 µm filter for a gross sample and an acidified sample. Nitric acid was added to lower the ph to approximately 2. Samples were collected for silica using a 1:10 field dilution of the thermal waters with distilled water. Isotope samples were collected by completely filling a 125 ml glass bottle and sealing the bottle with Parafilm and electrical tape.

Field measurements were made of temperature, electrical conductivity (EC), pH and dissolved oxygen (D0). Laboratory determinations were made for Ca, Mg, Na, K, HCO_3 , Cl, SO_4 , NO_3 , SiO_2 , F, B, Li, As, Cs, Al, Hg, Fe, Mn, Sr and Ba in the Water Resources Center Laboratories.

 3 H analyses (both enriched and unenriched) were performed in Water Resources Center Laboratories. 18 O and 2 H samples were sent to the Laboratory of Isotope Geochemistry at the University of Arizona for analysis.

5.1.3 Previous Work

Very little previous work on the hydrology and hydrogeochemistry of Dixie Valley exists. A paper by Zones (1957) describes some of the hydrologic effects of the 1954 Dixie Valley earthquake. A reconnaissance study by Cohen and Everett (1963) gives an overview of the groundwater hydrology of Dixie and Fairview Valleys. This report also

includes a brief description of the groundwater chemistry of the Dixie-Fairview area. A total of 13 water chemistry samples were collected in an area of 2360 square miles, a very low sampling density. The data presented in this report were insufficient to draw any substantive conclusions concerning the groundwater system in Dixie Valley. Additional work of a limited nature in the valley was conducted by Keplinger and Associates (1977 and 1978) and by GeothermEx, Inc. (1976).

5.2 Analytical Results

5.2.1 Chemical Characteristics of Dixie Valley Waters

Table 5-1 shows the chemical analyses of all the samples collected during the study. Variations in gross chemical properties of Dixie Valley groundwater and surface water are evident on a trilinear diagram (Figure 5-1). Percentages of equivalents were plotted for major anions and cations (C1, SO_4 , HCO_3 and CO_3 , Ca, Mg and Na + K). The three hot spring systems of the valley plot as separate groups. Dixie Hot Springs (D) show significant variation, but generally they are sulfate-chloride-potassium-sodium waters. Hyder Hot Springs (H) show little variation, and are bicarbonate-potassium-sodium type waters. Sou Hot Springs (S) is an intermediate type, having roughly similar equivalent percentages of the major ions. The hot springs of McCoy Ranch (M), Lower Ranch and southern Jersey Valley seem to be related to Hyder Hot Springs. Buckbrush Seeps (B) also seem to be closely related to Hyder, perhaps due to structural relationships. However, Buckbrush Seeps might be affected by evaporation. Surface runoff from the Stillwater Range, irrigation wells from the northern part of the valley and waters from the eastern ranges (Clan Alpine and Augusta Mountains) show wide variations. There is, however, a rough grouping of the water quality samples according to their areal distribution in the valley. For example, the samples from the deep wells (DF 45-14 and DF 66-21) and well SR2-A seem to be related to Dixie Hot Springs. It should be noted that samples from DF 45-14 and DF 66-21 may not be representative of the geothermal reservoir fluids because of contamination from drilling fluids and additives and/or shallow groundwater.

Table 5-1. Chemical Analyses of Dixie Valley Waters.

The letter or number in the first column identifies the group sample according to the following code:

- A Artesian wells in the vicinity of Dixie Settlement.
- B Buckbrush Seeps.
- C Carson Sink (western slopes of the Stillwater Range).
- D Dixie Hot Springs.
- E Spring or stream from the eastern mountain ranges (Clan Alpine and Augusta Mountains).
- H Hyder Hot Springs.
- I Irrigation wells in the northern part of Dixie Valley.
- L Wells in the vicinity of Dixie Settlement.
- M Intermediate temperature springs around McCoy Ranch.
- S Sou Hot Springs.
- W Spring or stream from the Stillwater Range.
- 1 DF 45-14 (probably contaminated).
- 2 DF 66-21 (probably contaminated).
- 3 DF 45-14.
- 4 DF 66-21 (probably contaminated).

Table 5-1. Chemical Analyses of Dixie Valley Waters.

