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Abstract 

Supergene silver enrichment, comparable to chalcocite supergene enrichment blankets in 

porphyry copper deposits, has long been called upon to explain high grades in silver deposits that 

diminish in grade with depth.  Rochester is a large-tonnage, low-grade disseminated silver-(gold) 

deposit hosted in Early Triassic rhyolites located in northwestern Nevada, where the role of 

supergene processes in controlling the distribution of ore and silver grade remained unclear prior 

to this study.  The effect of supergene processes at Rochester was investigated by observing 

patterns of silver occurrences in structures, weathering zones, and ore and gangue mineral 

paragenesis.   

The overall tabular geometry of the ore body straddling the Weaver-Rochester lithologic 

contact is defined by high grade zones in the lower Weaver oxide and upper Rochester oxide and 

mixed oxide-sulfide zones.  Grades drop off significantly in the underlying protore sulfide zone.  

Protore hydrothermal alteration is dominated by quartz-sericite-pyrite with minor relict K-

feldspar.  Hypogene sulfides include pyrite, sphalerite, galena, tetrahedrite-tennantite, 

chalcopyrite, arsenopyrite, and rare molybdenite.  Silver phases in the protore include silver-

bearing tetrahedrite-tennantite; acanthite; and rare stromeyerite, pearceite, and polybasite.  

Geologic characteristics most closely associated with higher silver grades in oxide and mixed 

oxide-sulfide zones include faults, acanthite, and goethite-rich rocks.  High grade zones (≥2 opt 

Ag) are controlled by high- and low-angle faults cutting the Weaver-Rochester contact.  

Acanthite is the dominant silver phase.  Much of the acanthite formed by supergene enrichment 

based on its common occurrence with covellite as rims on hypogene sulfides in mixed zones.  

Chlorargyrite and native silver are commonly found in the oxide and mixed zone with acanthite.  

Other silver-halides, such as iodargyrite, are found in the oxide zone.   

Based on these observations, coupled with published phase equilibria, early oxidation of 

protore caused the formation of silver-halides resulting in a decrease in silver mobility, 
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particularly when iodargyrite was stable.  Upon oxidation, a small amount of silver is able to 

migrate to lower portions of the supergene profile forming acanthite.  However, if iodide (I-) was 

not continually replenished the I/Cl ratio would have decreased and the chlorargyrite field would 

have expanded at the expense of iodargyrite, which would have allowed more downward 

transport of Ag+, as chlorargyrite is more soluble than iodargyrite.  A dropping water table caused 

by uplift, erosion, and climatic changes, controlling silver deportment resulted in continued 

oxidation.  As the water table dropped due to uplift related to Basin and Range extension, as well 

as decreasing precipitation from a cooling and drying climate, enriched zones would have 

oxidized.  When groundwater was not saline chlorargyrite released Ag+ and upon oxidation 

acanthite released silver as AgHSo for downward transport.  New acanthite could have then 

formed at the deeper water table. 

The amount of silver that became fixed as silver-halides and native silver in the oxide 

zone controlled the amount of aqueous silver in downward moving supergene fluids, which in 

turn controlled the extent and grade of supergene enrichment expressed as zones of abundant 

supergene acanthite.  This was dependent on environmental conditions, including the salinity of 

groundwater, duration and periodicity of weathering, tectonic activity resulting in uplift and 

dropping of the water table, and composition of gangue minerals.  The possibility that the overall 

tabular geometry of the Rochester ore body that sits just above the sulfide zone, resulted from 

supergene enrichment processes cannot be ruled out at this time without further work.  

Nevertheless, supergene silver enrichment certainly occurred at Rochester and resulted in high 

grade zones (≥2 opt Ag up to 70 opt) along high- and low-angle faults.  Identifying the controls 

on such high grades is important for future exploration and mine planning.    
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I. Introduction 

The ability of silver to behave similar to copper in the weathering environment has historically 

been accepted, largely due to similar dissolution and transport characteristics in acidic solutions 

(Emmons, 1917; Titley and Marozas, 1995).  While supergene processes involving copper 

deposits have been studied extensively, there have been few recent published studies on silver 

deposits (Mann, 1984; Webster and Mann, 1984; Saunders, 1993; Greffie et al., 2002; Rainbow et 

al., 2006; Sillitoe, 2007 and 2009; Fanlo et al., 2010; Reich et al., 2010; Yesares et al., 2014).  

Copper porphyry deposits often develop well defined supergene profiles (Fig. 1A), characterized 

by an oxidized and leached cap overlying a copper-sulfide enriched zone above hypogene 

mineralization (Blanchard, 1968; Anderson, 1982).  If the historic view of silver behavior is 

correct, similar supergene processes could also form economically significant zones enriched in 

silver.  However, Sillitoe (2009) reviewed 40 of the world’s premier silver deposits, and 

concluded silver is relatively immobile in the supergene environment (Fig. 1B), including the 

large disseminated Rochester silver deposit in Nevada.  He suggested any enrichment is largely 

the result of residual enrichment due to the extreme insolubility of silver-halides and efficient 

fixing of silver, calling into question the applicability of the copper supergene model to silver 

deposits (Sillitoe, 2009).   

The main objective of this study was to test Sillitoe’s (2009) conclusions and determine 

the role supergene weathering processes had on secondary silver deposition, including 

remobilization and possible enrichment at the Rochester deposit.  This was accomplished by 

systematically identifying silver deportment in the oxide zone, near the sulfide-oxide boundary 

and within the sulfide zone; defining mineral paragenesis in both the oxide and sulfide zones; and 

describing how gold and silver relate to each other and to geological characteristics.  Detailed pit 

mapping, core logging, downhole geochemistry, petrography, microanalyses of minerals, and 

geochronology were employed.  If supergene enrichment exists, two observations are expected.  
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First, at the deposit scale, blanket-like or structurally controlled zones with higher silver grades 

should be present near the oxide-sulfide boundary.  Secondly, at the microscopic scale, silver-

bearing minerals and other minerals containing mobile elements, like copper, should be observed 

as rims on hypogene sulfides, such as pyrite.  Alternatively, if such enrichment zones and rims 

are absent, the distribution of silver grades might be explained by hypogene zonation or residual 

enrichment within the oxide and mixed oxide-sulfide zones.   

 

Figure 1.  A. Idealized supergene profile of a copper-porphyry deposit with an inital copper-

sulfide enriched zone at the water table modified from Anderson (1982).  B. Schematic cross 

section depicting idealized interpreted supergene silver profile modified from Sillitoe (2009). 

 

II. Background and Geologic Setting 

Historically, numerous silver mines throughout Nevada have been short-lived after their shallow 

high-grade oxidized and underlying sulfide portions of veins were exploited.  Examples of short-

lived camps include Lander Hill in the Reese River District near Austin, the Belmont District in 

northern Nye County, and the Candelaria District in Mineral County (Page, 1959).  Several of 

these mines contained chlorargyrite (see Table 1 for chemical formulas) and other silver-halides 

as the principal ore minerals in the shallow oxide zone, and electrum, native silver, acanthite, and 
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silver-bearing sulfosalts and galena deeper in the sulfide zone (Ross, 1953; Stager, 1977; 

Kleinhampl and Ziony, 1984).  Most workers noted limonite and other oxides as vein constituents 

with sulfides suggesting ore was mined from both the oxide and mixed oxide-sulfide zones (Page, 

1959; Stager, 1977; Kleinhampl and Ziony, 1984).   

Silver was first discovered in the Rochester Mine area in 1911 when high-grade veins 

were found at the surface.  From 1912 to 1928 720,000 tons of ore were produced from the 

Rochester district averaging 12 ounces of silver and 0.10 ounces of gold (Vanderburg, 1936; 

Vikre, 1981).  Once the high-grade oxide and acanthite-rich mixed oxide-sulfide ores were mined 

(Knopf, 1924), silver production ceased until 1981 when ASARCO defined a low-grade bulk-

tonnage resource, which was subsequently acquired by Coeur Mining, Inc. in 1983.  Today Coeur 

mines Rochester as a low-grade, bulk-tonnage open pit silver-gold mine.  In 2015, 4,631,000 

ounces of silver and 52,588 ounces of gold were mined from ore grade averaging 0.63 opt silver 

and 0.003 opt gold (Coeur Mining, Inc., 2015).  Silver and gold are extracted by cyanide heap 

leaching and processed using the Merrill-Crowe method.  Projected life of pad recovery rates of 

crushed ore material is 92% for gold and 61% for silver, whereas 70% of the gold and 20% of the 

silver is recovered from run of mine ore (Robinson et al., 2014).     

 

Regional Geology 

The Rochester Mine sits in the center of a broad north-trending antiform of the Humboldt 

Range (Vikre, 1981), and is located 26 miles northeast of the town of Lovelock (Fig. 2) in 

Pershing County, Nevada.  The Humboldt Range is host to numerous precious metal deposits 

ranging in age from Late Cretaceous to Quaternary (Vikre, 1981; John and Muntean, 2006; Price 

et al., 2014; Fifarek et al., 2015).  The oldest rocks exposed in the Humboldt Range, are the 

Koipato Group, a sequence of Early Triassic volcanic rocks and intrusions with minor 

siliciclastics (Knopf, 1924; Wallace et al., 1969; Vikre, 1977).  Volcanism represented by the  
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Figure 2. Geologic map of the Humboldt Range and surrounding ranges showing the location of 

the Rochester Mine (modified from Silberling and Wallace, 1967; Wallace et al, 1969a, 1969b; 

Wyld, 2016). 
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Koipato Group overlies the Golconda allochthon, which was emplaced during the Permian 

Sonoma Orogeny (Ferguson et al., 1952; Silberling and Roberts, 1962; Vetz, 2011).  Whether 

movement along the Golconda thrust ceased after the deposition of subaerial Koipato volcanics 

continues to be debated (Wilkins, 2010).   

 Koipato volcanism ceased by Middle Triassic and a marine transgression ensued, as 

evidenced by fossiliferous limestone overlying basal conglomerate and sandstones of the Star 

Peak Group unconformably overlying the Koipato Group.  The Middle to Middle-Upper Triassic 

Star Peak Group is dominantly a marine sedimentary package composed of fossiliferous 

limestones, mudstones, siltstones, and sandstones deposited in a vertical transition from shelfal to 

basinal carbonate sequence, the result of subsidence of the western continental margin (Knopf, 

1924; Nichols and Silberling, 1977; Silberling and Nichols, 1982).  Marine carbonate deposition 

concluded as the Star Peak Group was then overlain by the terrigenous Upper Triassic to Jurassic 

(?) Auld Lang Syne Group largely composed of mudstones, shale, and sandstones interbedded 

with limestone and dolomite, variably metamorphosed to argillite, phyllite, and quartzite 

(Silberling and Wallace, 1969; Burke and Silberling, 1974; Wyld et al., 2003).   

Regionally, the late Jurassic Luning-Fencemaker Fold and Thrust Belt resulted in 

Mesozoic shortening in the back-arc of the U.S. Cordillera.  This orogenic event produced low- 

and high-angle structures and metamorphosed late Permian-Jurassic strata in the Humboldt Range 

(Wyld, 2002; Wyld et al., 2003; Yonkee and Weil, 2015).  Jurassic and Cretaceous intrusions 

throughout the range have been identified from dating both exposed intrusions and variably 

metamorphosed alteration mineral assemblages in older rocks, namely quartz-andalusite-

dumortierite-muscovite and quartz+sericite±pyrite.  A Jurassic mafic intrusive complex dated at 

~170 Ma is widely exposed in the nearby West Humboldt Range, Stillwater Range, and Clan 

Alpine Mountains (Johnson and Barton, 2000).  This intrusive body is interpreted to underlie 

portions of the Humboldt Range based on 168.6 ± 9.3 Ma Rb-Sr age of strongly altered Koipato 
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Group rocks in Limerick Canyon as well as δD and δ18O values from altered rocks that 

correspond to the Jurassic magmatic waters (Kistler and Speed, 2000; Vikre, 2014).  Late 

Cretaceous felsic intrusions in the Humboldt Range are largely inferred to underlie the range.  

The largest exposed Cretaceous intrusion is quartz monzonite in composition outcropping in 

Wright and Rocky Canyons with U/Pb ages of zircon ranging from ~92 to 89 Ma (Marvin and 

Dobson, 1979; Crosby, 2012; Vikre, 2014).  The youngest granitic intrusion in the Humboldt 

Range is a ~32 Ma granodiorite found in the lower portion of Spring Valley based on U/Pb dates 

of zircon and 40Ar/39Ar of hornblende and biotite (Crosby, 2012; Vikre, 2014).  Overlying the 

Auld Lang Syne Group in the West Humboldt range, a thin layer of Oligocene-Miocene fresh and 

marine carbonates and conglomerates are overlain by Tertiary aged Miocene(?) rhyolitic and 

dacitic tuffs (Bonham and Sharp, 1957; Wallace et al., 1969b; Vikre, 1977).   

Basin and Range extension is responsible for ~N-S normal faulting within and bounding 

the Humboldt range.  Late Miocene basalt dated at -12-9 Ma occurs along the eastern flanks of 

the range and covers semi-consolidated Tertiary and Mesozoic sedimentary rocks along the 

eastern West Humboldt Range (Wallace et al., 1969; Vikre, 1977).  Basin and Range faulting 

likely began with the onset of Tertiary volcanism and prior to Late Miocene basalts suggested by 

gravels of Koipato and Star Peak Group rocks interbedded with younger silt and tuff (Vikre, 

1977).  There were at least three major periods of erosion and exhumation in the region 

throughout the Mesozoic and Cenozoic complicating weathering history (Wyld, 2002; Wyld et 

al., 2003; Colgan et al., 2006).  Shoreline deposits on the eastern and northwestern sides of the 

Humboldt Range show the high-stand for Pleistocene-Quaternary Lake Lahontan (Vikre, 1977; 

Silver et al., 2011). 
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District Geology 

The Rochester Mining District makes up the central part of the Humboldt Range where 

the largest ore deposit is the Rochester mine.  Other silver-gold and gold deposits in the district 

include Nevada Packard, Lincoln Hill, Independence Hill, and Spring Valley (Knopf, 1924; 

Vikre, 1977; Vikre, 2014).  Non-precious metal ore deposits and industrial mineral deposits also 

occur in the district, including Pb-Zn, Be, U, and dumortierite (Knopf, 1924; Johnson, 1977; 

Vikre, 2014).  Placers have historically been mined in nearby canyons and are still worked by 

independent claim owners.   