	DATE	TEMP PH										
W LL097		TEMP PH 15.00 8.00	CA 105.600	MG	NA 133 000	K	CL	\$04	HC03	\$102	C03	TDS
A UASI. A FF103	90878 92878 32079	1/ 00 / 01	270.400 46.500 56.000	43.300 31.300 26.600	133.000 211.000 464.000	.320 4.000 3.850	168.000 203.000 605.000	297.000	247.000 308.000	28.500 33.400	-0 174	2.810 3.190
M DASS M DASS M DASS	32079 51579	17.00 8.50	56.000 82.500 54.500	32.000 33.500 52.500	116.500	3.000	126.000	207.000 92.400 218.000	194.000 302.000 225.000 251.000	26.000 19.800 20.000	-0 157 -0 63 -0 81	5.667 6.145 5.990 2.820
W DV045	72079 322079 515579 515579 515579 515579 515779	13.000 5.40 11.000 8.557 17.000 8.655 26.000 7.69 15.75 8.550 13.575 8.774	54.200 68.200 44.500 42.000	52.500 35.000 21.500	176.000	2.600 10.700 2.800	115.000	1/5.000	306.000	31.800 14.500	•n 77	H 600
W DV047 W DV048	51579 51579	18.00 8.50 13.50 7.78	54.500	24.000	70.000 80.000 78.000	1.600 1.700 1.900	68.000 83.000 83.000	41.000 52.000	278.000 267.000 319.000	18.500	-0 54 -0 56	3.390 7.700 9.400 5.200
W DV049 W DV050 W DV051	51579 51579 51579	15.75 8.21 16.00 8.45	48.000 39.500 41.500	24.000 30.500 37.000 26.000 32.500	123.000 94.000	3.000 1.800	126.000	112.000	306.000	16.500 20.200 18.500	-0 64 -0 77 -0 60	9.400 5.200
W DV052 W DV053	5155779994 5155777999995 51557777999995 6225557799999622 62279227799999999999999999999	16.00 B.45 17.00 B.17 17.00 B.54 18.00 7.20 15.00 7.86	53.000 175.000	24.000	114.000 165.000 118.000	2.600 2.600	118.000	52.000 56.000 112.000 68.500 161.000 518.000	205.000	20.000 23.000 17.500	-0 70 -0 82	3.110 6.940 8.490
W DV055 W DV56 W DV057	62579 62579	15.00 7.86	66.000	78.000 34.500 37.800	120.000	3.800	150.000 140.000 130.000	105.000	360.000 346.000 379.000	17.500 19.500 20.000	-0 147 -0 83	1.474 5.180 6.680
W DV058 W DV059	62579 62579	15.00 B.45 15.00 B.45 15.00 B.70 16.00 7.33 22.00 7.40	44.000 41.500 38.000 262.000 95.700	27 HOD	138.000	3.500 3.300 2.100	149.000	155.000	316 000	20.000	-0 83 -0 66	2.670 8.720
W DV067 W DV078	62579 72379	16.00 7.33	262.000	31.300 33.300 16.900 65.000	105.000 123.000 215.000 187.000	2.600 3.500 2.700	127.000	104.000 710.000 171.000	279.000 215.000 299.000 327.000	19.500	20.000 68	1.090 8.430 6.785
W DV092 W DV102 W DV103	62579 62579	14.00 7.71 14.00 7.79 13.00 8.13 28.00 8.57	32.000 104.000 62.500	36.000	197.000	7.500 1.600	227.000 255.000 226.000	168.000	282.000 348.000	26.000 32.500 46.500 32.500	17.100 105 -0 102	8.295
W DV104 W DV105	62579 62579	13.00 8.13	39.500	26.500	138.000 82.500 112.000 102.000	2.100	226.000 125.000 155.000	126.000 83.000 94.000	234 000	32.500 35.000 37.500	-0 64 -0 81	8.320 3.710
W DV106 W DV107	62579 62579	13.00 8.13 28.00 8.57 26.80 8.32 15.50 7.55 16.50 7.62	42.000 65.000 70.500	22.000 26.500 36.500	118.000	4.900 3.300 3.000	144.000 148.000 171.000	84.000	310.000 135.000 207.000 294.000	37.500 35.000	12.300 58	1.460 2.000 8.860
W DV108 W DV109 W DV110	62579 62579 62579	66 A D U G A J D	65.000	19.800	140.000	3.200 9.200	185.000	117.000 125.000 180.000	267.000	35.000 32.000 32.500 30.800	-0 84 -0 91 6.700 103	6.400
w Oviii	62579		100.000	46.500 34.500 41.300	68.000 97.500	3.100	126.000	122.000	173.000	17.500 21.300	0 00 -0 88	4.430 8.570
C CS01 C CS02 C CS04	72379 72379 72379 72379 72379 72379	15.00 7.93 16.00 7.60	60.200 59.900 97.600	33.200 34.900	108.000	3.010 2.540 3.560	161.000	120.000	218.000	21.000	-0 72 -0 75	4.410 2.340
C CS06 C CS07	72379 72379	16.00 7.58 21.00 7.63 22.00 7.93 24.00 8.73	483.000	34.900 35.100 36.500 32.300	48.000 108.000 266.000	3.560 2.440 6.550	188.000	120.000 118.000 115.000 1134.000 15,100	134.000	43.000	-0 66 -0 221	8.485
Č ČŠŎB 8 DV041		· ·	135.000	31.800	266.000	1.880	310.000	342.000	199.000	29.000	-0 119 -0 144	7.317 5.505
8 DV042	51579 51579	28.00 9.59 15.00 9.87	13.700	2.100	1150.000 352.000	16.900 3.200	360.000 120.000	450.000 112.000	321.000	42.000 61.000	433.000 366 132.000 110	1.700
E LL102 E DV10	92878 32079 32076	10.00 7.60	14.200	2.300	18.000 154.000	1.000	10.500	12.000	69.700	25.600	-0 15	4.010
F DV12 F DV060	32079 32079 62579	15.00 7.33 11.00 7.27 9.00 7.85	165.000 54.500 14.500 42.300	66.000 14.000 2.720	55.500 37.000 21.000	2.200 1.400 1.500	64.000 26.000 14.500	472.000 64.000 17.200	277.000 214.000 68.900	15.300	-0,112 -0,112	1.805
F DV061 E DV062 F DV063	62579 62579 62579 62579 62579	10.00 B 33	34.000	7.600	43.500 41.600	1.200	28.000 25.000	/ 1. ANN	68.900 145.000 135.000	25.000 15.000 27.500 27.200 27.200 27.200 27.200	-0 16 -0 36	8.180 3.990
E DV091		23.00 7.92 18.00 7.40 32. 8.58	3.700	6.700	105.000	7.900	21.000	59.000 21.200 70.000	101.000	35.500 35.000	-0 33 -0 23 9.800 39	0.000 2.905 5.960
L LL103 L LL104	92878 92878	19.00 7.70 16.00 7.90	20.900 28.300	2.070	62.800 56.000	3.900 4.300	25.800 25.000	78.800 78.000	99.000	64.000	-0 35	8.780
			. •	2.23		71300	234000	70.000	111.000	64.800	-0 37	0.840

Table 5-1. Chemical Analyses of Dixie Valley Waters. (cont'd.)

M DV05 M DV06	DATE 32079 32079	TEMP PH 39.00 7.10 29.00 6.95	CA 39.000	мG 13.700	NA 144.000	K 12.000	CL 27.000	\$04 65.600	HC03	\$102 39.000	CO3	TDS 799.385
M DVII M DVIIS M DVII6	32079 62579 62579	43.00 6.90 50.00 7.31 40.00 6.89	68.000 95.000 94.000 67.000	19.100 37.500 36.500 18.500	164.000 213.000 218.000 240.000	12.300 10.300 10.000 23.800	28.000 275.000 286.000 39.000	124.000 209.000 216.000 88.000	554.000 310.000 312.000 803.000	44.000 36.800 32.500 26.300	-100 -0	1019.315 1191.515 1206.370 1312.200
1 DV069 1 DV70 1 DV72 2 DV080	070979 070979 070979	68.5 9.5 75.5 8.9 76.5 9.1	20.500 12.500 22.500	.050 .010 .010	685.000 605.000 618.000	65.000 53.000 65.000	815.000 740.000 700.000	512.000 352.000 352.000	32.400 5.100 6.100	6.500 31.000 300.000	18.700 52.200	2163,205
2 DV081 2 DV092 3 DV090 4 DV093 4 DV094	81479 81479 81479 091279 091379 091379	114.0 8.00 51.00 7.0 86.00 7.9 94. 6.8 63. 8. 95. 8.5	35.750 42.500 27.000 24.100 24.000 23.600	4.300 3.900 .015 4.030	1288.000 1238.000 1275.000 410.000 1730.000 2010.000	27.000 30.000 40.000 44.000	1208.000 -0 1150.000 493.000 1720.000 2315.000	127.500 215.000 396.000	1410.000 1391.000 130.500 1283.000 1197.000	210.000 232.000 325.000 189.000 160.000	-0 -0 -0	4118.590 1523.070 4248.290 1657.545 5410.600 6041.300
T DV15 T DV16 T DV030	042679 51579	71. 7.63 71. 7.42 64.50 6.89	156.000 145.000 145.000	30.000 28.800 26.000	400.000 398.000 405.000	30.000 18.000 18.600	535.000 550.000 575.000	448.000 445.000 410.000	200.000 203.000 211.000	98.000 100.000 105.000	-0 -0	1905.930 1898.660 1909.045

Table 5-1. Chemical Analyses of Dixie Valley Waters. (cont'd.)