Mineralization in the Rochester district is hosted primarily by the Koipato Group and is 

comprised of (oldest to youngest) the Limerick, Rochester, and Weaver Formations (Vikre, 1977; 

Vetz, 2011).  The Limerick Formation dated by Vetz (2011) yielded a U/Pb date on zircon of 

249.59 ± 0.08 to 249.37 ± 0.1 Ma and is composed of andesitic flows with lesser lithic and crystal 

tuffs, and volcanic derived siltstones and conglomerates.  Limerick rocks are variably 

metamorphosed to greenstone that resulted from numerous metasomatic events related to 

intrusions in the Early Triassic, Jurassic intrusions, Luning-Fencemaker thrusting, and Cretaceous 

magmatism (Wyld et al., 2003; Vikre, 2014).  The Rochester Formation, dated by U/Pb of zircon 

at 249.36 ± 0.07 to 248.53 ± 0.07 Ma (Vetz, 2011; Crosby, 2012) unconformably overlies 

Limerick rocks.  The Rochester Formation is composed of aphyric to quartz-phyric rhyolite 

ignimbrites and porphyritic crystal rhyolite tuff, as well as minor ash layers, epiclastic sandstone, 

and siltstones (Johnson, 1977; Vikre, 1977; Martz and Reid, 1987; Crosby, 2012; Chadwick, 

2014).  The Weaver Formation was previously interpreted to overlie the Rochester along an 

unconformity; however, recent U/Pb dates on zircon (248.97 ± 0.07 to 248.32 ± 0.08 Ma) overlap 

with the Rochester (Vetz, 2011).  The Weaver Formation is composed of rhyolites containing 

welded to non-welded lithic crystal-rich tuff with minor ash, and is capped by siltstones and 
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sandstones with spherulitic tuff at the south end of the district (Vikre, 1977; Martz and Reid, 

1987; Chadwick and Harvey, 2001).   

Two granitic phases intrude the Limerick and Rochester Formations and have historically 

been thought to be the intrusive equivalents of the Rochester and Weaver Formation (Wallace et 

al., 1960; Wallace et al., 1969a; Vikre, 1977).  Zircons in leucogranite predate the Weaver 

Formation and have been dated by the U/Pb method at 249.13 ± 0.07 to 249.09 ± 0.08 Ma (Vetz, 

2011; Crosby, 2012).  Leucogranite is located directly east of the Rochester mine and the Black 

Ridge Fault as well as to the northwest in Limerick Canyon (Wallace, et al., 1969a; Vikre, 1977; 

Crosby, 2012).  Rhyolite porphyry dikes yield U/Pb dates of 249.33 ± 0.08 to 249.08 ± 0.14 Ma 

(Vetz, 2011; Crosby, 2012) and often crop out alongside the leucogranite, and then increase in 

abundance north of Lone Mountain (Wallace et al., 1969b; Vikre, 1977). 

Quartz+sericite+pyrite (QSP) is the most common alteration assemblage and is pervasive 

throughout the district (Vikre, 1981, 2014; Crosby and Thompson, 2015).  Luning-Fencemaker 

thrust sheets as well as the Jurassic intrusive body are thought to account for this alteration on a 

regional scale (Vikre, 2014).  Cretaceous intrusions were responsible for silver-gold 

mineralization and overprinting QSP alteration in the Rochester district and Spring Valley 

project.  The Cretaceous age of this mineralizing event is evidenced by 40Ar/39Ar and K-Ar dates 

of muscovite from altered Koipato Group rhyolites and vein material which spans U/Pb dates of 

zircons from Cretaceous aged intrusions in the range (Crosby 2012; Vikre, 2014).  Sericite from 

alteration halos and veins from Nenzel Hill at the Rochester mine yielded ~103-86 Ma ages from 

40Ar/39Ar and K-Ar dates (Vikre, 1977, 2014).   

The first recognized deformation event exposed in the Humboldt Range is the Jurassic 

Luning-Fencemaker fold and thrust belt (Heck, 1987; Cheong, 1999; Wyld et al., 2003).  These 

deformational phases resulted in generally east-verging thrusts; N-NE-trending, west dipping 

penetrative foliation; and concentrated folding of the Star Peak Group (Cheong, 1999; Price et al., 
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2014).  The Black Ridge fault zone is a prominent structural zone bounding the Rochester deposit 

to the east.  The fault trace extends from Moonlight Basin to the north to Nevada Packard to the 

south and then becomes a range-bounding fault south to Relief Canyon (Silberling and Wallace, 

1967; Wallace et al., 1969; Crosby and Thompson, 2015).  

Based on H2O-CO2-NaCl fluid inclusions, sphalerite geobarometry, and 40Ar/39Ar 

muscovite dates, rocks were buried to a depth of at least 3.8 km during Cretaceous mineralization 

at Rochester.  If these estimates are correct, then at least one half of the Luning-Fencemaker 

allochthon had been removed prior to mineralization and the remainder has been eroded since 

mineralization (Vikre, 1977, 2014), suggesting the Rochester district is largely in the lower plate 

of the Luning-Fencemaker thrust. 

 

Local Geology 

The Rochester and Weaver Formations are the only units encountered in the Rochester 

mine area (Fig. 3). The most common hydrothermal mineral assemblage is 

quartz+sericite+pyrite±K-feldspar and is possibly related to numerous magmatic and 

tectonothermal events in the region, including intrusions coeval with the primary deposition of 

Koipato Group rocks, Jurassic magmatism and deformation, and Cretaceous intrusions (Vikre, 

1977; 1981; 2014).  Locally, silicification is strong, commonly obscuring primary volcanic 

textures.  The Rochester deposit is cut by a series of high-angle faults that strike predominantly 

N-S, some of which show apparent normal displacement and others reverse displacement.  There 

is also a set of stacked low-angle faults cutting through the deposit which strike mostly N-S to NE 

and have a westerly dip (Fig. 4) (Chadwick and Harvey, 2001).   

Textures are also masked by supergene oxidation, which occurs as variably developed 

zones of pervasive goethite and hematite.  Pervasive hematite locally increases near the Weaver-

Rochester contact and adjacent to faults.  Very minor jarosite locally occurs adjacent to mixed  
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Figure 3. Geologic map of the Rochester Mine pit.  Collar location for core hole ERC14-002 is 

indicated by red dot.  (Modified from White and Chadwick, 2015; Chadwick et al., 2016). 

 

 

Figure 4. Schematic cross section A-A' showing stacked low-angle faults cut by high-angle faults 

through the Rochester deposit. 
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oxide-sulfide zones.  Boundaries between mixed sulfide-oxide zones and oxide zones commonly 

occur at major faults, suggesting faults were important in focusing groundwater during 

weathering. 

Silver-(gold) mineralization typically occurs near the Rochester-Weaver contact, which is 

commonly defined by a crackle breccia with a quartz±goethite±pyrite matrix (Fig. 5).  The  

 

Figure 5. A. Crackle micro breccia from R11C-006 core hole at 38.5 feet in the Weaver 

Formation 5-foot interval assayed 4.1 opt Ag and 0.001 opt Au. B. Quartz veinlet cutting 

pervasive crackle breccia from HQ core hole ROCC16-1051 at 355 feet in the Rochester 

Formation and is not yet assayed. C. Crackle breccia in the mixed weathering zone in HQ core 

hole ERC14-002 at 655 feet in the Rochester Formation 8-foot interval assayed 0.1 opt Ag and 

0.001 opt Au. D. Also from ERC14-002 crackle breccia at 409.2 feet in the Weaver Formation 

5.2-foot interval ran 3.4 opt Ag and 0.003 Au. 

 

breccia matrix is gray to milky white quartz with a cherty to fine-grained texture, clasts represent 

~80% and are ~2-40 mm angular to subangular, pyrite or goethite can locally make up ~10% of 
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the matrix.  This apparent hydrothermal breccia, characterized by a mosaic of angular to sub-

angular rhyolite clasts with a quartz matrix, can extend a few hundred feet into the Rochester 

Formation.  The matrix is dominated by cherty to fine-grained light gray quartz.  Whether there 

are two, or possibly more, hydrothermal brecciation events, one characterized by light gray cherty 

to fine grained quartz matrix and the other by a fine-grained quartz±goethite±pyrite matrix, 

remains unclear.  Ore also occurs as quartz-sulfide veinlets and disseminations in both the 

Weaver and Rochester Formations.  Quartz±sulfide veinlets are dominantly ~1-2 mm and often 

cut the light gray quartz matrix of the crackle breccia (Fig. 5B).  Higher grade ores appear to be 

controlled by shear zones and commonly occur at the intersection of high- and low-angle faults.  

In addition, silver and gold grades are higher in the oxide and oxide-sulfide mixed weathering 

zones and are mined exclusively from these zones.  Prior to this study, whether this zonation 

resulted from supergene processes or original hypogene mineralization was a major outstanding 

question at Rochester and is addressed in detail below. 

 

III. Methods 

Core logging and open pit mapping were done in the summer of 2015 and 2016 using the 

Anaconda method.  The method utilizes a color-coded scheme, which includes graphical and 

numerical data on rock type, structure, vein types, hydrothermal and supergene alteration, 

approximate volume percent of minerals and veins, and relative ages between the mapped 

features.  Five core holes were logged in detail and six more were logged in a reconnaissance 

fashion to compare geological characteristics to silver grades.  Six 150-foot sections of pit 

benches were mapped in detail (Fig. 6), and samples were collected for assay.  Samples from core 

logging and pit mapping were collected for petrography and microanalyses.  Samples from pit 

mapping were assayed at Coeur Rochester’s on site laboratory using the fire-assay method 

followed by atomic absorption spectrophotometry.   



13 
 

 

Figure 6. Locations of the five core holes logged in detail and six pit benches mapped. 

 

Three core holes were logged in the summer of 2015.  Core hole ERC14-002 was the 

focus of this study because of its well-defined oxide, mixed, and sulfide zones; good exposure of 

the Weaver-Rochester contact; and a high grade intercept of 71 opt Ag.  ERC14-002 was drilled 

on the east side of the Rochester mine (Fig. 6) in the newly discovered “East Rochester” ore zone.  

Core hole ERC14-002 was assayed for gold, silver, and analyzed for 48 other elements by ALS 

Minerals in Reno.  Silver was analyzed by fire assay with a gravimetric finish.  Gold was 

analyzed by fire assay with an atomic absorption finish.  The other 48 elements were analyzed by 

four acid digestion and finished with ICP-MS.  Ore grade elements were reanalyzed with ICP-

AES.  Blanks and standards were inserted in the sample stream based on industry QA/QC 

standards.  Sample breaks were chosen based on geological characteristics including oxidation 
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intensity, structure, and veining/silicification.  The lengths of sample breaks ranged from 0.4 to 

composites of 27.4 feet.   

Two of the core holes, R11C-006 and R07-03, were logged and sampled for 

microanalysis in the summer of 2015.  These two older core holes were the only other intact core 

holes with high silver grades available at the time.  Core hole R11C-006 was drilled in 2011 and 

is located on the northwestern side of the deposit (Fig. 6).  Core hole R07-03, was drilled in 2007 

and located on the southeastern side.  R11C-006 and R07-03 were sampled and assayed for gold 

and silver on five to ten foot intervals soon after they were drilled. 

 A drilling program, including eight core holes, was completed and logged in the summer 

of 2016.  Two of the holes ROCC16-1051 and ROCC16-1065, were logged in detail and samples 

were taken for petrography and microanalyses.  Sample breaks for core hole ROCC16-1065 were 

based on geological features and sample lengths ranged from 1.0 to 5.3 feet.  Due to time 

constraints, all other core holes were sampled on five foot breaks.  Assay results for core holes 

logged in 2016 are not back at this time. 

 The oxide, mixed, and sulfide zones were modeled with the 3D modeling packages 

Leapfrog and Gemcom to characterize a relationship between lithology, faults, supergene 

oxidation and silver grade.  The database used to model the oxidation surfaces is large (157,187 

assay records from over 3,400 drill holes) and the majority of data are pre-2008, which was prior 

to use of the acQuire database software.  These older data can be problematic in that they have 

missing assays and geological information.  A dataset had to be selected for modeling since it 

would not be possible to use the entire database.  A total of 707 drill holes were used based on 

several parameters including recent drilling, a representative distribution across the deposit, and 

data integrity, which was assessed by comparing the paper geologic log to the database record.  

Once holes were selected, drilling intervals were assigned to either oxide, mixed oxide-sulfide, or 

sulfide zones based on logs.  Surfaces for tops of the mixed oxide-sulfide and sulfide zones were 
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created as a first pass in Leapfrog then adjusted in Gemcom to generate more accurate 

boundaries.  Lithologic contacts and fault surfaces modeled by Rochester geologists were 

utilized. 

Core and pit wall samples, ~115 and 47 respectively, were taken during logging and 

mapping.  From these samples 84 were examined with the binocular microscope and polished 

thin sections were prepared.  Low- to high-grade transects in the oxide, mixed oxide-sulfide, and 

sulfide weathering zones were targeted when selecting samples for microanalysis.  Thin sections 

were examined using transmitted and reflected light microscopy.  Selected polished thin sections 

were then examined using the JEOL 6010 scanning electron microscope (SEM).  Images and 

element maps captured using the SEM typically used a voltage of 15 or 20 kV, a spot size of 63, 

and a working distance of 10 mm.  The JEOL 7100 SEM was also used to obtain elemental maps 

with greater precision and resolution.  Four polished thin sections from core hole ERC14-002 

were analyzed using the JEOL 8900 Electron Probe Microanalyzer (EPMA) at the University of 

Nevada, Las Vegas to better characterize silver deportment in the oxide, mixed, and sulfide 

zones.    

Grain mounts from Vikre’s (1977, 1981) work in the Rochester district were also 

examined.  The grain mounts were prepared from high-grade heavy metal concentrates from both 

the oxide and mixed oxide-sulfide zones from historic workings at Nenzel Hill, which were 

removed during open pit mining.  Four samples were examined in reflected light and three of 

those were selected for SEM analysis.  Ten polished thin sections were also made from high 

grade drilling intercepts in other drill holes, two from core hole 9712C and eight from reverse 

circulation (RC) chips collected from six different drill holes (AR15-057, AR15-059, ER14-001, 

ER14-010, ER14-032, SF14-035), ranging in grade from 10.6 to 23.5 opt Ag.  From these, five 

polished thin sections were examined and analyzed using the SEM.  
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Specific gravity measurements were employed to identify differences in density across 

the oxide, mixed, and sulfide weathering zones.  This was done by weighing a sample dry then 

attaching it to a triple beam balance with wire and submerging it in a 5-gallon bucket filled with 

water to obtain the mass of displaced water.  Specific gravity was determined for 25 samples 

selected from core hole ERC14-002 to represent varying weathering zones and silver grades.     

Samples from ERC14-002 were analyzed for supergene clays, that is alteration products 

from acidic meteoric fluids.  A total of 29 samples from the oxide, mixed, and sulfide weathering 

zones in ERC14-002 were analyzed using the ASD Terraspec Spectrometer to make preliminary 

identifications of various clay and sulfate minerals using SWIR reflectance spectroscopy.  

Identification of SWIR spectra can be imprecise in samples with intergrown mineral mixtures.  

 

IV. Mineralization 

Hypogene Mineralization - Sulfide Zone 

 Drill holes were typically terminated a short distance within the hypogene sulfide zone 

due to low silver grades and poor silver recovery, resulting in a paucity of available sulfide ore 

samples in the Rochester Formation.  The Weaver Formation is partially to completely oxidized 

everywhere; therefore, no hypogene Weaver sulfide ore unaffected by weathering was available.  

Consequently, petrographic descriptions of hypogene mineralization is limited to the Rochester 

formation, and is based on Vikre (1977; 1981), and five low- and high-grade sulfide samples 

examined in this study.     

Hypogene silver mineralization occurs as disseminated sulfides and in quartz veins.  The 

predominant alteration assemblage is texture destructive and composed of quartz+sericite+pyrite± 

rutile.  Two stages of quartz veining were reported by Vikre (1977; 1981).  Stage 1 consists of 

coarse-grained, euhedral comb-textured quartz+K-feldspar+sulfide veins with widths from 1 mm 

to 4 cm with sharp, straight walls, making up 1 to 5% of the rock.  Stage 1 veins contain coarse 
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sulfides with up to 20% pyrite, 15% sphalerite, 5% galena, and 1% chalcopyrite (see Table 1 for 

chemical formulas).  Historic ore production came exclusively from stage 2 veins, which consist 

of quartz+K-feldspar+sericite+sulfide+sulfosalt, largely filling fault zones occasionally >3 m 

thick but more commonly seen today cutting wallrock 1 to 15 mm thick.  Historically, stage 2 

veins had combined strike lengths of 450 m and dip extents of up to 550 m.  Vein alteration 

envelopes consist of quartz+sericite±K-feldspar extending up to a centimeter from veinlets, often 

obscuring where one envelope stops and the next one starts.  Veins have indistinct walls often 

grading into hydrothermal microbreccias with fragments of rhyolite wall rocks.  Stage 2 quartz 

veinlets and stringers make up 1 to 5% of the rock with local vein density up to 20%.  Stage 2 

veins were reported to cut stage 1 veins in old workings (Vikre, 1977; 1981). 

Pyrite is the predominant sulfide making up more than 95 percent of all sulfides.  

Sphalerite, tetrahedrite, arsenopyrite, chalcopyrite, and galena make up most of the remaining 

sulfides.  Pyrrhotite, teallite, and owyheeite are exceptionally rare.  Pyrrhotite is almost 

completely replaced by pyrite and sphalerite.  Arsenopyrite and pyrrhotite appear to have formed 

early in the sulfide paragenesis.  Vikre (1977; 1981) reports silver-bearing tetrahedrite as the most 

significant hypogene silver-bearing ore mineral and occurs in both veins and disseminated ore.  

Acanthite occurs as discrete grains (Fig. 7D) and inclusions in pyrite (Fig. 8C) within veins and 

wallrock.  Electrum is a very minor constituent contributing to silver grade.  Unweathered veins 

account for no more than 15% of the overall silver content (Vikre, 1981).   

Disseminated ore is largely made up of sulfides occurring in aggregates in a 

quartz+sericite groundmass.  There are at least two generations of disseminated pyrite– euhedral 

to subhedral arsenian pyrite with sulfide inclusions and non-arsenian euhedral pyrite without 

inclusions.  Sphalerite is the second most abundant sulfide and always appears to be later than 

pyrite.  Arsenopyrite, chalcopyrite, and molybdenite are found as inclusions in both sphalerite and  
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Table 1. Minerals associated with hypogene and supergene ore at Rochester. 

MINERAL/GROUP FORMULA OCCURRENCE 

SULFIDES   

Pyrite FeS2 hypogene 

Sphalerite ZnS hypogene, supergene 

Galena PbS hypogene 

Tetrahedrite (Cu,Fe,Ag,Zn)12Sb4S13 hypogene 

Tennantite (Cu,Fe,Ag,Zn)12As4S13 hypogene 

Chalcopyrite CuFeS2 hypogene 

Arsenopyrite FeAsS hypogene 

Molybdenite MoS2 hypogene 

Polybasite Cu(Ag,Cu)6Ag9Sb2S11 hypogene? 

Pyrrhotite FeS hypogene 

Teallite PbSnS2 hypogene 

Owyheeite Ag3Pb10Sb11S28 hypogene 

Stromeyerite AgCuS hypogene, supergene 

Acanthite Ag2S hypogene, supergene 

Pearceite Cu(Ag,Cu)6Ag9As2S11 supergene? 

Proustite Ag3AsS3 supergene 

Stephanite Ag5SbS4 supergene 

Miargyrite AgSbS2 supergene 

Jalpaite Ag3CuS2 supergene 

Covellite CuS supergene 

Chalcocite Cu2S supergene 

Imiterite Ag2HgS2 supergene 

   

HALIDES   

Chlorargyrite AgCl supergene 

Iodargyrite AgI supergene 

Iltisite HgAgS(Cl,Br) supergene 

   

OXIDES   

Goethite FeO(OH) supergene 

Jarosite KFe3(SO4)2(OH)6 supergene 

Hematite Fe2O3 supergene 

Valentinite Sb2O3 supergene 

Plattnerite PbO2 supergene 

Bindheimite Pb2Sb2O6(O, OH) supergene 

Chalcophanite (Zn,Fe,Mn)Mn3O7·3H2O supergene 

   

SULFATES   

Anglesite PbSO4 supergene 

Chalcanthite CuSO4·5H2O supergene 

Melanterite FeSO4·7H2O supergene 

   

CARBONATES   

Malachite Cu2(CO3)(OH)2 supergene 
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Figure 7. Core hole ERC14-002 from the Rochester Formation sulfide zone. A. Sample interval 

1242.2-1248.6 ft, assayed 0.59 opt Ag and 0.003 opt Au. B. Thin section billet of sample 1245.7 

ft. C. Microprobe WDS elemental image showing late acanthite (Ac) as the dominant silver phase 

with early arsenopyrite (Apy), pyrite (Py), and late sphalerite (Sph) and galena (Ga). D. SEM 

image of sample 790.2 ft showing late acanthite-galena-quartz (Qtz) veinlet cutting pyrite.  

Galena, molybdenite (Mo), and chalcopyrite (Cpy) inclusions are shown in pyrite. E. SEM image 

from 790.2 ft showing silver-bearing tetrahedrite (Ag-tet) and galena inclusions in arsenopyrite. 
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Figure 8. Core hole R07-03 from the Rochester Formation sulfide zone.  A. Sample interval 265-

270 ft, assayed 0.44 opt Ag and 0.011 opt Au.  B. Thin section billet of sample 266.5 ft.  C. SEM 

BSE image from 266.5 showing acanthite (Ac), galena (Ga), and chalcopyrite (Cpy) occurring in 

pyrite (Py) in a quartz veinlet.  D. Interval 270-275 ft, assayed 0.5 opt Ag and 0.003 opt Au.       

E. Thin section billet of sample 274 ft.  F. SEM BSE image from 274 ft showing silver-bearing 

tetrahedrite intergrown with chalcopyrite, sphalerite, and galena.  G. SEM BSE image from 

sample 274 ft showing acanthite stringers cutting chalcopyrite. 

 

pyrite (Fig. 7), and occur as discrete grains.  Minor chalcopyrite disease occurs in sphalerite 

indicating some chalcopyrite crystallized concurrently with sphalerite or exsolved from solid 

solution (Fig. 9B).  Galena most often rims and cuts sphalerite (Fig. 9B) and pyrite, but also 

occurs as inclusions in pyrite (Fig. 7, 8C).  Minor barite is also present in disseminated ore and 

pyrite veinlets.   

Argentiferous tetrahedrite-tennantite and acanthite are the most important silver phases in 

disseminated ore.  Hypogene argentiferous tetrahedrite-tennantite occurs as discrete grains, 

inclusions in pyrite (Fig. 7), and locally replaces chalcopyrite (Fig. 10).  Interpreted hypogene  
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Figure 9. RC hole AR15-057 from the Rochester Formation sulfide zone.  A. Thin section billet 

of sample 270-280 ft.  This interval assayed 11.1 opt Ag and 0.245 opt Au.  B. Reflected light 

photo showing a veinlet of galena (Ga) locally oxidized to anglesite (Ang) cutting sphalerite 

(Sph) with chalcopyrite “disease” that envelops pyrite (Py).  C. SEM BSE image showing silver-

bearing tetrahedrite (Ag-tet) with pyrite, chalcopyrite, galena, sphalerite, and tetrahedrite-

tennantite.  D. SEM BSE image showing silver-bearing tetrahedrite-tennantite with chalcopyrite 

and galena.  E. SEM BSE image showing acanthite (Ac) and anglesite(?) along the grain 

boundary between pyrite and chalcopyrite, that likely formed by oxidation of a late hypogene 

galena.  F. SEM BSE image showing pearceite with sphalerite and chalcopyrite.  Late supergene 

covellite(?) (Cv) and anglesite(?) are also present. 
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Figure 10. Core hole R07-03 from the Rochester Formation sulfide zone.  A. Sample interval 

from 285-290 ft, assayed 4.8 opt Ag and 0.047 opt Au.  B. Thin section billet of sample 289 ft.  

C. Reflected light photo from sample 289 showing silver-bearing tetrahedrite-tennantite (Ag-tet-

ten) replacing chalcopyrite (Cpy).  D. SEM BSE image of the same reflected light photograph 

showing silver-bearing tetrahedrite-tennantite with galena (Ga) and sphalerite (Sph). 

 

acanthite occurs along arsenian growth zones in pyrite, discrete grains, and locally cuts 

chalcopyrite (Fig. 8G).  Vikre (1977; 1981) separated optically pure wallrock pyrite from other 

sulfides and found these pyrites contain 68 to 330 ppm Ag occurring either cryptically in the 

pyrite crystal structure or in optically unresolvable inclusions.  From these data Vikre estimated 

wallrock pyrite contained up to 5% of the overall silver in the Rochester deposit.  Acanthite 

locally occurs with anglesite (PbSO4) in the sulfide zone, indicative of incipient oxidation (Fig. 
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9).  Rare supergene(?) acanthite and sphalerite were found at high elevations of the sulfide zone 

rimming chalcopyrite (Fig. 11).  Local silver phases include stromeyerite, pearceite (Fig. 9), and 

polybasite.  Pearceite and polybasite were found occurring with other sulfides in RC chips, it is 

not clear if these silver phases are disseminated aggregates or in fragments of quartz veins. 

 

Figure 21. RC hole AR15-057 from the Rochester Formation sulfide zone.  This sample interval 

assayed 11.1 opt Ag.  SEM EDS layered elemental map showing acanthite (Ac) rimming 

chalcopyrite (Cpy) with later sphalerite (Sph) rim. 

 

Supergene Mineralization - Oxide Zone 

Silver mineralization in the oxide weathering zone is characterized mainly by goethite, 

acanthite, and chlorargyrite.  Oxide zone samples are characterized by abundant exotic 

goethite>>hematite, and rare jarosite.  Wallrock alteration is similar to the sulfide zone dominated 

by quartz with up to 50% sericite and <1 to 10% remnant K-feldspar variably altered to 

quartz±sericite±goethite.  Minor supergene kaolinite and poorly crystalline sericite in post-
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mineralized fault zones and on oxidized fractures, and rare halloysite were reported by Vikre 

(1977; 1981).   

Oxide samples contain ~3% indigenous limonite (goethite> hematite), typically as 

disseminations that are locally clustered and in quartz veins and stringers (Fig. 12).  Local relict 

pyrite occurs as disseminations and in quartz veinlets, typically no more than 0.5% but can be up 

to 3% of the sample in local sulfide pockets.  Indigenous hematite is more common when 

remnant pyrite is present (Fig. 13E).   

 

Figure 12. Core hole ERC14-002 from the Weaver Formation oxide zone.  A. Sample interval 

415.8-429 ft, assayed 0.35 opt Ag and 0.003 opt Au.  B. Sample 417.2 thin section billet.           

C. Sample 417.2 in reflected light showing fine-grained pyrite (Py) disseminated in 

quartz+sericite+goethite groundmass.  D. Sample 425.2 thin section billet.  E. Reflected light 

photo of sample 425.2 showing fine-grained remnant pyrite variably oxidized to goethite (Gt). 

 

Acanthite is the dominant silver-bearing phase occurring mostly as disseminated grains 

that range in size from one to 20 microns.  Goethite and acanthite commonly occur as incipient 

weathering on the rims of pyrite (Fig. 14B, 15, 16C).  Similarly, proustite and hematite occur 

with acanthite as concentric rims on pyrite (Fig. 17).  Where pyrite is completely weathered to 
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goethite, acanthite is found as inclusions and rims on goethite (Fig. 14, 18, 19C, 20).  The second 

most common silver phase is chlorargyrite (Fig. 16D), which commonly occurs with acanthite  

 

Figure 13. Core hole ERC14-002 from the Weaver Formation oxide zone.  A. Sample interval 

404.3-408.8 ft, assayed 0.85 opt Ag and 0.002 opt Au.  B. Sample 405.5 thin section billet.         

C. Transmitted light photo showing K-feldspar altered to sericite and quartz and the groundmass 

altered to quartz. D. Reflected light photo showing relict pyrite (Py) surrounded by goethite (Gt).  

E. Sample 409.2 from assay interval 408.8-414.1 ft that assayed 3.36 opt Ag. 

 

and goethite (Fig. 21).  Other mineral phases associated with chlorargyrite and acanthite include 

iodargyrite, native silver, imiterite, iltisite (Fig. 21 and 22), stephanite (Fig. 15), proustite (Fig. 

20D), jalpaite (Figure 17C), antimonial-silver and antimony-oxide (valentinite?) and lead- oxides 

(plattnerite?) (Fig. 20B, D).  Schrader (1914) reported abundant bindheimite in hand samples of 

ore.  Vikre (1977) noted the likelihood of additional unidentified antimony, lead, and zinc oxides.  

Very rare covellite was identified in the oxide zone.  Minor native gold occurs with acanthite 

(Fig. 20E).  Barite locally occurs as rims on goethite, along with minor copper-oxides 

(malachite?) suggesting it formed in the later stages of oxidation.  Vikre (1977; 1981) reported 

minor amounts of chalcanthite, chalcophanite, melanterite, and Mn-oxides.   
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Figure 14. RC hole AR15-059 from the Rochester Formation oxide zone.  A. Thin section billet 

from interval 160-170 ft, assayed 14.2 opt Ag and 0.012 opt Au.  B. SEM BSE image showing 

pyrite (Py) oxidizing to goethite (Gt), which contains blebs of acanthite (Ac).  Anglesite (Ang) 

plus goethite likely represents oxidizing of pyrite+galena. C. SEM BSE image showing acanthite 

along the grain boundary between barite (Brt).  D. SEM BSE image showing acanthite and a lead-

oxide phase (plattnerite?) in barite. 
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Figure 15. RC hole ER14-032 from the Weaver Formation oxide zone. A. Thin section billet 

from 140-150 ft interval that assayed 23.48 opt Ag and 0.236 opt Au.  B. Reflected light photo 

showing pyrite weathering to goethite with layers of acanthite.  There is also a bright blue-purple 

mineral in the left corner, possibly a copper oxide phase.  C. SEM BSE image showing acanthite 

(Ac), chlorargyrite (AgCl), and anglesite (Ang) surrounded by goethite (Gt).  D. SEM BSE image 

showing acanthite, malachite(?) (Mal), and anglesite surrounded by goethite.  E. SEM BSE image 

showing a pyrite grain oxidizing to acanthite and goethite.  Native Ag, chlorargyrite, plattnerite 

(Platt), and anglesite are also present.  F. SEM BSE image showing acanthite, stephanite, and 

valentinite as discrete grains in goethite. 
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Figure 16. Core hole R11C-006 from the Weaver Formation oxide zone.  A. Interval 34-39.5 ft, 

assayed 4.1 opt Ag and 0.003 opt Au.  B. Thin section billet of sample 38.5 ft.  C. Reflected light 

photo showing pyrite (Py) partially oxidized to goethite (Gt).  D. Reflected light image showing 

chlorargyrite(?) (AgCl). 
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Figure 17. Core hole ERC14-002 from the Weaver Formation oxide zone.  A. Sample interval 

346.1-351.1 ft, assayed 3.94 opt Ag and 0.004 opt Au.  B. Sample 351.1 thin section billet.        