	F	B	AL	FΕ	ми	LI	SR	N03	AS	HG-	cs
L LL105 L LL107 L LL108 L LL110 L LL111	8.600 •750 -0	-0 -0 -0 -0	-0 -0 -0	-0 -0 -0 -0	-0 -0 -0 -0	-0 -0 -0 -0	-0 -0 -0 -0	1.200 .310 4.380 2.260	-0 -0 -0 -0	-0 -0 -0 -0	100
A LL106 A DV13 A DV043 A DV065 A DV066	6.000 6.400 6.500 5.800	.320 -0 -0	.100 .100 -0	.010 .010 -0	• 015 • 005 • 005	• 050 • 052 • 0	:110 :130 -0	-0 -0 0 0	-0 -0 -0 -0	-0 -0 -0 -0 -0	-0 -0 -0 -0
I 0V034 I 0V038 I 0V039 I 0V040 I 0V100 I 0V101 I 0V113	.490 .700 1.000 1.300 .800 1.150 .900 .740	1.000 1.100 1.300 1.000 -0 -0 -0	100 100 100 100 -100 -0 -0	020 040 010 010 010 -0 -0 -0	.017 .008 .008 .005 .016	.260 .420 .357 .259 .3 -0 -0	1.730 2.800 1.870 1.280 2.400 -0	-0 -0 -0 -0 -0 0	.010 .010 -0 -0 .010 -0 -0	-0 -0 -0 -0 -0 -0 -0 -0	• 050 -0 • 050 -0 • 050 -0 -0
P DV20	• 330	-0	-0	-0	-0	-0	-0	-0	-0	-0	.050
O LL098 D LL190 D LL101 D DV24 D DV254 D DV16 D DV16 D DH16 D DH06 D DH08 D DH10	8.400 -0 -0 12.600 13.000 13.000 12.500 9.700 11.200 -0	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	-0 -0 -0 100 100 100 100 100 -100	-0 -0 -0 030 010 010 010 010 -010		0000002550000 1-1858128570000	00000000000000000000000000000000000000	1.150 .090 .090 .400 -0 0 0	-0 -0 -0 010 010 010 010 010 -010	-00000000000000000000000000000000000000	-0 -0 -0 -100 -170 -0 -0 -0 -0
H DV04 H DV033 H HH501 H HH503 H HH505 H HH512 H HH512 H HH509	7.600 7.500 8.100 8.200 8.100 8.200 8.200	4.000 4.200 4.900 6.100 5.000 4.900 5.100	100 100 100 100 100 100	.020 .040 .020 .070 .010 .010	.022 .027 .028 .039 .040 .021	1.600 1.590 1.590 1.610 1.590 1.560 1.630	1.200 1.260 1.070 1.150 1.090 1.100	- 0 - 0 0 0 0	.030 .030 .020 .010 .010	000 0005 0005 0004 0000	•280 •260 -0 -0 -0 -0
S DV01 S DV02 S DV035 S DV036 S DV076 S DV077 S DV0172	5.100 5.000 5.100 4.900 -0 -0	1.360 1.370 1.200 1.300 2.000 -0	100 100 100 100 100 -100	010 050 040 410 380 -0	.054 .045 .009 .006 .063 -0	.650 .650 .710 .680 .670 -0	10.800 11.100 6.200 10.500 11.400	-0 -0 -0 0	.010 .010 .010 -0 .010	.000 .000 .000 .000	•120 •110 •0 •0 •0 •0

Table 5-1. Chemical Analyses of Dixie Valley Waters (cont'd)

	DATE	ТЕМР РН	CA	MG	NA	ĸ	CL	S04	нсоз	\$102	C03	TDS
L LL105 L LL107 L LL108	92878 92878 92878	20.00 8.20 17.00 8.40 16.00 7.60	13.100 7.000 37.800 18.300 45.800	.300 200 3.720	65.000 67.000 43.000	2.900	19.500	50.200	106.000	73.900 70.800	7.100	341.900 311.110
	92878 92878	24.00 7.20	18.300	7.300	69.000 38.800	4.300 3.200 1.300	29.500 26.000 32.800	55.000 88.000 38.700	124.000 93.000 180.000	62.400 58.900 28.600	-0 -0 -0	364.850 360.720 373.390
A LL106 A DV13 A DV043	92878 32079 51579	19.00 8.10 19.00 8.30 18.30 8.26	22.500 18.600	1.130 .950 .900	65.700 68.000	4.800	23.500 23.000 27.000	80.000 72.800	111.000	74.300 74.500	-0 -0	383.150 367.145
A DV065 A DV066	51579 62579 62579	20.00 8.35	18.000 17.500 19.000	.900 1.150	67.000 68.000 65.000	3.900 4.100 3.700	23.000 23.500	72.400 72.000 69.000	103.000 101.000 104.000	69.000 70.000 62.500	-0 -0	368.217 363.000 353.650
1 DV034 1 DV037 1 DV038	51579 51579 51579	19.50 7.44 16.00 7.13 18.50 7.25	182.000 359.000 147.500	60.500 112.000 44.500	206.000 252.000 191.000	A.850 16.100	515.000 905.000	194.000	265.000 321.000	52.000 47.000	-0	1486.967 2383.281
1 DV039 1 DV040 1 DV100	51579 51579 51579 62579	18.50 7.25 22.50 7.83 15.50 7.50 19.00 7.55	305.000	25.500 99.000 24.800	159.000 195.000	13.800 19.300 14.900	330.000 125.000 715.000	234.000 134.000 332.000	361.000 399.000 297.000	63.000 77.000 49.500	-0 -0	1389.445 1006.754 2011.976
Î DVÎ 0 Î Î DVÎ 1 3 Î DVÎ 1 4	62579 62579 62579	20.00 7.60 24.50 7.52 22.50 7.52	55.000 57.000 95.000 112.000	22.000 34.000 41.300	158.000 108.000 120.000	16.000 14.000 17.900	166.000 122.000 196.000	138.000 128.000 166.000	291.000 242.000 255.000	65.000 70.800 85.000	-0 -0 -0	914.950 764.700 969.640
P DV20	32079	21.00 7.60	50.000	19.700	128.000 102.000	14.600	262.000	161.000 78.800	262.000	40.800	-0 -0	1061.350
D LL098 D LL099	92878 92878	53.50 7.80 73.50 8.70	77.200	• # 0 0	446.000	10.500	675.000	164.000	64.900	74.000	-0	1513.550
D LL100	92878 92878	70.00 8.40 25.00 7.40	7.600 51.800	.200 200 2.900	180.000 195.000 232.000	5.600 5.200 2.600	125.000 156.000 250.000	116.000	54.600 87.400	122.000	9.470	644.090 706.960
D DV23 D DV24 D DV054	32079 32079 62579	55.00 7.80	4.300 67.500	.200	181.000	10.200	133.000	160.000 108.000 161.000	163.000 56.000 62.000	52.700 123.000 75.000	28.000 -0	915.400 653.505 1470.122
D DH16 D DH15	72379	73.00 8.77 26.00 7.65 52.00 8.25	4.000 55.000	2.950 2.950	175.000	5.500 2.270	130.000	112.000 150.000	46.500	118.800 44.000 112.000	31.100	637.597 905.930
D DH09	72379 72379	73.00 7.80	9.600 31.000 11.500	.210 .120	210.000 311.000 216.000	4.330 8.720 5.420	208.000 362.000 160.000	102.000 220.000 202.000	76.600 75.100	85.000	7.200	743.850
D DHIO	72379 72379	57.00 -0 76.00 -0	-0	-0	-0 -0	-0	-0	-0 -0	76,600 -0 -0	109.000	9.600 -0 -0	803.875 102.000 66.000
H DV04 H DV033 H HHS01	32079 51579 72379	63.00 6.61 65.50 6.45 75.00 7.30	46.500	10.300 10.800 10.100	362.000 342.000	22.000	49.000	122.000	936.000	68.500 67.000	-0	1630.842 1586.787
H HHS03 H HHS05	72379 72379 72379	67.00 6.50 72.00 7.22	44.000 47.000 43.000	10.000	324.000 335.000 334.000	20.600 21.300 20.200	50.000 47.000 47.500	108.000 112.000 111.000	880.000 911.000 869.000	66.000 69.000 69.000	-0 -0	1518.508 1569.563
H HHS06 H HHS12 H HHS09	72379 72379 72379	39.00 -0 63.00 6.90 58.00 7.50	47.000 38.000	9.900 10.200	322.000 334.000	20.400	50.000	110.000 113.000	884.000	#3.000 66.000	- 0	1519.630 83.000 1525.196 1543.321
S DVO1	32079	55.00 7.30 51.00 7.39	110.000		160.000	21.000 28.000	47.000 77.000	370.000	303.000	67.000 66.800		•
5 DV02 5 DV035 5 DV036	32079 51579 51579	51.00 7.39 53.50 7.60 73.00 6.50	112.000	20.400 21.200 22.000	163.000 162.000	28.000	77.000	370.000 374.000	292.000 301.000	71.000 63.800	-0 -0	1153.274 1143.515 1162.359
S DV075 S DV076	72379 72379	73.00 6.05	105.000	21.500 20.800 -0	155.000 150.000	26.000 -0	78.000 76.000 -0	366.000 348.000	321.000 309.000	53.000	- 0 - 0	1090.396
S 0V077 S 0V112	72379 62579	30.00 -0 73.50 6.80.	105.000	20.500	162.000	28.000	78.000	-0 -0 352.000	-0 -0 313.000	58.000 54.000 60.000	-0 -0	58.000 54.000 1123.400
							,				•	