C. SEM BSE image showing iltisite and native silver surrounded by oxidized gangue.  D. A 

partially oxidized pyrite (Py) surrounded by multiple silver phases including acanthite (Ac) and 

proustite(?).  E. SEM BSE image showing chlorargyrite and acanthite in gangue.  F. Electron 

microprobe WDS map showing silver and sulfur phases in 351.1.  Silver and sulfur largely 

occupy the same space suggesting acanthite is the predominant silver-bearing phase.   
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Figure 18. A. Grain mount P-33D from Vikre's (1977; 1981) work from the oxide zone 

containing no megascopic sulfides.  B. SEM BSE image showing jalpaite and iltisite.  C. SEM 

BSE image showing acanthite (Ac) and relict tetrahedrite (Tet) rimming goethite (Gt). 

 

 

Figure 19. A. Grain mount R-44A from Vikre's (1977; 1981) work from the oxide zone. B. SEM 

BSE image showing tennantite (Ten) and acanthite (Ac) partially oxidized to goethite.  C. SEM 

BSE image showing acanthite surrounded by goethite. 
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Figure 20. RC hole ER14-010 from the Weaver Formation oxide zone.  A. Thin section billet 

from 150-160 ft interval that assayed 16.98 opt Ag and 1.563 opt Au.  B. SEM BSE image 

showing acanthite (Ac) rimming an oxidized grain where antimonial-silver (Ag, Sb), 

chlorargyrite (AgCl), and acanthite occur.  Valentinite? and plattnerite(?) are also present.          

C. SEM BSE image showing discrete acanthite grains surrounded by goethite (Gt).  D. SEM BSE 

image showing acanthite and minor chlorargyrite grains in goethite.  Valentinite(?) is also 

present.  E. SEM BSE image showing a native gold (Au) grain and acanthite with goethite. 
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Figure 21. Core hole ERC14-002 from the Weaver Formation oxide zone.  A. Sample interval 

from 310.9-329 ft, assayed 2.99 opt Ag and 0.009 opt Au.  B. Thin section billet from 314 ft.     

C. SEM BSE image showing acanthite (Ac) as the dominant silver phase, iodargyrite (AgI), and 

native silver.  D. SEM BSE image showing acanthite and chlorargyrite closely intergrown.         

E. Electron microprobe WDS elemental map of silver showing acanthite and iodargyrite.            

F. Electron microprobe WDS elemental map of silver showing imiterite, chlorargyrite, and a 

gold-phase closely intergrown. 
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Figure 22. Core hole ERC14-002 from the Weaver Formation oxide zone. A. Sample interval 

329-346.1 ft, assayed 1.57 opt Ag and 0.005 opt Au.  B. Sample 337.6 thin section billet.           

C. SEM BSE image showing iltisite (based on SEM EDS analysis) surrounded by goethite (Gt) 

and quartz (Qtz).  D. SEM BSE image showing native silver surrounded by gangue.  E. SEM 

BSE image showing chalcopyrite (Cpy) and goethite (Gt) partially in a cavity.  

 

Supergene Mineralization - Mixed Zone 

High-grade silver mineralization also occurs along the boundary between the oxide and 

mixed oxide-sulfide weathering zones.  Some of the highest silver grades (71 opt Ag) from this 

study occur in the mixed zone (Fig. 23).  The mixed oxide-sulfide weathering zone is 

characterized by common pockets of unweathered hypogene sulfides that range up to several feet 

in diameter surrounded by exotic limonite (goethite>>hematite).  The alteration and quartz 

veining is the same as the sulfide zone (Fig. 24 and 25).  Kaolinite locally occurs along fractures 

in pit exposures.  Laths of alunite locally occur with hematite (Fig. 26C).   
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Figure 23. Core hole ERC14-002 from the Rochester Formation mixed zone.  A. Sample interval 

788-790.8 ft, assayed 71.92 opt Ag and 0.113 opt Au, the highest grade assay in ERC14-002.     

B. Sample 788 thin section billet.  C. Microprobe elemental WDS map of 788 depicting silver 

and sulfur occurrences.  D. Reflected light photo of 788 showing covellite (Cv) and acanthite 

(Ac) rimming sphalerite (Sph) in the sulfide and oxide portion of the thin section.  E.  Sample 

790.2 thin section billet.  F.  Reflected light photo of 790.2 showing apparent contemporaneous 

galena (Ga), pyrite (Py), and sphalerite. 
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Figure 24. Core hole ERC14-002 from the Rochester Formation mixed zone. A. Sample interval 

576.5-591.8 ft, assayed 0.12 opt Ag and 0.0006 opt Au.  B. Sample 584 thin section billet.         

C. Transmitted light photo from sample 584 showing bands of sericite, quartz, and pyrite 

replacing groundmass.  D. Reflected light photo of sample 584 showing replacement by sericite, 

quartz, and pyrite.  
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Figure 25. Core hole ERC14-002 from the Rochester Formation mixed zone   A. Sample interval 

642.9-659.2 ft, assayed 0.11 opt Ag and 0.001 opt Au.  B. Sample 655 thin section billet.            

C. Transmitted light photo showing unoxidized quartz+sericite+pyrite alteration with remnant   

K-feldspar.  D. Reflected light photo showing pyrite and sericite occurring together. 
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Figure 26. Core hole R11C-006 from the Rochester Formation mixed zone.  A. Interval 1000-

1010 ft assayed 2.6 opt Ag and 0.008 opt Au.  B. Thin section billet of sample 1005.2 ft.             

C. Transmitted light photo from sample 1005.2 of alunite (Alun) and hematite (Hem).                

D. Reflected light photo from sample 1005.2 showing the yellow internal reflections of jarosite 

(Jar).  E. Thin section billet of sample 1009.5 ft.  F. Reflected light photo from sample 1009.5 

showing euhedral pyrite rimmed and enveloped by aggregates of much finer grained subhedral 

pyrite (Py). 

 

Hypogene sulfide pockets contain aggregates of <1 to 20% pyrite, arsenian pyrite, and 

minor sphalerite, galena, arsenopyrite, and chalcopyrite, along with trace molybdenite.  

Chalcopyrite (<0.5%) and arsenopyrite mostly occur as inclusions in pyrite (Fig. 27C, 28).  

Sphalerite locally makes up to 10% of samples.  Galena (~1%) typically occurs after sphalerite 

and pyrite.  Acanthite, described below, argentiferous tetrahedrite-tennantite, and rare  
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stromeyerite are the only hypogene silver phases.  Argentiferous tetrahedrite-tennantite occurs 

mainly as individual grains (Fig. 29B) and inclusions in pyrite (Fig. 30).  Barite also locally 

occurs with pyrite surrounded by sphalerite (Fig. 30).   

 

Figure 27. Sample 104 from mapped 6425 Bench #2 in the Rochester Formation mixed zone.    

A. Thin section billet assayed 2.5 opt Ag and 0.008 opt Au.  B. SEM BSE image showing 

acanthite (Ac) and galena (Ga) along arsenian and lead-rich growth zones in pyrite (Py).  C. SEM 

BSE image showing Ag-tetrahedrite (Ag-tet), chalcopyrite (Cpy), arsenopyrite (Apy), and galena 

inclusions in pyrite rimmed by late galena.  D. SEM BSE image showing acanthite and anglesite 

(Ang) in a quartz (Qtz) and sericite (Ser) groundmass. 
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Figure 28. Core hole 9712C from the oxide-mixed zone boundary Weaver Formation.  Sample 

interval 21.3-24.2 ft assayed 2.58 opt Ag and 0.02 opt Au.  A. Thin section billet of sample 24 ft. 

B. Reflected light photo showing acanthite (Ac) rimming sphalerite (Sph).  C. Reflected light 

photo showing chalcopyrite (Cpy) and galena (Ga) with pyrite (Py). 



40 
 

 

Figure 29. SEM BSE images of the sulfide portion from sample 788 ERC14-002 Rochester 

Formation mixed zone. A. SEM Acanthite (Ac) inclusions in pyrite (Py). B. Silver-bearing 

tetrahedrite (Tet) and galena inclusions.  Chalcocite (Cc) is in the lower portion of the image.     

C. Covellite (Cv), galena (Ga), and acanthite (Ac) rimming a sphalerite (Sph) grain. 
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Figure 30. Sulfide portion from sample 788 ERC14-002 Rochester Formation mixed zone. 

Hypogene barite (Brt) and pyrite (Py) included in later sphalerite (Sph).  Silver occurs within 

pyrite as Ag-bearing tennantite-tetrahedrite inclusions (bright spots in pyrite).  Barite grows 

around euhedral pyrite.  Veinlets composed of galena and supergene covellite cut sphalerite and 

occur along the grain boundaries of pyrite. 

 

Indigenous goethite occurs as disseminations, aggregates, and veinlets with total 

abundance varying from ~1 to 15%.  Indigenous hematite is less abundant (~0.5-5%), typically 

occurring as disseminations.  Rare jarosite (up to 4% locally) is present in veinlets and as 

disseminations.   

Acanthite is the dominant silver-bearing phase occurring with both hypogene and 

supergene textures in the mixed zone.  Hypogene occurrences of acanthite occur along  

microfractures (Fig. 31C), and in arsenian pyrite growth zones (Fig. 31D, E; 29A; 27B, D), as 

well as replacing tetrahedrite-tennantite (Fig. 32 and 33).  Supergene acanthite mainly occurs 

with covellite as rims on hypogene sulfides (Fig. 34, 23, 29C, 35, 36, 37, 38B) as well as rims on 

indigenous goethite (Fig. 39; 40C, E).  The rims of supergene acanthite and covellite  
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mainly occur on sphalerite (Fig. 41, 28B, 42), galena (Fig. 34), and less commonly pyrite (Fig. 

40B) and tetrahedrite-tennantite (Fig. 33, 35, 36).  The supergene origin for these rims is further 

supported by the rarity of such rims in the sulfide zone.  There are numerous minor supergene 

silver phases associated with acanthite including stromeyerite (Fig. 34D, 29C, 43A), chlorargyrite 

(Fig. 43A), imiterite (Fig. 44C), native silver (Fig. 43C, 40D, 40E), stephanite (Fig. 40D), and  

miargyrite (Fig 43B).  The rims of silver-bearing minerals are locally rimmed by goethite and 

anglesite (Fig. 40D) suggestive of incipient oxidation of supergene sulfides. 

Stromeyerite occurs as both inclusions in pyrite and rimming pyrite with acanthite and 

covellite suggesting both hypogene and supergene origin for stromeyerite (Fig. 34D).  Native 

silver and chlorargyrite are typically found with acanthite in areas of stronger oxidation, 

suggesting they could form by oxidation of relict hypogene silver-bearing sulfides, sulfosalts, and 

supergene sulfides, such as the rims of acanthite.  Anglesite and plattnerite(?) occur in areas 

typically associated with the oxidation of galena (Fig. 34 and 42).  Minor jarosite indicates local  

highly oxidized, acidic conditions that post-dated formation of the supergene sulfides.  Anhedral 

acanthite occurring as discrete grains (Fig. 38D) and in masses of indigenous goethite (Fig. 44 

and 45) is likely supergene acanthite that is oxidizing in place and forming immobile silver 

phases such as native silver and silver-halides.  The rims of silver-bearing minerals are locally 

rimmed by goethite and anglesite (Fig. 40D) suggestive of incipient oxidation of supergene 

sulfides.   
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Figure 31. Core hole ERC14-002 from the Rochester Formation mixed zone.  A. Sample interval 

763.2-774.1 ft, assayed 1.33 opt Ag and 0.002 opt Au.  B. Sample 773.6 thin section billet 

showing oxidation boundary containing 15% indigenous goethite, 2% indigenous hematite, and 

1% remnant pyrite.  C. SEM BSE image from the oxide portion of sample 773.6 showing 

acanthite (Ac) along a fracture in quartz (Qtz).  D. SEM BSE image of acanthite in a pyrite (Py) 

grain making up a pyrite veinlet in the sulfide portion of sample 773.6.  E. SEM BSE image of a 

pyrite grain from sample 773.6 showing acanthite along arsenian growth zones in pyrite.     
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Figure 32. Sample 790.2 from ERC14-002 Rochester Formation mixed zone.  A. SEM BSE 

image showing silver-bearing tetrahedrite (Tet) with later galena (Ga) and acanthite (Ac). SEM 

EDS elemental maps of B. S, C. Cu, D. Sb, E. Pb, and F. Ag. 
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Figure 33. Sample 790.2 from ERC14-002 Rochester Formation mixed zone.  A. SEM BSE 

image showing acanthite (Ac) replacing tetrahedrite (Tet) rimmed by later galena (Ga) and 

acanthite.  SEM EDS elemental maps of B. Ag, C. S, D. Sb, E. Cu, and F. Pb. 
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Figure 34. Core hole ERC14-002 from the Rochester Formation mixed zone.  A. Sample interval 

783.2-788 ft, assayed 5.34 opt Ag and 0.007 Au.  B. Sample 783.8 thin section billet.  C. SEM 

BSE image from 783.8 depicting stromeyerite (based on EDS analysis), acanthite (Ac), covellite 

(Cv), and platternite? (based on EDS analyses) (Platt) rimming a pyrite (Py) grain.  D. SEM BSE 

image from 783.8 showing stromeyerite and galena enclosed by a pyrite grain and acanthite, 

stromeyerite, covellite, and anglesite(?) (Ang) rimming the pyrite grain that has a hematite 

oxidation rim.  E. SEM BSE image from 783.8 showing acanthite, covellite, and galena rimming 

a pyrite grain.  F. SEM BSE image from 783.8 showing acanthite and covellite rimming a galena 

grain.  
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Figure 35. Sample 790.2 from ERC14-002 Rochester Formation mixed zone.  A. SEM BSE 

image showing tetrahedrite-tennantite (Tet-ten) with later sphalerite (Sph) rimmed by galena (Ga) 

and acanthite (Ac).  Some galena is oxidized to anglesite (Ang).  SEM EDS elemental maps of   

B. Ag, C. S, D. Cu, E. Sb, F. As, G. Pb, and H. Zn. 

 

 

Figure 36. Oxide portion from sample 788 ERC14-002 Rochester Formation mixed zone.  