Table 5-1. Chemical Analyses of Dixie Valley Waters. (cont'd.)

	F	B	AL	FE	. MN	LI	SR	N03	AS	нG	cs
979 10001 1122 1001 1001 1001 1001 1001 10	-0000000000000000000000000000000000000	-0 -10 -10 -10 -10 -10 -10 -10 -10 -10 -	-0 -00 -00 -00 -00 -00 -00 -00 -00 -00	-0000000000000000000000000000000000000	-07500000000000550000000000000000000000	115N 1 1 1 1 1 1 1 1 1	-00 8680 -100 -	999		*	000000000000000000000000000000000000000
C CS01 C CS02 C CS04 C CS06 C CS07 C CS08	2.500 1.900	1.000 1.900 1.700	-0 -0 -0 •100 •100	-0 -0 -0 010 010	-0 -0 -0 290 •032 •005	-0 -0 -0 -045 -075	+0 +0 -0 4.600 3.350	0	-0 -0 -0 010 010	-0 -0 -0 000 •000	-0 -0 -0 -0 -0
8 DV041 8 DV042	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	# -0	-0 -0	-0
E LL102 E DV03 E DV12 E DV060 E DV062 F DV063 E DV063	-0 •600 •160 •300 •360 •290 •180	-0 -240 -230 -0 -0 -0 -220 1.200	-0 -100 -100 -0 -0 -0 -100	-0 -020 -010 -0 -0 -010	-00 -0155 -0155 -00 -0050	-0 -020 -010 -0 -0 -0	-0 -0 250 -690 -0 -0 -0 080 030	•710 -0 -0 -0 0 0	-0 -0 -0 -0 -0 -0 -0 -0		-0 -0 -0 -0 -0 -0 -0
L LL103	- 0 - 0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	1.510	-0 -0	-0 -0	-0 -0

Table 5-1. Chemical Analyses of Dixie Valley Waters. (cont'd.)

M DV05 M DV06 M DV11 M DV116 1 DV069 1 DV70 1 DV70 2 DV080 2 DV080 2 DV090 4 DV090 4 DV090 7 DV15 7 DV16	7.600 7.900 1.550 9.500 7.900 8.800	9000 1.800 2000 2000 11.000 12.700 12.700	100 100 100 100 100 100 100 100 100 100	010 010 010 -0 -0 -0 100 -0 -0 1.610 -0 -0	MN	270 -350 -150 -0 -0 1.290 1.20	SR .690 1.380 2.450 -0 -0 .160 .320 -0 1.060 -0 3.440 3.200	NO3	AS00000000000000	HG -00 -00 -00 -00 -00 -00 -00 -00 -00 -0	-00 -00 -00 -00 -130 -100 -100 -100 -100
T DV16 T DV030	4.400	5.500 4.700	.100	.040	.030	.975	3.200	-0	.040	• • • • •	••••

All concentrations are in parts per million (ppm) and temperatures are in ${}^{\rm O}{\rm C}$.

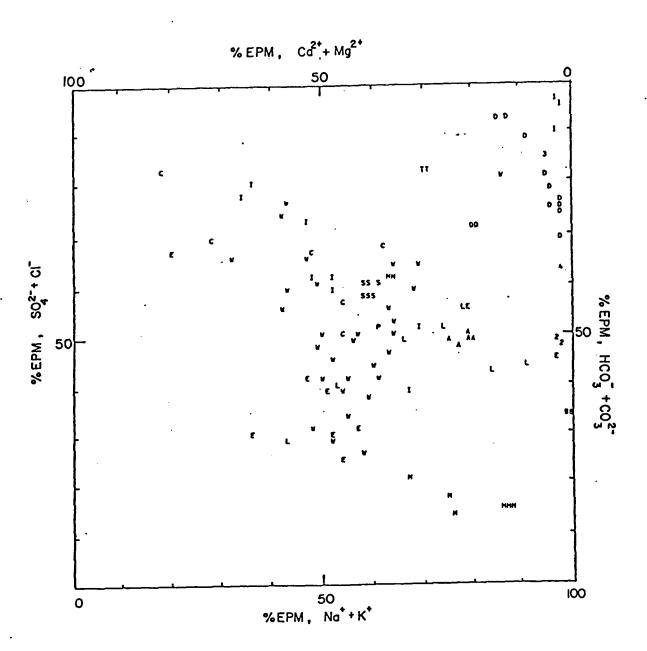


Figure 5-1. Trilinear Plot of Dixie Valley Waters. (See legend opposite Table 5-1 for letter and number code.)

All samples have comparatively low Ca and Mg levels. The hot spring systems, as well as the deep wells, seem to experience a substantial shift towards increased Na + K levels. The anions seem to indicate more clearly the differences among the three hot spring systems.

If one considers total dissolved solids (TDS), the variations in water chemistry become more apparent (Table 5-2).

Table 5-2 clearly illustrates the variations both within a given hot spring system and among the three hot spring systems. The Dixie Hot Springs system has the greatest TDS range, possessing both the lowest and highest levels. Sou and Hyder Hot Springs have very narrow TDS ranges, with Sou Hot Springs having the lower values of the two systems.

The artesian wells in the vicinity of Dixie Settlement have low values, similar to the surface water and spring water derived from the Clan Alpine Mountains. The hydrogeochemical evidence would tend to indicate that the Clan Alpine Mountains are a source of recharge for groundwater in the Dixie Settlement area. This situation is more likely than specifying the Stillwater Range waters as a source of groundwater recharge. These latter waters have high TDS levels for mountain spring water and surface runoff. These high TDS values definitely anomalous for "normal" mountain runoff will be discussed further in a later section.

5.2.2 Waters from the Clan Alpine Mountains .

Most of the waters from the Clan Alpine Mountains are chemically similar to the waters from the wells at Dixie Settlement. Both groups of waters are low in TDS, but the Dixie Settlement waters exhibit relatively high temperatures for groundwater. Two Dixie Settlement samples, DV 13 and DV 66, have unusually high pH values (8.30 and 8.18) and fluoride levels (6.00 and 5.80 ppm). One anomaly in the Clan Alpine Mountains is Shoshone Spring (DV 91), which has a surprisingly low dissolved oxygen content for a mountain spring, a high pH (8.58) and temperature (32°C). The boron level in this spring, 1.2 ppm, is a significant amount.

Table 5-2. Total Dissolved Solids (TDS) Contents of Dixie Valley Waters.

Sample Location .	TDS (ppm)
Dixie Hot Springs	640-3000
Sou Hot Springs	1100-1160
Hyder Hot Springs	1580-1630
McCoy and Lower Ranch Hot Springs	_800-1190
Eastern Mountain Ranges (Clan Alpine and Augusta Mountains)	170-435
Stillwater Range	600-1770
Artesian Wells in Southern Dixie Valley (Dixie Settlement)	350-370
Irrigation Wells in Northern Dixie Valley	760-2380
DF 45-14	1657-2201
DF 66-21 SR2-A	4100-5410 1900

Another important aspect is that the calculated ${\rm CO}_2$ pressures are oversaturated with respect to atmospheric ${\rm CO}_2$ pressure in many Clan Alpine Mountain waters (Table 5-3). These elevated ${\rm CO}_2$ pressures are caused by various dissolution reactions occurring in the subsurface, and the ${\rm CO}_2$ pressures are indicators of the extents of these various reactions. At the present time the sources of ${\rm CO}_2$ in geothermal systems are poorly understood.

5.2.3 Waters from the Stillwater Range

Even in the early stages of field work it was recognized that the waters from the eastern slopes of the Stillwater Range, which is considered one of the major recharge areas for the study area, are surprisingly high in TDS. One normally expects low TDS waters in a recharge area. Springs on the Carson Sink (west) side of the Stillwater Range also exhibited high TDS levels. Although some thermal springs are believed to exist in the mountains, none was found. All sampled springs have low discharges and most streams deposit travertine ($CaCO_3$). All computed CO_2 pressures are greater than atmospheric CO_2 (see Table 5-3). This tends to imply the existence of a source of CO_2 other than the atmosphere.

Samples from the eastern slopes have C1 levels as high as 260 ppm, SO_4 as high as 520 ppm, HCO_3 up to 380 ppm, SiO_2 up to 46 ppm, Mg up to 80 ppm, Na +K up to 190 ppm and Ca as high as 180 ppm. These waters apparently comprise most of the shallow groundwater north of Dixie Hot Springs. The ratios $C1/SO_4$, $(Na + K)/SO_4$, Ca/SO_4 and Mg/SO_4 are relatively constant in these samples. The constancy of these ratios is apparently characteristic of volcanic rock weathering, since volcanic rocks are abundant in the Stillwater Range.

The question remains as to why the Stillwater Range waters have such high levels of TDS, a phenomenon which is usually not anticipated from waters derived from precipitation. One reason could be that these waters have a relatively long residence time in the subsurface, a hypothesis weakly supported by the few available tritium data. However, the waters from the Clan Alpine Mountains are from a similar rock environment, but have much lower TDS levels.

A second explanation might be the rapid dissolution of hydrothermal minerals, by either old or young waters. Another possibility that could also explain the high calculated ${\rm CO}_2$ pressures (Table 5-3)

Table 5-3. Calculated $\log P_{CO_2}$ Values in Dixie Valley Waters.

_	log P _{CO2}
Sample Locations ·	
Stillwater Range	-3.4 to -1.5
Clan Alpine Mountains	-3.5 to -2.0
Artesian Wells (Dixie Settlement)	-3.5 to -3.7
Irrigation Wells	-2.5 to -1.8
Dixie Hot Springs	-4.0 to -2.6
Hyder Hot Springs	-1.4 to 0.0
Sou Hot Springs	-2.3 to 0.0
DF 45-14	-1.2
	-1.5
DF 66-21	-2.2 to -2.0
SR2-A	

is the ascension of thermal waters along deep reaching fault zones. These ascending thermal waters would then be slightly diluted by infiltrated precipitation, and the mixture would surface at springs.

Further work in the Stillwater Range itself will be required to verify the origin of the high TDS waters. It is possible that the isotope data will shed some light on this problem.

5.2.4 Thermal Waters in Dixie Valley

Thermal groundwaters commonly have chemical constituents that can serve as specific indicators of geothermal reservoirs. Elevated levels of F, Cl, B, SiO_2 , $\mathrm{H}_2\mathrm{S}$, Na and TDS can indicate geothermal activity. SO_4 can be high if sufficient sulfide and free oxygen are available at depth. HCO_3 is commonly high in thermal waters if an appropriate source of CO_2 exists at depth. However, it should be emphasized that F, B and other trace elements are low if the reservoir rocks lack these constituents. Ca and Mg levels are usually low in thermal waters due to cation exchange with clay minerals and other similar reactions.

In the following discussion the aforementioned indicators are utilized to determine relative circulation depths of waters and reservoir temperatures.

5.2.4.1 Dixie Hot Springs

The Dixie Hot Springs system is comprised of about 35 springs and seeps. The springs show wide variations in temperature and electrical conductivity. All springs emerge from alluvium, which is about 1000 feet thick in this area. Springs and seeps discharge over an area of about four square miles.