Acanthite (Ac) and covellite (Cv) rimming galena (Ga) and tetrahedrite (Tet).  A. SEM BSE 

image, the lighter areas in the tetrahedrite (Tet) are silver-rich, whereas the darker areas are 

enriched in Cu and Sb.  SEM EDS elemental maps of B. S, C. Sb, D. Zn, E. Ag, F. Cu, G. Pb, 

and H. As.  
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Figure 37. Sulfide portion of sample 788 ERC14-002 from the Rochester Formation mixed zone.  

On the left is an electron microprobe WDS silver elemental map showing predominantly 

acanthite rimming hypogene sulfides pyrite and sphalerite.  On the right is an SEM EDS layered 

map showing acanthite and covellite rimming sphalerite and galena. 

 

 

Figure 38. 6425 Bench #2 in the Rochester Formation mixed zone.  A. Thin section billet of 

sample 57, assayed 0.91 opt Ag and 0.0014 opt Au.  B. Reflected light photo from sample 57 

showing supergene covellite (Cv) and acanthite (Ac) rimming a sphalerite (Sph) and pyrite (Py).  

C. Thin section billet of sample 72, assayed 2.43 opt Ag and 0.004 opt Au.  D. SEM BSE image 

from sample 72 showing sphalerite, acanthite, and galena (Ga) surrounded by quartz and sericite. 
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Figure 39. A. Grain mount 6 122 E from Vikre’s (1977; 1981) work from the mixed zone.         

B. SEM BSE image showing acanthite (Ac) grains with goethite (Gt) surrounded by quartz (Qtz). 

SEM EDS elemental maps of C. Ag, D. S, E. Fe, F. Si, and G. O. 
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Figure 40. RC hole ER14-001 from the Rochester Formation mixed zone. A. Thin section billet 

from 860-870 ft interval that assayed 12.76 opt Ag and 0.016 opt Au.  B. SEM BSE image 

showing pyrite (Py) partially oxidized to goethite (Gt) with blebs of acanthite (Ac).  C. SEM BSE 

image showing discrete acanthite grains occurring with goethite.  D. SEM BSE image showing a 

pyrite grain partially oxidized to goethite that contains grains of acanthite, native Ag, 

stephanite(?), and anglesite (Ang).  E. SEM BSE image showing former pyrite that is now a 

leached cavity coated with goethite, acanthite, and native silver. 
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Figure 41. Sample 790.2 from ERC14-002 Rochester Formation mixed zone showing A. SEM 

BSE image of acanthite (Ac) and galena (Ga) rimming sphalerite (Sph).  SEM EDS elemental 

maps of B. Zn, C. S, D. Ag, and E. Pb. 
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Figure 42. Sulfide portion of sample 788 from ERC14-002 Rochester Formation mixed zone.    

A. SEM BSE image showing sphalerite (Sph) rimmed by covellite (Cv), acanthite (Ac), and 

galena (Ga).  B. Enlarged SEM BSE image of acanthite and an unknown lead-oxide phase 

(plattnerite?) rimming sphalerite.  SEM EDS elemental maps of C. Ag, D. S, E. Cu, and F. Zn. 
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Figure 43. Sample 104 from 6425 bench #2 in the Rochester Formation mixed zone. A. SEM 

BSE image from sample 104 showing late stromeyerite (Str), acanthite (Ac), and chlorargyrite 

(AgCl) rimming pyrite (Py).  B. SEM BSE image showing miargyrite(?) and acanthite 

surrounded by quartz and sericite.  C. SEM BSE image showing native Ag and acanthite 

surrounded by quartz and sericite. 
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Figure 44. Oxide portion from sample 788 ERC14-002 Rochester Formation mixed zone.          

A. SEM BSE image showing acanthite (Ac) surrounded by goethite (Gt) and illite.  B. SEM BSE 

image showing acanthite is enveloped by goethite (Gt).  C. SEM BSE image showing imiterite 

surrounded by gangue including quartz, illite, and relict K-feldspar.  Mercury assayed over 100 

ppm in this sample. 
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Figure 45. Sample 788 from ERC14-002 Rochester Formation mixed zone.  Electron microprobe 

WDS elemental maps of silver.  A. Oxide portion of sample 788 showing acanthite (Ac) 

surrounded by goethite (Gt).  B. Sulfide portion of sample 788 showing acanthite as aggregates. 

 

Paragenesis  

Through detailed petrography, 16 hypogene phases and 22 supergene phases have been 

identified (Fig. 46).  Pyrite is the dominant and first sulfide phase to form.  This first generation 

of pyrite appears to be stoichiometrically pure and is free of inclusions.  A second generation of 

pyrite has zones of arsenian pyrite and contains acanthite, and occasionally galena along growth 

zones of pyrite indicating these minerals formed during the second generation of pyrite.  Other 

sulfides that occur as inclusions in, and, therefore likely before, this second generation of pyrite 

include tetrahedrite-tennantite, which is locally argentiferous, chalcopyrite, molybdenite, 

arsenopyrite, and rare stromeyerite suggesting these phases were formed before the second 

generation of pyrite.  Tetrahedrite-tennantite post-dates chalcopyrite but formed prior to 

sphalerite and galena.  Sphalerite is the second most abundant sulfide phase and is always later 

than arsenian pyrite and barite.  Galena is the latest hypogene phase.  Pearceite formed after  
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Figure 46. Interpreted hypogene and supergene mineral phase paragenesis at the Rochester mine. 

 

chalcopyrite but it is not clear if pearceite is a supergene or hypogene phase.  Barite formed after 

the second generation of pyrite.   

Supergene covellite and acanthite are found together rimming hypogene sulfides, mostly 

sphalerite, but also galena partially oxidized to anglesite.  Locally these rims occur on pyrite, 
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tetrahedrite-tennantite, and chalcopyrite.  Goethite and acanthite appear to have formed by initial 

weathering of pyrite.  The presence of hematite, especially in high silver grade samples, may be 

indicative of oxidation of supergene acanthite and other supergene silver-bearing sulfide phases 

with higher metal to sulfur ratios.  Native silver and silver-halides likely formed by the oxidation 

of supergene silver phases.  Imiterite forms at numerous stages of weathering likely due to the 

mobility of mercury.   

 

Controls on Silver Mineralization 

Porphyry copper deposits commonly develop supergene chalcocite enrichment blankets 

during weathering.  Cross sections were constructed to identify any blanket-like morphology 

related to silver grade at Rochester, similar to those found in porphyry copper deposits.  The 

Weaver and Rochester Formations are the only lithologic units at the Rochester mine and both 

host silver mineralization (Fig. 47B).  High-angle faults cut and offset stacked low-angle faults 

(Fig. 47A).  The boundaries between the oxide-mixed and mixed-sulfide weathering zones 

generally follow the morphology of the Weaver-Rochester contact with an overall dip to the east 

(Fig. 47D).  Humps in the boundary between the oxide and mixed zones are largely controlled by 

faults but likely also reflect differences in logging among the dozens of geologists that have 

worked at the mine over the last 40 years.  Patterns of silver grade observed in multiple cross-

sections do not indicate the presence of any blanket-like geometries that suggest similarities to 

supergene enrichment blankets observed in porphyry copper deposits.  High silver grades (≥2 opt 

Ag) are largely controlled by the Weaver-Rochester contact, high- and low-angle faults, and the 

oxide-mixed weathering boundary (Fig. 48).  Most of the high grade occurs in the Weaver 

Formation oxide zone.  

Comparison of geological characteristics to silver grades in logged core holes shows 

intensity of oxidation, dark sulfides, and fault gouge are the best macroscopic indicators of silver  
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Figure 47. Schematic cross section A-A’ at 15900 N through the Rochester pit showing the 

intersection of high- and low-angle faults and the Weaver-Rochester contact.  A. No silver grades 

shown.  B. Cut off silver grades of ≥0.4 opt in orange.  C. High silver grades of ≥2 opt in red and 

≥5 opt in pink.  D. The oxide, mixed, and sulfide weathering zones shown with ≥2 opt Ag in red 

and ≥5 opt Ag in pink. 
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Figure 48. A. Cross section 16865 N showing ≥2 opt Ag largely in Weaver oxide and Rochester 

mixed.  B. Cross section 16365 N showing ≥2 opt Ag along the Weaver-Rochester contact.        

C. Cross section 16065 N showing ≥2 opt Ag along the Weaver-Rochester contact clustering 

around fault zones.  D. Cross section 15365 N showing ≥2 opt Ag along faults near the Weaver-

Rochester contact. 
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grade (Fig. 49, 50, 51).  The highest silver grades from pit mapping are associated with the 

intersection of low- and moderate- to high-angle faults, disseminated dark sulfides, and an 

increase in indigenous and exotic limonite (Fig. 52 and 53).  Examination of the Weaver-

Rochester contact in drill core indicates faults, especially fault intersections, within a few hundred 

feet of the contact are the primary control rather than the contact itself.  

High silver grades overwhelmingly occur in the oxide weathering zone and along the 

oxide-mixed boundary.  There are only a few high-grade silver intercepts in the sulfide zone (Fig. 

47D).  Acanthite is the dark sulfide that is largely associated with these high silver grades in the 

oxide and mixed zones.  In the oxide zone acanthite occurs as discrete grains with various other 

silver phases, predominantly chlorargyrite and native silver (Fig. 21).  In the mixed zone 

acanthite occurs both as discrete grains with various other silver phases (Fig. 40) and as rims on 

primary sulfides (Fig. 37).  The occurrences and textures of acanthite suggest a predominantly 

supergene origin.   

 

Figure 49. Sampled drill core intervals with the highest silver grades. 
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Figure 50. Silver, gold, and geological characteristics of core hole ERC14-002 are shown.  The 

top of the hole was drilled through dump material and not recovered.  Oxide intensity is the 

volume percent of total limonite, quartz veining is the estimated volume percent of quartz veins, 

sulfide percent is the estimated volume percent of total sulfides, and structure intensity is relative 

amount of deformation as determined by fracture density and gouge development.  Lithology 

includes both the Weaver Formation in pink and Rochester Formation in blue (massive tuff) and 

orange (flow layered tuff).  Black dots on the left side are disseminated dark sulfide occurrences. 
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Figure 51. ERC14-002 high-grade assay interval in the Weaver Formation oxide zone outlined in 

black.  Sample interval 364.5 to 364.9 ft assayed 7.08 opt Ag and 0.256 opt Au and is composed 

of fault gouge and strong exotic goethite. 

 

 

Figure 52. Pit wall from 6425 #2 bench showing the highest grade samples with the 

corresponding billet.  The highest grade (2.5 opt Ag) was close to a fault intersection. 



63 
 

 

Figure 53. Bench 6425 #1 from low- to high-grade silver from right to left.  The low-grade 

sample (0.19 opt Ag) collection site is not in the photo but is about 30 feet to the right, the sample 

that assayed 0.19 opt Ag is completely unoxidized with ~7% very fine grained pyrite as 

disseminations, clusters, and in quartz veinlets; 2% galena disseminated and on fractures, and 

<1% chalcopyrite   The sample that assayed 1.1 opt Ag is 40% oxidized with ~10% quartz+pyrite 

veinlets, ~5% disseminated pyrite; <1% chalcopyrite, acanthite, covellite, and sphalerite.  The 

high-grade sample on the far left assayed 5 opt Ag.  The oxide portion of this sample is 

predominantly exotic goethite>>hematite and quartz veinlets with minor indigenous goethite.  

The sulfide portion of this sample contains ~15% disseminated pyrite with ~0.5% acanthite.     

 

V. Evidence for Supergene Enrichment 

Although there does not appear to be a copper porphyry-like enrichment blanket, macroscopic 

controls on high silver grades and petrographic observations of minerals suggest zones of 

supergene silver enrichment are present.  Most high silver grades are in the oxide zone mainly 

along fault zones at the base of the Weaver Formation and in the upper Rochester Formation.  

Whether this increase in silver grade is related to hypogene or supergene processes is discussed 

here.  If hypogene processes were responsible for this increasing silver grade, one might expect 

vertical zonation in mineralogy including, 1) change in style of veins, 2) change in sulfide 

assemblages, 3) change in alteration style, and 4) increasing abundance of hypogene silver 

relative to elevation.  No major changes in style of veining, sulfide assemblages, or alteration 
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style were observed between low grades in Rochester sulfide and high grades in Weaver oxide.  

Silver grade relative to elevation is discussed below.  

Comparing silver grade relative to elevation three peaks of increased silver emerge 

occurring mostly in the oxide and mixed zones (Fig. 54).  This suggests multicyclic supergene 

enrichment and subsequent oxidation of enriched zones with supergene silver moving down in 

elevation.  Less silver would move down with each new cycle of oxidation causing silver to 

eventually become locked up in oxidation and immobile phases.  High silver grades in the sulfide  

 

Figure 54. Elevation vs. silver grade showing grade distribution relative to oxide, mixed, and 

sulfide weathering zones. 

 

zone (Fig. 54) could either be incipient supergene enrichment or the result of differences in 

logging the weathering zones among workers and are actually in the mixed zone.  Similarly, the 

Ag:Au ratio would be expected to continually increase uninterrupted from the sulfide zone into 

the mixed and oxide zones if hypogene zonation is responsible for metal distribution (Sillitoe, 

2009).  At the Rochester deposit background Ag:Au ratios do increase with elevation but high 
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silver grades (≥5 opt Ag) display the same three peaks described above (Fig. 55C) indicating 

silver is moving independently of gold.  Gold grade does show one peak which may be indicative 

of primary hypogene zonation (Fig. 55B).   

 Sillitoe (2009) attributed increases in silver grade in the oxide zone to mass loss by 

supergene oxidation, resulting in residual enrichment of silver.  To test this, immobility plots 

were constructed to determine mass gains and losses of silver relative to other elements during 

supergene processes at Rochester.  Generally, mass gain can be attributed to a variety of 

processes including filling of vesicles to form amygdules, veining/silicification, and/or supergene 

enrichment of mobile elements.  Mass loss during supergene alteration is typically associated 

with a decrease in density due to oxidation and removal of sulfide mineral components, and the 

weathering of silicates to clays, resulting in residual enrichment of immobile elements.  However, 

at Rochester there is very little supergene clay indicating sericite was largely stable during  

supergene oxidation, thus the only significant decrease in density would be due to oxidation of 

sulfides to limonite. 

Immobility plots were constructed using only Rochester Formation samples from core 

hole ERC14-002 since pre-weathering sulfide samples of Weaver Formation rocks were not 

available.  All samples (123 total) from the oxide and mixed zones of the Rochester Formation in 

core hole ERC14-002 were used to construct an immobility Al2O3 % vs. Zr (ppm) plot.  