The Dixie Hot Springs system is typical for its relatively low HCO_3 (60-90 ppm). The pH ranges between 7.4 and 8.77, which is considered rather high. Electrical conductivities change significantly between adjacent spring orifices. Temperatures are generally highest for the lowest TDS springs (Figure 5-2). Cl and Na are highest for the low temperature springs. SO_4 and Cl correlate very well, and reach their highest levels in the coldest springs. SiO_2 decreases with increasing Ca, which indicates an increasing influx of cold

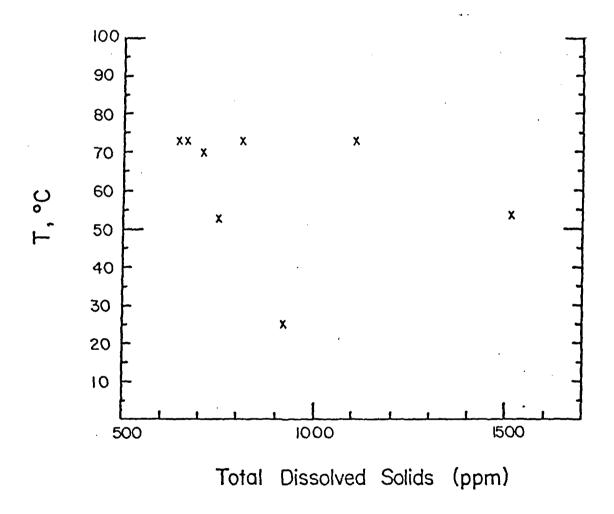


Figure 5-2. Temperature versus Total Dissolved Solids (TDS) for Dixie Hot Springs Waters.

water into the system. High Cl and Na levels indicate dissolution of shallow evaporites by cold water. F levels are the highest in the valley, whereas B, Li, As and Cs have comparatively low concentrations.

Table 5-4 shows estimated reservoir temperatures, calculated using chemical geothermometry. Conductive cooling was assumed for the silica method. Different temperatures between the two methods suggest that chemical equilibrium has not yet been attained.

The silica mixing model, based on a recharge water with 30 ppm SiO_2 , yields completely different results. For DV 23 a temperature between 225 and 235°C was computed. However, the mixing model is considered to be unreliable in this case, since the results are inconsistent.

In conclusion, the Dixie Hot Springs system probably shows various degrees of mixing between thermal and cold waters, which accounts for the varying temperatures and electrical conductivities. Based upon the structural analysis (Chapter 3), it is likely that the springs are fault-controlled. If fault control does exist then the colder waters with higher TDS could result from a less direct flow path that allows more cooling and more mixing within the alluvium which permits more dissolution of soluble salts. It is also possible that the low TDS waters are linked to the artesian wells of Dixie Settlement, since these are the only low TDS waters in the immediate vicinity. The increasing SO_4 with C1 (Figure 5-3) could also be attributed to cold waters from the Stillwater Range, since only there is the correlation between these ions good. Since the HCO_3 levels are low (less than 150 ppm), Dixie is probably not linked to any CO₂ source at depth. This accounts for the absence of any significant spring deposits. Low levels of most trace elements indicate that the Dixie Hot Springs system may be a relatively shallow system, whereas the high F could be due to the dissolution of ancient CaF₂ deposits. It is possible that the Dixie system is heated by a more extensive sealed geothermal reservoir at depth.

Table 5-4. Chemical Geothermometers Applied to Dixie Hot Springs Waters.

Sample No.	Quartz (°C)	Na-K-Ca (°C)	Field Temperature (°C)
DV23	149	139	73
DV54	147	137	73
DH6	142	97	73
DH1 5	143	95	52
DH9	128	100	73
DV24	122	88	55

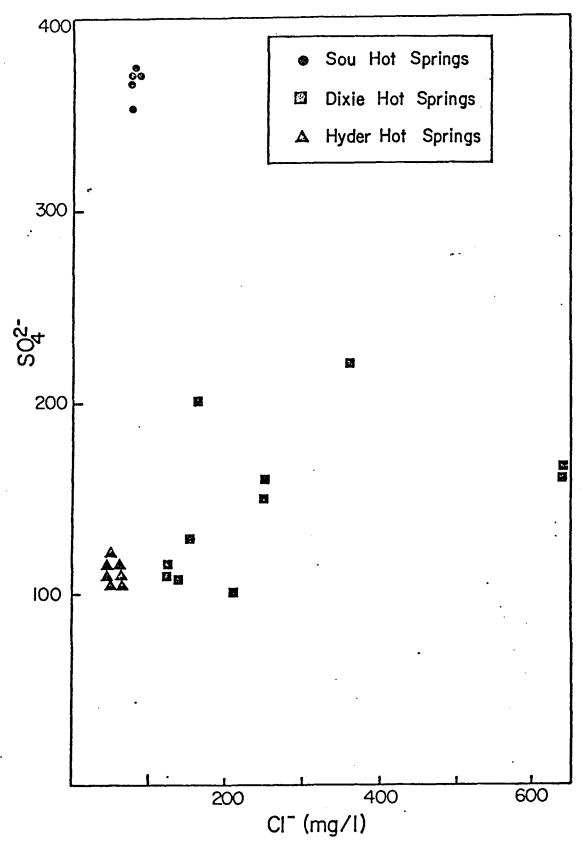


Figure 5-3. Sulfate versus Chloride for the Three Major Hot Spring Systems in Dixie Valley.

5.2.4.2 Hyder Hot Springs

The Hyder Hot Springs system emerges in the middle of the valley, where bedrock is apparently covered by a thick cover of alluvium. However, the chemical homogeneity of the springs seems to require a well-defined, fault-controlled flow system. The springs have deposited a vast amount of travertine up to 100 feet thick. Some of the springs are surrounded by delicate travertine structures.

A detailed survey of the system showed that all springs have electrical conductivities ranging from 1600 to 1850 micromhos (temperature compensated). Gross chemistry of the springs does not vary much, although temperatures differ considerably, ranging from 39°C to 75°C. Thus the system is probably relatively homogeneous, issuing from one reservoir.

Hyder waters are of the bicarbonate-sodium-potassium type. The bicarbonate levels range between 870 and 936 ppm and are the highest among all the hot springs. They are about six times as high as those from DF 45-14 but somewhat lower than those from DF 66-21. The high $\rm HCO_3$ accounts for the extensive travertine deposits. The pH is as low as 6.5 in springs with high $\rm HCO_3$ and as high as 7.5 in those with low $\rm HCO_3$. Some evidence of degassing (probably $\rm CO_2$) was found, which probably accounts for the inverse correlation of pH with $\rm HCO_3$.

The ${\rm SO}_4$ and C1 levels are among the lowest of the hot springs in the valley (108-116 ppm ${\rm SO}_4$, and 47-50 ppm C1). Sulfate is about as low as the first sample from DF 66-21. The relatively high bicarbonate concentrations indicate that Hyder is connected directly to a geothermal reservoir. In addition the low ${\rm SO}_4$ indicates a relatively deep water with limited capability to oxidize sulfides (Figure 5-3). However, no evidence of ${\rm H_2S}$ was found in Hyder, and the dissolved oxygen content was as high as 2.9 ppm in some of the springs.