Compositions of pre-weathering Rochester Formation rocks are based on the average of nine 

samples from depths of 1224.7 to 1307 (total depth) that assayed <0.25 opt Ag.  The majority of 

high silver grades (including the 71 opt Ag interval) are associated with mass gain in ERC14-002 

(Fig. 56).  The mass gain could either be related to silicification/veining or supergene enrichment.  

Mine wide alteration is associated with silicification and quartz veining, however high silver 

grades are more closely related to fault gouge, dark sulfides, and strong limonite suggesting  
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Figure 55. A. Elevation vs. silver and gold showing the silver to gold ratio does not continually 

increase with increasing elevation.  B. Elevation vs. silver and gold with a narrower x-axis to 

zoom in on gold. The gold grade peak does match one of the peaks in silver grade.  C. Elevation 

vs. Ag/Au showing high silver grades do not correspond to high gold grades.  
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Figure 56. Al2O3% vs. Zr (ppm) immobility plot showing high silver (color of data points) and 

copper (size of data points) concentrations are related to overall mass gain including the high-

grade assay interval of 71 opt Ag.  Data are from intercepts of core hole ERC14-002.  The 71 opt 

Ag is from the mixed zone in the Rochester Formation.  The precursor data point is the average of 

nine intercepts in the Rochester Formation that assayed <0.25 opt Ag. 

 

silicification or veining are not responsible for high silver grades.  Regardless, this is evidence 

that residual enrichment is likely not the cause of higher silver grades in the oxide zone.   

Additionally, if residual enrichment was the cause for high silver grades in the oxide and 

mixed zones the density of rock would be expected to decrease with increasing silver grade.  

Samples from ERC14-002 were measured for specific gravity to test this.  Eight samples from the 

oxide zone were measured with grades ranging from 0.41 to 3.31 opt Ag.  From the mixed zone 

11 samples were measured with grades ranging from 0.21 to 71.92 opt Ag.  Six samples from the 

sulfide zone were measured with grades ranging from 0.02 to 0.59 opt Ag.  In ERC14-002 the 

specific gravities were inconspicuously different among varying silver grades between the oxide, 

mixed, and sulfide zones (Fig. 57).  The specific gravities in the sulfide zone are slightly higher  
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Figure 57. Samples of varying silver grade from core hole ERC14-002 measured for specific 

gravity from the oxide, mixed, and sulfide zones. 
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 (up to 1.2 times greater) than in the mixed and oxide zone but not enough to increase silver 

concentration by five to 120 times as observed in the Weaver and Rochester Formations.  Specific 

gravity measurements were based on Archimedes principle and pore spaces were not completely 

saturated, therefore these are minimum estimates and oxide zone densities could be higher, 

further disproving residual enrichment. 

Increases in arsenic, copper, lead, and zinc concentrations are also generally related to 

mass gain in ERC14-002 (Fig. 56, 58A, 59).  Arsenic, copper, lead, and zinc are known mobile 

elements in oxygenated and acidic meteoric environments (Williams, 1990; Lawrance, 2007).  

The most common explanation of acidic meteoric fluids in the supergene environment of ore 

deposits comes from the weathering of pyrite summarized by the following reactions (Sillitoe, 

2005): 

FeS2 (pyrite) + 3.5O2 + H2O ↔ Fe2+ + 2SO4
2- + 2H+ 

Fe2+ + 0.25O2 + H+ ↔ Fe3+ + 0.5H2O 

FeS2 (pyrite) + 14Fe3+ + 8H2O ↔ 15Fe2+ + 2SO4
2- + 16H+ 

Arsenopyrite also readily oxidizes during supergene alteration, forming aqueous sulfuric and 

arsenous acids as summarized by the following reactions (Corkhill and Vaughn, 2009): 

4FeAsS (arsenopyrite) + 11O2 + 6H2O ↔ 4Fe2+ + H3AsO3 +4H2SO4
2- 

FeAsS (arsenopyrite) + 11Fe3+ + 7H2O ↔ 12Fe2+ + H3AsO3 + 11H+ + SO4
2- 

Supergene alteration of chalcopyrite and covellite in copper-porphyry deposits (Brimhall et al., 

1985; Williams, 1990; Sillitoe, 2005), can generally be explained by the following reactions 

(Williams, 1990; Sillitoe, 2005): 

CuFeS2 (chalcopyrite) + 4O2 ↔ Cu2+ + Fe2+ + 2SO4
2- 

CuFeS2 (chalcopyrite) + 16Fe3+ + 8H2O ↔ Cu2+ + 17Fe2+ + 2SO4
2- +16H+ 

Cu2+ + SO4
2- ↔ CuS (covellite) + 2O2 

CuS (covellite) + Cu2+ + 2Fe2+ ↔ Cu2S (chalcocite) + 2Fe3+  
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Relating copper concentrations to mass gain at Rochester is additional evidence for supergene 

processes mobilizing copper during oxidation, as well as other elements, and re-precipitating as 

secondary sulfides under reducing conditions.   

 

Figure 58. Al2O3% vs. Zr (ppm) immobility plots.  A. Arsenic (size of data points) and silver 

(color of data points) concentrations showing generally increases in arsenic and silver are related 

to mass gain.  B. Gold (size of data points) and silver (color of data points) showing increases in 

gold concentrations are related to both mass gain and either no mass change or small mass losses.   
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Figure 59. Al2O3% vs. Zr (ppm) immobility plots.  A. Lead (size of data points) and silver (color 

of data points) concentrations showing lead is mainly related to mass gain.  B. Zinc (size of data 

points) and silver (color of data points) concentrations showing increases in zinc are mainly 

related mass gain. 
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The oxidation of galena under acidic conditions will typically yield anglesite explained 

by the simplified reaction: 

PbS (galena) + 2O2 ↔ PbSO4 (anglesite) 

Lead-sulfate(II) is much less soluble than copper, zinc, iron, and manganese but will still dissolve 

much easier than lead-sulfide (Williams, 1990).  Further oxidation of anglesite can result in lead-

oxides, such as plattnerite: 

PbSO4 (anglesite) + O2 ↔ PbO2 (platternite) + SO4
2- 

Sphalerite can be highly soluble under numerous conditions including from interaction 

with oxygenated groundwater, oxidized iron, or acidic fluids from weathering sulfides 

summarized by the following reactions (Heidel et al., 2011): 

ZnS + 2O2 ↔ Zn2+ + SO4
2- 

ZnS + 8Fe3+ + 4H2O ↔ Zn2+ + 8Fe2+ + SO4
2- + 8H+ 

ZnS + 2H+ ↔ Zn2+ +H2S (aq) 

Supergene sphalerite has been documented forming significant enrichment blankets under the 

right conditions occurring both as framboidal aggregates, and coating pyrite and hypogene 

sphalerite (Bawden et al., 2003).  Gold is related to both mass gain and minor mass loss (Fig. 

58B) possibly suggesting some enrichment of gold. 

Clays (kaolinite, montmorillonite, gibbsite) can often develop in the supergene 

environment due to destruction of feldspars and micas by downward percolating acidic fluids.  

Samples were analyzed using the ASD Terraspec Spectrometer from core hole ERC14-002 to 

detect any supergene clays.  Thirteen samples from the oxide zone were analyzed ranging in 

grade from 0.23 to 3.31 opt Ag.  From the mixed zone 14 samples were analyzed ranging in grade 

from 0.08 to 71.92 opt Ag.  Only two samples from the sulfide zone were analyzed.  Muscovite 

and illite were the only alteration minerals identified using the spectrometer.  The muscovite is 

part of the quartz+sericite±pyrite (QSP) hypogene alteration assemblage.  The absence of 
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abundant kaolinite and alunite reflect the pH of the weathering fluid, possibly suggesting it was 

not strongly acidic.   

 

VI. Geochronology 

Jarosite was dated by the 40Ar/39Ar method to place timing constraints of weathering and 

supergene processes.  Jarosite was identified and confirmed using SWIR spectroscopy in two 

samples, NPWS 45 and NPWR 41, from Rochester rhyolite collected during pit mapping.  

Jarosite occurred in these samples with goethite and hematite coating fractures.  Jarosite was 

separated from the two samples by hand and sent to the New Mexico Geochronology Research 

Laboratory at the New Mexico Bureau of Geology and Mineral Resources.  Samples were then 

analyzed by x-ray diffraction to confirm jarosite abundance and purity.  The jarosites were step-

heated with a Photon Machine Diode laser and wrapped in silver packets to aid in removal of 

reactive gases.  The silver packets were crimped with platinum and were analyzed with a Thermo 

Helix MC Plus mass spectrometer.  Both jarosite samples yielded saddle-shaped and highly 

disturbed Ar release spectra.   40Ar/39Ar dates of the two jarosite samples yield maximum ages of 

2.77 ± 0.28 and 3.39 ± 0.19 Ma (Fig. 60 and 61) based on isochron ages.  Older apparent ages 

(Table 2) and increasing radiogenic yields at higher temperatures suggest contamination by older 

material with excess Ar, which is common in jarosite age analyses.   
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Figure 60. 40Ar/39Ar age spectra for NPWR 41 jarosite sample from the Rochester pit. 
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Figure 61. 40Ar/39Ar age spectra for NPWS 45 jarosite sample from the Rochester pit. 
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VII. Interpretation of the Supergene Profile at Rochester 

The supergene profile at Rochester is a result of multiple magmatic, hydrothermal, tectonic, and 

weathering events over the last ~248 million years (Fig. 62).  Koipato Group volcanic rocks and 

associated intrusions erupted upon and intruded the Golconda allocthon in the Early Triassic.  

Hydrothermal alteration, likely related to Koipato magmatism, was the initial event to alter 

Koipato Group rocks, characterized by sodium and initial boron metasomatism and hydrolytic 

alteration (Vikre, 2014).   

 

Figure 62. Schematic timeline of the geologic events in the Humboldt Range. (Modified from 

Vikre, 2014). 

 

After Koipato volcanism, deposition of up to 3.6 km of marine, predominantly platform 

carbonates, of the Star Peak Group buried the Koipato Group (Vikre, 1981).  The Humboldt 

mafic intrusive complex (Johnson and Barton, 2000), best exposed in the nearby Buena Vista 

Hills, West Humboldt, and Stillwater Ranges, is inferred to underlie the Humboldt Range based 

on Rb-Sr data from pervasively altered Koipato rocks giving an age of 168.6 ± 9.3 Ma (Kistler 

and Speed, 2000).  Jurassic thrust faulting and emplacement of Luning-Fencemaker allocthon, 

post Humboldt mafic intrusive complex, occurred between ~190-165 Ma based on 40Ar/39Ar 
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geochronology (Wyld et al., 2003).  The Luning-Fencemaker allocthon, comprised of thrust 

sheets of mainly basinal siliciclastic rocks, buried the Koipato and Star Peak Groups (Wyld, 

2002; Wyld et al., 2003).  The thickness of the Luning-Fencemaker allochthon is estimated to be 

between 7 to 14 km, based on lower greenschist metamorphic facies, penetrative foliation, 

conodont coloration, illite-muscovite crystallinity, and 40Ar/39Ar geochronology (Heck, 1987; 

Elison and Speed, 1989; Wyld et al., 2003; Vikre, 2014).  Based on these data, Star Peak and 

Koipato Group rocks would have been subjected to lithostatic pressures and temperatures of ≥1.8 

kb and ~200-350°C (Vikre, 2014).  Vikre (2014) suggested Jurassic magmatism and tectonism 

was responsible for regional, pervasive QSP alteration of the Koipato Group rhyolite and is 

cospatial with penetrative deformation caused by the thrusting.  

Several Cretaceous intrusions including the ~92-90 Ma quartz monzonite Rocky Canyon 

stock and inferred intrusions ranging from >103-86 Ma and ~81-70 Ma based on K-Ar and 

40Ar/39Ar dates resulted in quartz-sericite-sulfide veins, and alteration assemblages of quartz-

andalusite-dumortierite-muscovite (QADM) and QSP in surrounding rocks (Vikre, 2014).  The 

association of Cretaceous magmatism and QSP alteration is supported by δD and δ18O isotope 

values from dated vein muscovite reflecting, in part, equilibrium with magmatic fluid.  Also, 

isotopic values from fluid inclusions in dated QADM and quartz+muscovite+sulfide veins reflect 

mixing of meteoric and magmatic water.  Fluid inclusion and mineral stabilities indicate QADM 

mineral assemblages formed at 550-400°C and 1-2 kb (Vikre, 2014). 

40Ar/39Ar dates on muscovite from Rochester deposit veins support a Late Cretaceous age 

for mineralization (Vikre, 2014).  Three-phase CO2-bearing fluid inclusions from Vikre (1981) 

contain 2.0 to 8.1 weight percent NaCl equivalent with no evidence for entrapment of separate 

CO2-rich and H2O-rich fluids.  Based on fluid salinities, CO2 concentrations, and estimated 

entrapment temperatures, Koipato Formation strata were under pressures of 0.5 to 1.5 kb in the 

Late Cretaceous.  Assuming an average density for post Koipato carbonate and clastic rocks of 
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2.5 g/cm3, 0.5 to 1.5 kb of lithostatic pressure corresponds to depths of 2 to 6 km.  However, 

sphalerite geobarometry shows a formation pressure of 1,850 ± 250 bars corresponding to a depth 

of ~7.1 km.  Vikre 1981 studies indicate vein formation conditions of ≥300°C and ~1 kb.  Based 

on vein fluid and mineral compositions, as well as temperature and pressure data, rocks at 

Rochester require a minimum overburden of 3.8 km assuming lithostatic pressure during 

mineralization (Vikre, 1981; 2014).  Assuming Jurassic Luning-Fencemaker allocthon 

thicknesses of 7-14 km and <3.6 km of overlying Star Peak Group, most of the allocthon would 

have been removed by the time of ore formation in the Late Cretaceous. 

Late Cretaceous thermal activity was followed by slow regional cooling, tectonic 

quiescence, slow erosion, and minimal deposition through the late Eocene (Colgan et al., 2006).  

The early Oligocene to middle Miocene is marked by widespread eruption of volcanic rocks 

across western Nevada.  Although minor Tertiary rocks occur within the core and western flank 

of the Humboldt Range, faulted Oligocene to Pliocene volcanic rocks occur in the hanging wall 

of the Humboldt Range bounding normal fault (e.g., Wallace et al., 1969) suggesting the onset of 

extension and any significant erosion of the interior of the Humboldt Range commenced after the 

Oligocene.  Accordingly, apatite fission track (AFT) dates from the footwall of normal faults 

bounding the western flank of the Humboldt Range yield age dates of 14.5 to 10.1 Ma, indicating 

the likely initiation of Basin and Range extension in this area (Schweickert et al., 2006).  