Since electrical conductivities and silica levels are relatively constant, the silica geothermometer, assuming conductive cooling and no mixing, was applied. Calculated temperatures range from 115° C to 127° C. The cation geothermometer yielded consistent temperatures between 159° C and 162° C. Slight calcite precipitation is possible for those springs with highest discharge temperature, but the increase in calculated temperature would be negligible in this case.

In conclusion, the Hyder Hot Springs system is of one water type and thus emerges from a well-defined flow system, with little mixing with shallow groundwater. The high HCO_3 values indicate connection to a CO_2 source at depth. However, the water chemistry is inconclusive; therefore the relationship of the spring water to the deep system is unknown.

5.2.4.3 Sou Hot Springs

Vast amounts of spring deposits are present at Sou Hot Springs. The chemistry of the hot springs do not vary considerably, and are of an intermediate type. The temperatures range between 30°C and 73°C . The pH is as low as 6.5; a pH of 6.05 was measured but it is believed to be too low due to a faulty meter. Among the three major hot spring systems, Sou has the highest Ca, Mg and SO_4 levels. Cl levels are comparatively low (less than 100 ppm) as are F and B (DV36 in Figure 5-4). Sr is the highest among all the hot springs. HCO_3 levels are lower (about 300 ppm) than they are at Hyder Hot Springs.

The silica geothermometer, assuming no mixing and conductive cooling, yields temperatures between 105°C and 118°C . The cation geothermometer yields temperatures between 93°C and 194°C . The drastic changes in the calculated reservoir temperatures are probably associated with seasonal fluctuations.

Evidence of extensive ${\rm CO}_2$ degassing was found in a flowing well. This probably indicates that Sou Hot Springs is connected in some way to a ${\rm CO}_2$ -producing reservoir at depth.

In conclusion, Sou is probably a relatively shallow hot spring system. The low SiO_2 temperature, low F, B and Cl and high Ca and Mg are indicative of relatively shallow circulating meteoric water that is heated to low temperatures.

5.2.4.4 Well SR2-A

The measured temperature of the discharge water was 65°C (DV30).

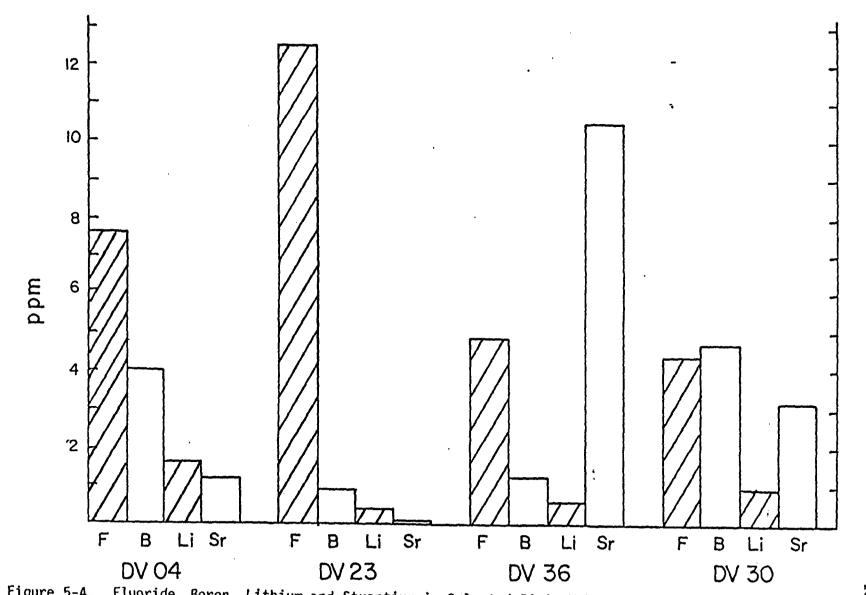


Figure 5-4. Fluoride, Boron, Lithium and Strontium in Selected Dixie Valley Waters.

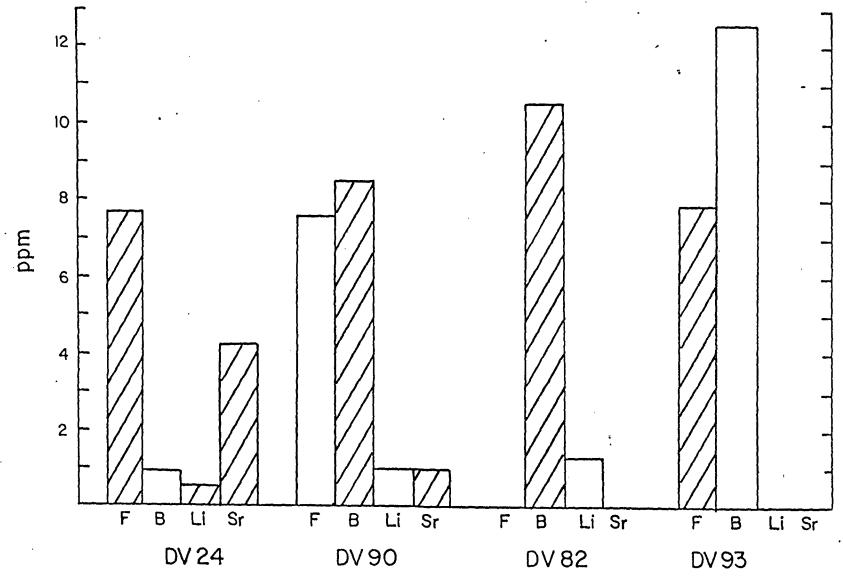


Figure 5-4 (con't.) Fluoride, Boron, Lithium and Strontium in Selected Dixie Valley Waters.

Ca and Mg levels are significant, indicating the influence of cold water. The ${\rm Cl/SO_4}$ is very similar to that of the water from White Rock Canyon, indicating the influx of water from the Stillwater Range. F, B and Sr are also significant. Application of chemical geothermometers yields $91^{\rm O}{\rm C}$ for the cation method and $139^{\rm O}{\rm C}$ for the silica method. The different results indicate inadequate chemical equilibration of warm water at depth. However, the silica method seems to be more reliable. SR2-A is probably fed by a mixture of hot water from depth and cold recharge water from the Stillwater Range.

5.2.4.5 Deep Wells DF 45-14 and DF 66-21

A discussion of the water chemistry with special reference to the alteration mineralogy was given in Chapter 4. In this section the deep wells will be compared to the hot spring systems and the recharge waters. It must be indicated that more than 95% of our data is related to shallow groundwater systems and hot springs. The deep well samples are the only ones that represent deep thermal waters. However, the samples from DF 45-14 and DF 66-21 are not the most reliable because of suspected contamination from drilling operations and/or shallow groundwater. This is especially true of the samples from DF 66-21. Nevertheless, certain gross chemical features of the deep waters can be inferred from the existing samples.

DF 45-14 (DV90) has relatively low levels of Mg and Ca and high C1 and SO_4 , which clearly indicate thermal waters. However, HCO_3 is low, much lower than in Sou Hot Springs. F is comparable to Hyder Hot Springs but much lower than in Dixie Hot Springs, whereas B is much higher than in any of the hot springs.

Application of the silica geothermometer (assuming no steam loss) indicates a reservoir temperature of 216°C for DF 45-14. Since the silica content at the sampling temperature is at the saturation level of amorphous silica, precipitation of amorphous silica might be expected in the ascending hot water. Thus, the silica temperature might be even higher. The cation geothermometer yields 193°C.

In DF 66-21 (DV82, DV93) the C1 and Na levels are about three times as high as in DF 45-14, although samples DV82 and DV93 are probably contaminated to a large extent. The ${\rm SO}_{\Lambda}$ levels are comparable

to the hot spring systems. HCO_3 levels are extremely high. B and F are comparable to those of DF 45-14. Generally the fluids from DF 66-21 can be considered as Na-Cl waters, high in HCO_3 .

The silica geothermometer yields a temperature of 190° C (assuming no steam loss) and the cation geothermometer gives 139° C for DV82. For DV93 176° C was calculated with the silica method and 148° C with the cation method. The silica method is considered to be more reliable. DV82 is from a depth of about 4700 feet and DV93 from about 9500 feet in DF 66-21.

5.3 Conclusions

The preceding discussion about the chemistry of the three hot spring systems indicates that it is unlikely all three systems are linked to a common source. The Dixie Hot Springs system seems to be isolated from a deep $\rm CO_2$ -supplying reservoir, and its waters probably originate from the Stillwater Range and/or other sources. The Sou and Hyder systems are different from each other as well as from the Dixie system as was seen in Figure 5-1. The comparatively low Cl levels in all three systems make a connection to a deep geothermal reservoir that supplies the deep wells unlikely. High $\rm HCO_3$ levels could be produced by the upward diffusion of $\rm CO_2$ from a source at depth. The fact that the maximum temperatures in all three systems are about the same $(75^{\circ}\rm C)$ is conspicuous. F increases with $\rm SiO_2$ if F is greater than 1 ppm, a relationship that applies to all the hot springs but not to the deep wells (Figure 5-5).

It is clear that the two deep wells tap waters that are different from all the other thermal waters in the valley. Additionally, DF 45-14 is apparently different from DF 66-21. The most significant differences are the higher $\rm HCO_3$ in DF 66-21 and a TDS level almost double that of DF 45-14. However, since samples from DF 66-21 are undoubtedly contaminated to an unknown extent, these differences may be more apparent than real.

The origin of HCO_3 is unclear. One source could be the oxidation of organic materials at depth, evidence of which was found in some of the sedimentary rocks at depth (T. Bard, personal communication). Another source could be the dissolution of limestones under

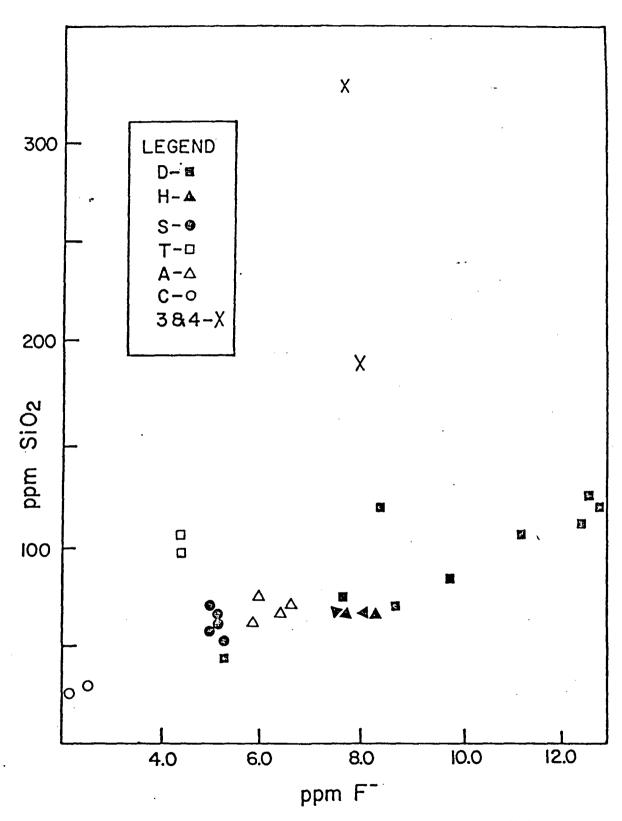


Figure 5-5. Silica versus Fluoride in Selected Dixie Valley Waters. (See legend opposite Table 5-1 for letter and number code.)

acidic conditions. Fracture zones could allow the ${\rm CO}_2$ to escape to shallow aquifers, thus accounting for the high ${\rm P}_{{\rm CO}_2}$ in most shallow groundwaters.

 ${\rm SO}_4$ probably originates from the oxidation of sulfides as well as the solution of ${\rm SO}_4$ minerals. However, the level of ${\rm SO}_4$ is probably limited at depth by the limited supply of free oxygen due to lack of deep-reaching circulation. This constraint might be active in both DF 45-14 and DF 66-21, thus accounting for the comparable levels of ${\rm SO}_4$.

It is still not clear how the three hot springs are related to the deep reservoir(s) tapped by DF 45-14 and DF 66-21. The collection and analysis of valid samples from the deep wells might provide more information, as might the isotope data. Age determinations using $^{14}\mathrm{C}$ would prove useful in determining circulation depths. Sulfur isotopes would be helpful in determining the sources of SO_{A} .

In summary, there appear to be different thermal systems in Dixie Valley. Their interrelationships are not clear, but it seems that there is little interaction among them other than occasional CO₂ transfer and conductive heat transfer.

5.4 References

- Cohen, P., and Everett, D.E., 1963, A brief appraisal of the groundwater hydrology of the Dixie-Fairview Valley area, Nevada: Dept. of Conservation and Natural Resources, Ground-Water Resources Reconnaissance Series, Report 23, 40 p.
- GeothermEx, Inc., 1976, Geothermal potential of the Quest Leasehold, Dixie Valley, Nevada: Rept. prepared for Dow Chemical Company, December, 1976.
- Keplinger and Associates, Inc., 1977, Phase II preliminary evaluation of Dixie Valley, Nevada: geothermal potential and associated economics: Rept. prepared for Millican Oil Company, Sept. 1977.
- Keplinger and Associates, Inc., 1978, Interim evaluation of exploration and development status, geothermal potential and associated econmics of Dixie Valley, Nevada: Rept. prepared for Millican Oil Oil Company, Sept. 1978, 60 p.
- Zones, C.P., 1957, Changes in hydrologic conditions in the Dixie Valley and Fairview Valley areas, Nevada, after the earthquake of December 16, 1954: Seis. Soc. America Bull., v. 47, no. 4, p. 387-396.