Assuming a 30°C/km geothermal gradient and closure temperature of 110 ± 10°C for apatite 

(Green et al., 1986; Gallagher et al., 1998; Ketcham et al., 2007), these rocks would have been at 

paleodepths of ~3-3.5 km at the onset of extension.  Young erosional surfaces that preserve late 

Miocene basalt and Pleistocene gravels, dominantly along the eastern and northwestern flanks of 

the Humboldt Range (Bonham and Sharp, 1957; Wallace et al., 1969b; Vikre, 1977), suggest 

little erosion since ~12-9 Ma (Vikre, 1977).  Together, these data suggest minimal erosion (~1 

km) from the time of primary mineralization in the Late Cretaceous to the initiation of Basin and 



80 
 

Range faulting and significant erosion of ~3-3.5 km in the middle Miocene, followed by active 

but reduced rates of extension after the Pleistocene.  This is consistent with AFT and apatite 

U/Th(He) thermochronology from the adjacent East Range, which suggests extension began at 

17-15 Ma with initial rapid exhumation of ~5 km, then renewed exhumation at ~10 Ma with an 

additional >1 km of exhumation (Fosdick and Colgan, 2008).  These dates are also in agreement 

with regional estimations for the onset of extension including the Shawave Range west of the 

Humboldt Range with initiation at 14.5 Ma (Whitehill et al., 2008) and ~12 Ma across 

northwestern Nevada (Colgan et al., 2006). 

Supergene oxidation of ore deposits has been dated from a variety of deposits and 

minerals across Nevada.  Arehart et al. (1992) dated supergene alunite from the Post, Gold 

Quarry, and Rain Carlin-type gold deposits in northeast Nevada using the K-Ar technique.  Dates 

range from ~8 to 26 Ma.  Alunite from the Alligator Ridge Carlin-type gold deposit in eastern 

Nevada yield K/Ar supergene ages of ~13 to 10 Ma (Ilchick, 1990).  Supergene alunite from the 

Paradise Peak epithermal Au-Ag-Hg deposit was dated by K/Ar at 10.0 ± 0.5 Ma (Sillitoe and 

Lorson, 1994).  Supergene jarosite was dated from Goldfield, NV by the 40Ar/39Ar dating 

technique at 10.6 ± 0.2 Ma (Vasconcelos et al., 1994).  Paradise Peak and Goldfield are located in 

southwestern Nevada, approximately 150 and 250 km south of Rochester, respectively.  The 

preponderance of middle to late Miocene dates indicate Basin and Range extension was 

responsible for the onset of weathering and supergene processes across much of Nevada.  As 

described above, 40Ar/39Ar dates on supergene jarosite from Rochester yield ages of ~3 Ma, 

indicating either weathering is relatively recent or was prolonged compared to other weathered 

deposits across Nevada.  

At the inception of Basin and Range extension, mid-late Miocene fauna indicate the 

climate was highly seasonal as evident from abundant silt and salt in paleosols, likely due to dry 

summers and wet winters.  Arid late-summers likely produced highly alkaline groundwater 



81 
 

(Retallack, 2004).  Estimates for the mean annual precipitation during this time is about 600-1000 

mm with mean annual temperature ranging from 8 to 18°C (Wolf, 1994; Graham, 1999; 

Retallack, 2004).  The water table would have fluctuated seasonally but was likely shallow given 

the wet climate.  The ~3 Ma date on supergene jarosite at Rochester corresponds to a global 

climatic shift caused by the closing of the seaway between North and South America.  This 

climatic shift brought warm and saline waters from the gulf to high latitudes and caused increased 

precipitation followed by the onset of glaciation and global cooling at ~3 Ma creating a seasonal 

climate that was cooler and drier (Haug and Tiedemann, 1998).  In the late Holocene, cycles of 

both severe drought and heavy precipitation lasting between 50 to 200 years have been recorded 

~33 km south of Rochester in the Carson Sink area (Adams, 2003).  Today Rochester has a mean 

annual precipitation of about 330 mm and mean annual temperature of -6 to 20°C (Robinson et 

al., 2014); therefore, the climate has become more arid since extensional faulting began in the 

mid-Miocene, which is optimal for preservation of a supergene profile. 

Basin and Range extension continues today at a likely lower rate with active faults 

bounding the Humboldt Range, consistent with nearby ranges (Colgan et al., 2006, Fosdick and 

Colgan, 2008).  At the Rochester mine, the pre-mining water table was roughly at an elevation of 

6,550 ft (BLM, 2016) with the now mined Nenzel Hill at 7,284 ft.  The modeled water table 

currently sits anywhere from 70 to 300 feet below the bottom of the pit (6,425 ft) and increases in 

elevation to the east closer to the Black Ridge fault.  About 3 km north in the Spring Valley basin 

(~5,500 ft) the water table sits 20 to 30 feet below the surface in alluvium (Crowl et al., 2014).  

There are springs along the Black Ridge fault east of the Rochester pit indicating a perched 

aquifer.  Water in the Humboldt Range today is non-saline with Cl concentrations <200 ppm 

(NBMG, 2014).   

When the Humboldt Range initially began to rise due to extension at ~14-10 Ma, the 

Rochester deposit would have been well below the water table at ~3-3.5 km depth.  The deposit 
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would have moved closer to the water table as the water table dropped and overlying rocks were 

eroded due to uplift.  Significant oxidation of the deposit did not start until the water table 

dropped to the level of the deposit.  While late Miocene basalts are preserved on the eastern and 

northwestern flanks of the Humboldt Range no major erosional surfaces are preserved near 

Rochester which suggests continual active erosion.  Jarosite samples yielding maximum 

supergene ages of ~3 Ma were collected in the pit where mining is active at an elevation of 6,425 

ft.  As mentioned above pre-mine Nenzel Hill was at an elevation of 7,284 ft, therefore this young 

supergene date is possibly when weathering processes reached lower elevations of the deposit.  

Depending on how thick a hypothetical and now eroded leached cap was, weathering could have 

started at higher elevations of the deposit much earlier and possibly as early as the onset of Basin 

and Range extension.   

Pyrite and other sulfides at Rochester were oxidized and formed sulfuric acid.  Typically, 

pervasive quartz+sericite alteration, such as at Rochester, has little, if any, acid-consuming 

capacity.  The lack of alunite, kaolinite, and halloysite in the oxide zone at Rochester is consistent 

with observations from leached caps in porphyry copper deposits where sericite is not altered to 

supergene kaolinite (e.g., El Salvador, Gustafson and Hunt, 1975).  Moreover, the presence of 

minor but widespread relict igneous and hydrothermal reactive K-feldspar likely inhibited 

generation of extremely acidic supergene fluids.  The oxidation of pyrite led to the formation of 

both indigenous goethite and mobilization of iron to form exotic goethite.  Much less indigenous 

and exotic hematite formed relative to goethite.  During oxidation, acidic fluids leached mobile 

elements, particularly copper, silver, and zinc.  Relatively immobile elements such as lead and 

gold were left behind.  As pointed out above, gold grades >0.2 opt are restricted to elevations 

above 5,500 feet, and >0.5 opt between 6,000 to 7,000 feet, suggestive of original hypogene 

zoning (Fig. 55B).   
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During supergene oxidation, mobile metals, as ionic or complexed species and sulfur as 

sulfate, percolate downward through the vadose zone moving towards the water table.  

Alternatively, fluid moving through rock with low total volume percent of sulfide and reactive 

wallrock mineralogy (e.g., feldspar, carbonate) will be less acidic and metal ions will not be 

transported as far but will precipitate in the oxide zone as carbonates, hydroxides, oxides, 

sulfates, or silicates.  Metal ions will then reprecipitate under reducing conditions which typically 

occur at and below water table, but locally can exist above the water table where capillary water 

is present (Anderson, 1982).  

The solubility of copper and silver in downward percolating oxidized fluids is dependent 

on pH and oxygen fugacity (Fig. 63 and 64).  A decrease in pH will lead to an increase in 

solubility of copper and silver while an increase in pH typically leads to precipitation of copper 

oxides and carbonates, silver-halides, and native copper and silver.  Reduction with little or no pH 

increase favors precipitation of copper and silver sulfides.  Therefore, highly acidic and oxidized 

fluids are crucial for efficient leaching and transport of copper and silver down to and below the 

water table to form supergene sulfides.   

For copper, in oxidized fluids at pH values <~4, no solid copper phases are stable and 

aqueous copper is transported downward as Cu2+ (Fig. 63).  When fluid becomes reduced at and 

below the water table, supergene chalcocite forms first.  Covellite forms at greater depth under 

more reduced conditions (S2- rather than S1-) (Alpers and Brimhall, 1989).  At pH >~4 copper is 

less soluble and can precipitate in a variety of minerals dependent upon fluid chemistry, including 

antlerite, brochantite, cuprite, and native copper (Anderson, 1982).  Neutral to high pH oxidizing 

conditions will not significantly leach copper but carbonates (azurite and malachite) and oxides 

(tenorite) will form in place or nearby (Anderson, 1982). 

For silver, oxidized fluids at similar pH values of <~4 can form chlorargyrite, iodargyrite, 

and native silver.  At conditions where aqueous sulfide is present such as near and below the  
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Figure 63. Eh-pH diagram showing the stability fields for copper minerals in the Cu-S-H2O 

system at 25°C with p = 1 atm, CO3 = 10-3 m, and total S = 0.1 m.  (Modified from Anderson, 

1982). 
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Figure 64. Oxygen fugacity vs. pH diagram showing the stability of silver minerals in the Ag-S-

I-Cl-H2O system at 25°C.  Ligand concentrations represent average rain water from Hem (1985): 

ΣS = 10-5 m, ΣI = 7.9·10-9 m, ΣCl = 2.8·10-5 m.  Blue solid lines represent boundaries between 

sulfur species.  Green solid line represents the boundary between two silver complexes in 

solution, Ag+ and AgHSo.  Black solid lines represent boundaries between silver mineral stability 

fields.  Red dashed lines represent the solubility concentrations of silver as Ag+ and AgHSo.  

(Modified from Gammons and Yu, 1997). 

 

water table, acanthite is stable (Fig. 64).  Alternatively, acanthite will oxidize to native silver and 

iodargyrite.  As stressed by Sillitoe (2008), the stability field of iodargyrite is quite large and 

iodargyrite is much less soluble than chlorargyrite and native silver.  However, as pointed out by 

Gammons and Yu (1997), unless the supply of iodide (I-) in supergene fluids is continuously 
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replenished, the I/Cl ratio of the groundwater, which is always <1, will decrease until the stability 

field of chlorargyrite will expand at the expense of iodargyrite (Fig. 64).   

Acanthite is the most common supergene silver sulfide occurring as rims on hypogene 

sulfides in the Rochester deposit.  Covellite is a well-known secondary sulfide in supergene 

copper deposits and commonly occurs with acanthite on hypogene rims suggesting this supergene 

texture forms under the same conditions and processes.  Knopf (1924) also noted acanthite and 

covellite rimming hypogene sulfides, dominantly sphalerite and lesser tetrahedrite, galena, and 

chalcopyrite.  In the Rochester deposit, covellite rims without acanthite are found only in the 

mixed zone and in the upper parts of the sulfide zone suggesting copper moved to greater depths 

than silver.  Rare sphalerite occurring with acanthite rimming a hypogene sulfide suggests 

possible supergene sphalerite, especially given most of this late sphalerite has little to no iron.  In 

situ sulfur isotope microanalyses of the sphalerite might help evaluate a supergene origin (i.e., 

Bawden et al., 2003).  

As the water table lowered in elevation with time due to continued uplift and decreasing 

precipitation, more sulfides, including previously formed supergene sulfides were exposed to 

weathering and oxidized, likely resulting initially in hematite formation, due to decreased S/metal 

ratios of supergene sulfides relative to pyrite (Anderson, 1982) (Fig. 65B).  Additional silver may 

have been transported further downward as supergene acanthite rims were subsequently oxidized.  

Upon acanthite oxidation immobile silver phases will also form, primarily native silver and 

silver-halides.  Gammons and Yu (1997) predicted a vertical zonation based on phase equilibria 

with iodargyrite at the base of weathering followed by bromargyrite higher in the supergene 

profile then chlorargyrite closest to the surface.  Pure bromargyrite is rare because it forms a 

complete solid solution with chlorargyrite and Cl- is more common in meteoric fluids compared 

to Br-.  This vertical zonation was observed at Tonopah, NV with iodargyrite at depth and 

chlorargyrite near the surface in the zone of weathering (Chitayeva et al., 1971).  On the other 
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hand, the opposite was observed in the Rochester deposit, where chlorargyrite and supergene 

native silver locally occur in the mixed oxide-sulfide zone adjacent to supergene acanthite with 

no iodargyrite.  Iodargyrite was only found in the upper portion of the supergene profile in the 

oxide zone, where samples had been pervasively and strongly oxidized.  This suggests iodide was 

not sufficiently replenished during oxidation and the I/Cl ratio decreased over time; thus, as 

pointed out above, the chlorargyrite stability field likely expanded at the expense of the 

iodargyrite field.  Thus, silver solubility at low pH values and oxidized conditions would have 

increased with time, as the iodargyrite field shrank.  Knopf (1924) and Vikre (1977) also 

observed supergene acanthite partially replaced by chlorargyrite in oxidized ore.  

Silver from secondary sulfides either became soluble as weathering progressed and 

moved further down the supergene profile (Fig. 65C) or formed silver-halides nearly in place.  

Once the surrounding rock and hypogene sulfides are pervasively oxidized, remnant supergene 

acanthite can remain in the oxide zone, and subsequent supergene fluids are not sufficiently 

acidic to mobilize silver and other metals, unless the water table drops significantly into the 

underlying hypogene sulfide zone (Fig. 65D).  Therefore, zones of supergene enrichment should 

form in the early stages of weathering but are then oxidized and largely become immobile unless 

the water table drops again.   

Supergene enriched zones, documented in this study, mostly occur within or adjacent to 

fault zones near the Weaver-Rochester contact.  This is likely a result of fluid movement 

enhanced by fracture permeability.  Oxidation of these supergene sulfides in fault zones results in 

strongly oxidized gouge and formation of native silver and silver-halides largely responsible for 

silver grade.  Vikre (1977) similarly observed fragments of quartz veins in fault zones with 

significant silver grades occurring dominantly as silver-halides suggesting mineralized veins were 

pulverized by faulting and the silver grade enriched due to supergene processes. 
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Figure 65. Schematic diagram of the interpreted supergene profile progression at Rochester.      

A. Primary hypogene sulfide assemblage dominated by silver-bearing tetrahedrite-tennantite and 

acanthite inclusions in arsenian pyrite.  B. Initial oxidation of the hypogene mineralization with 

silver mobilizing to nearby sulfides and oxidizing to hematite then complete leaching and 

mobilization.  C. Silver mobilizes down in elevation and becomes enriched mostly along fluid 

pathways, such as faults, precipitating as rims on hypogene and supergene(?) sulfides.                  

D. Oxidation of supergene enriched silver zones creates dominantly immobile silver phases 

(native silver and silver-halides) and remnant supergene acanthite with indigenous and exotic 

goethite>hematite. 
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The amount of silver fixed as silver-halides and native silver depends on environmental 

conditions at the time supergene processes are affecting hypogene silver mineralization, which 

likely change over time.  Environmental conditions determining the mobility of silver include the 

availability of halides due to the salinity of groundwater, length and periodicity of weathering, 

and tectonic activity causing uplift thus decreasing the elevation of the water table.  Silver-halides 

are relatively soluble therefore continual fluid flux will transport silver down out of the 

weathering zone and are only preserved in arid environments (Gammons and Yu, 1997).  For 

example, at a pH of ~2 and high oxygen fugacity the chlorargyrite field is dominant and 6 μg/kg 

of Ag+ is in the supergene fluid (Fig. 64).  If this highly oxidizing, highly acidic fluid then 

percolated downward and increasingly became more reduced but remained acidic, Ag+ in solution 

would increase to 1 mg/kg but then decrease as iodargyrite precipitates.  However, as mentioned 

above, if I- is not present in high concentrations, the chlorargyrite field expands at the expense of 

iodargyrite and Ag+ will remain at 6 μg/kg.  As the fluid continues to move downward Ag+ will 

slightly decrease from the chlorargyrite field to 1 μg/kg in solution and native silver becomes 

stable.  Along this fluid pathway in the native silver field, Ag+ will decrease to 1 ηg/kg until the 

fluid is sufficiently reduced to form acanthite.  In the acanthite field, aqueous silver is complexed 

as AgHSo, and at a concentration of 1 ηg/kg.  When sulfur in the fluid is predominantly aqueous 

sulfide, the concentration of AgHSo in solution will increase to 8 ηg/kg in the acanthite stability 

field.  

 The large and variable mixed zone at Rochester is likely a product of the water table 

having dropped with time as extension uplifted the Humboldt Range.  Silver likely became 

locked up in the oxidized upper portion of the supergene profile, mainly as halides, as the water 

table moved down but some silver was able to mobilize to lower elevations to the mixed zone.  

As silver moved down from the supergene enriched zones in the oxide zone, new enriched zones 

were produced in the mixed zone and those are currently being oxidized.  
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A copper-porphyry style blanket of secondary sulfides is not obvious at Rochester, 

however, the overall pattern of ≥2 opt silver, which is mainly in the current oxide zone, generally 

parallels the Weaver-Rochester contact.  At this point, the possibility that this apparent stratiform 

body is a remnant supergene enrichment blanket cannot be ruled out.  A leached capping at the 

Rochester deposit could have easily been eroded considering at least ~4 km of overburden has 

been removed since ore formation in the late Cretaceous, ~3-3.5 km of which has occurred since 

the middle Miocene.  Various rates of erosion have likely occurred over the last 10 m.y. in 

conjunction with tectonic uplift as evidenced by the young supergene jarosite ages of ~3 Ma.  In 

comparison, supergene weathering at individual deposits across the Chile copper porphyry 

province was ongoing for at least 0.4 to 6.2 m.y. (Sillitoe and McKee, 1996).  A similar period of 

weathering could have enabled supergene processes at Rochester to oxidize hypogene 

mineralization and erode the upper portions of the deposit.  Therefore, oxidized segments of an 

enrichment blanket could explain the high silver grades and blanket-like geometry of the 

Rochester deposit in the oxide zone.  After initial enrichment, a blanket-like feature could have 

been furthered eroded and dismembered by continued active faulting. 

To further test supergene silver enrichment at Rochester the timing of oxidation needs to 

be constrained and fluid flux and transport characteristics specific to Rochester mineral 

assemblages needs to be better understood.  To constrain timing and duration of weathering more 

dates of minerals associated with oxidation need to be determined.  This would be difficult 

considering the minor amounts of jarosite and absence of supergene alunite but is feasible given 

that jarosite from this study was pure enough to use the 40Ar/39Ar dating technique.  Geochemical 

transport modeling using mass balance calculations similar to studies by Ague and Brimhall 

(1989) and Alpers and Brimhall (1989) on supergene enrichment of copper-porphyry systems are 

needed to understand transport and mobilization of elements in the Rochester deposit during 

weathering.   
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VIII. Regional Comparisons to other Silver-rich Districts 

Historically, some silver mines in Nevada have been short lived after their shallow high-grade 

oxidized and upper parts of underlying sulfide portions were exploited.  Ore minerals in the 

shallow oxide zone of some silver deposits included chlorargyrite, other silver-halides, and native 

silver; and electrum, native silver, acanthite, silver-bearing sulfosalts, and galena deeper in the 

weathering profile (Ross, 1953; Stager, 1977; Kleinhampl and Ziony, 1984).  Most workers noted 

limonite and other oxides as vein constituents with sulfides suggesting ore was mined from the 

mixed oxide-sulfide zone (Page, 1959; Stager, 1977; Kleinhampl and Ziony, 1984).  Summaries 

of short lived camps and a comparison to the Rochester deposit are provided below. 

 

Austin, NV (Ross. 1953; Stager, 1977) 

There are several mining districts near the town of Austin, NV where silver was 

discovered in 1862, peak production was reached in 1868, and production declined with sporadic 

mining into the early 1900’s.  Major ore deposits in this district are silver-bearing quartz veins 

filling joint and fault fractures in Jurassic granitic intrusions and adjacent Paleozoic sedimentary 

rocks.   

The deposits around Austin are similar to those in the Rochester district, especially the 

mineralogy of both oxide and sulfide ores.  At both Rochester and Austin, high-grade oxide ore 

near the surface is characterized by chlorargyrite, other silver-halides, and native silver, these 

minerals and supergene covellite and chalcocite support supergene enrichment of silver.  Sulfide 

mineral similarities include acanthite and silver-sulfosalts, including tetrahedrite-tennantite, 

proustite, polybasite, stephanite, chalcopyrite, and rare molybdenite.  Similar gangue minerals 

include quartz, pyrite, galena, sphalerite, and arsenopyrite.  The presence of carbonates and 

graphite in the deposits at Austin, which are absent at Rochester, would have led to less acidic 
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and more reduced supergene fluids in the oxide zone.  This fluid chemistry would have resulted 

in more native silver precipitating from weathering fluids at Austin.  

 

Candelaria Mining District, NV (Page, 1959; Moeller, 1988) 

The Candelaria Mining District is in southwestern Nevada, along the county line between 

Mineral and Esmeralda Counties.  Silver-rich veins were first discovered in 1863 and mined 

through the 1880’s.  Mining operations were reactivated in 1983 and ore mined contained average 

grades of 1.45 opt Ag and 0.006 opt Au.  Ore deposits in this district are mostly hosted in Triassic 

shale.  The intensity and depth of oxidation is extremely variable vertically, locally extending to 

depths of 200 m.  However, sulfide pockets locally occur within 70 m of the surface.   

The most abundant sulfides in hypogene ore are pyrite, sphalerite, along with minor 

arsenopyrite, chalcopyrite, galena, and jamesonite.  Locally, silver occurs in galena and 

jamesonite.  Gangue minerals include quartz, dolomite, and minor rhodochrosite.  Carbonaceous 

rocks also occur at depth.  Secondary copper minerals were identified locally.   

Ore from open pit mining in the 1980’s came exclusively from the oxide zone.  The 

highest silver grade zone was a gossan boxwork indicative of massive sulfide (possibly an 

oxidized enriched zone).  This high-grade gossan was underlain by a zone of milky quartz 

veinlets with abundant limonite with silver grades of 1 to 4 opt.  Chlorargyrite is abundant in 

high-grade oxidized ores and acanthite is more abundant in zones of minor limonite.  Acanthite 

reportedly coats native silver and native silver rims were found on chlorargyrite, indicative of a 

supergene origin for at least some of the minable acanthite.  Jarosite is a common constituent 

occurring as fracture coatings suggesting highly acidic supergene fluids.  Other oxides reported 

include anglesite, cerussite, and smithsonite with limonite boxwork.  Bindheimite, and other 

unidentifiable antimony and arsenic phases occur in the oxide zone.          
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Past workers had supported a hypogene zonation for silver minerals but Moeller (1988) 

argues for significant supergene silver migration.  Two periods of oxidation are recognized; the 

first is constrained by Oligocene volcanics unconformably overlying a deeply oxidized zone and 

the second was initiated at the onset of erosion of the volcanic rocks.  Moeller speculates that the 

water table fluctuated significantly during oxidation and the water table now lies at an unknown 

depth below oxidation, allowing for continuing development of a supergene profile.  In the Mount 

Diablo ore zone, silver grade increases with depth to about 180 m suggesting supergene 

enrichment.      

Supergene mineralization at Candelaria and Rochester are similar in that chlorargyrite is 

an important oxide ore mineral and acanthite occurs spatially with chlorargyrite and native silver 

indicative of a supergene origin for acanthite.  Oxide mineralogy of the two deposits is also 

similar, including the presence of anglesite and bindheimite.  Some important differences are 

carbonate and carbonaceous gangue minerals at Candelaria which would likely inhibit the 

mobility of silver, at least locally, in the supergene environment.  This gangue mineralogy at 

Candelaria would result in reduced and higher pH fluids where native silver and acanthite would 

become more stable than chlorargyrite.  

 

Northern Nye County, NV (Kleinhampl and Ziony, 1984)  

 The Reveille District is located in the northern part of the Reveille Range in central 

northern Nye County east of Tonopah.  Silver, lead, copper, antimony, and zinc were mined 

intermittently from 1866 until 1982.  Early reports of the district claimed that near surface ore 

was oxidized and dominated by chlorargyrite and cerussite.  Chlorargyrite was mined as late as 

1979 in newly discovered ore bodies hosted in Paleozoic rocks along a major south dipping fault 

(Kleinhampl and Ziony, 1984).  Pyrargyrite and acanthite were reported to increase with depth 

suggestive of supergene enrichment.  Locally silver-bearing galena occurs at depth in the sulfide 
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zone.  Gossan and silicified zones surround shafts and shear zones.  Ore zones are typically in 

veins along fractures and faults in the Paleozoic and Tertiary rocks, and along contacts between 

Tertiary andesite and Paleozoic carbonate and siliciclastic rocks.  However, early descriptions of 

the ore body reported a flat blanket-like silver deposit indicative of a supergene enriched zone.     

 The Belmont District lies in the low hills between the southern Toquima Range and 

Monitor Range.  This district was short lived and only active from 1865 to 1888.  The district 

straddles a contact between a late Cretaceous granitic pluton and Ordovician sedimentary rocks.  

Shallow high-grade oxidized silver ores were first mined and were dominated by chlorargyrite.  

Deeper silver-rich ores consisted mostly of silver-bearing tetrahedrite and sulfide minerals in 

quartz veins, including pyrite, galena, and secondary copper minerals.  Stromeyerite was reported 

spatially occurring with chlorargyrite suggestive of at least some supergene sulfide 

mineralization.     

 The main similarity among these districts in northern Nye County is chlorargyrite 

reported as the dominant ore mineral in the oxide zone occurring with secondary copper minerals.  

Acanthite, tetrahedrite, and minor stromeyerite are often the main sulfide ore minerals occurring 

in mixed oxide-sulfide and sulfide zones.  However, textures of sulfide ores are not described in 

adequate detail to infer a hypogene or supergene origin for many of these minerals.  Pyrite and 

sphalerite are typically the dominant hypogene sulfide minerals.  These characteristics are similar 

to those at Rochester where chlorargyrite is a common oxide ore; acanthite and tetrahedrite with 

lesser stromeyerite are the main sulfide ore minerals in the mixed and sulfide weathering zone; 

and pyrite and sphalerite are the most common sulfides occurring in veins and as disseminations 

in wall rocks.   

Faults, gossan, and silicified zones are reported as abundant and can be important for ore 

in northern Nye County indicating some high grade zones are the result of supergene processes.  

While fault gouge and strongly oxidized rocks often comprise high silver grade zones at 
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Rochester, silicification is not necessarily indicative of ore.  Another difference between ore 

deposits in northern Nye County and Rochester is the presence of silver-bearing galena.  

Acanthite occurs with galena at Rochester, but silver has yet to be documented to occur in the 

galena crystal structure.  Silver-bearing sphalerite was reported in deposits in Nye County 

whereas at Rochester sphalerite can be closely associated with elevated silver grades but 

sphalerite does not contain silver, silver-bearing supergene sulfides commonly replace sphalerite.  

Ore mineralogy reports for northern Nye County were written several decades ago; it is possible 

that galena and sphalerite do not actually contain silver in their structures and that silver occurs in 

very fine-grained rims or inclusions of silver-bearing sulfides and sulfosalts. 

The most important characteristics these deposits share, including Rochester, are shallow 

high-grade oxidized ore zones with chlorargyrite as the dominant silver mineral and acanthite and 

silver-sulfosalts abundance increasing with depth.  Most of the silver-sulfosalts are likely 

hypogene in origin while some could be supergene, particularly stromeyerite.  Some of the 

acanthite texture descriptions in the Candelaria and Reveille districts are certainly suggestive of a 

supergene origin but more detailed petrographic descriptions are necessary for verification.  The 

most important difference between some of the deposits described above and Rochester is the 

presence of carbonate and carbon which have buffering capabilities and would inhibit the 

mobility of silver.  Alternatively, for example, downward percolating fluids that encountered a 

lithologic contact between volcanic rocks and carbonaceous limestone would promote locally 

efficient precipitation of metals resulting in supergene enrichment.  At Rochester, no carbonate or 

carbon material is present and with pervasive QSP alteration there is little buffering capabilities 

allowing the fluid to remain acidic and transport metals.  Therefore, if a similar deposit style was 

characterized by shallow high-grade oxidized ore dominated by chlorargyrite with no carbonate 

or carbon gangue minerals in an environment similar to Nevada with a structural framework and 
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recent aridity to preserve supergene minerals, then a deeper large disseminated silver deposit 

similar to Rochester is possible.   

 

IX. Conclusions 

Supergene silver enrichment was documented in this study, occurring predominantly as acanthite 

with covellite rimming earlier sulfides.  Supergene enrichment was mostly found in high grade 

zones (≥2 opt Ag) related to faulting.  Identifying and understanding geologic controls on high 

grade zones is important for future mine planning and exploration to vector in potential targets.  

A supergene enrichment blanket responsible for the tabular geometry of higher silver grades in 

the lower Weaver oxide and upper Rochester oxide and mixed zones cannot be ruled out.  Further 

testing this possibility is hindered by the lack of Weaver sulfide protore samples for comparison 

to high-grade Weaver oxide ore.  Future work that can further test supergene silver enrichment at 

Rochester includes geochemical modeling similar to studies by Ague and Brimhall (1989) and 

Alpers and Brimhall (1989) of chalcocite enrichment blankets in copper porphyry deposits, as 

well as additional dating to better constrain the timing and duration of supergene processes during 

late Cenozoic uplift and erosion of the Humboldt Range.  
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